
Virtual Chaotic Traffic Simulation

Gaurav Chaurasia∗ B. Radhika Selvamani Nithi Gupta Subodh Kumar†

Department of Computer Science & Engineering
IIT Delhi

New Delhi 110016 INDIA

ABSTRACT
This paper presents a novel traffic simulation scheme capable
of modeling most forms of urban, chaotic traffic. Different
from other lane-based or following-based approaches, ours
models traffic as a large navigational problem in an agent
based simulation context. While this generalization makes
the traffic more reflective of certain scenarios, it also leads
to some complexity that we address. It is able to handle
dense traffic and selects for each car, independently, the op-
timal velocity and acceleration to find a path through a fast
evolving obstacle network. The selection of parameters at
each simulation step is posed as an optimization problem
ensuring smooth motion subject to car kinematics. In addi-
tion to overtaking, the approach is efficiently able to handle
hard cases like behavior at traffic lights and turning. We
demonstrate our simulation at real-time rates using average
computing resources.

1. INTRODUCTION
Traffic simulation has many applications ranging from ur-

ban planning to computer games to movies to learning about
driver behavior. It follows naturally that the area boasts a
rich body of literature. Much of this literature is in the con-
text of streamlined lane-based traffic flow, as is common in
many parts of the world. As a result, many of the ideas
are inapplicable to chaotic traffic scenarios as is prevalent
in many other parts of the world, where sometimes lane
markings may not even exist. We target chaotic traffic sim-
ulation. In particular, our goal is to visualize low and high
traffic virtual environments: we focus on accurate display
of vehicle behavior. Our design allows the display and sim-
ulation loops to run asynchronously. This allows the scene
to be displayed at a high frequency, even if the simulation
frequency is somewhat lower.

Traffic simulation is often categorized into macro and mi-
cro simulation (with some examples of hybrids) [20]. Micro-

∗Currently at REVES/INRIA Sophia Antipolis
†Contact Email:subodh@cse.iitd.ac.in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

simulation schemes simulate each vehicle, while macro-simul-
ators are concerned mainly with statistics and volumes of
traffic flows and bottlenecks. We focus on micro-simulation,
for one of our main applications is computer games – one can
imagine racing the streets of Bangalore with other gamers,
all while “normal” traffic is in full flow. Macro-simulation
does not lend itself to such rendering. Furthermore, response
to developing traffic situations (like bottlenecks and jams)
can be better handled by micro-simulation. We would like
our simulation to be realistic enough for urban planning, or
for games and movies in the context of, say, urban warfare
or criminal pursuit. Our immediate goal is for the physical
simulation as well as the resulting graphics to look realistic.
We leave a detailed physical validation of the simulation for
later.

We present a parameterizable generic traffic model with
few hard-coded assumptions. We neither assume strict lane
based driving nor pre-define overtaking trajectories [18], which
may apply only to sparse highway traffic. Our technique
is able to simulate chaotic urban traffic, and yet converge
to more structured movement in low traffic density or low
driver aggression levels.

2. PREVIOUS WORK
Our problem is primarily one of simulating behavior of

multiple agents. Continuum based multi-agent approaches
[14] model the system with a set of partial differential equa-
tions. Each agent in the system is associated with a force
or potential field, and the proximity of the agent to other
agents or obstacles is captured in terms of high energy states.
The optimal path is one that assures a low energy state to
the agent. The behavior of all the agents is the solution of
this global system of equations, and therefore such a system
is centralized in nature. The major advantage of this ap-
proach is that it can capture arbitrary agent motion. And
the major challenge is that solving the system of equations
can be numerically unstable, especially in situations where
the functions are not continuous or differentiable. More im-
portantly, although the results seem plausible at a macro
level, individual agent behavior may seem artificial.

Other centralized approaches also suffer from similar unre-
alistic behavior. The fact is that real drivers are autonomous
and are not always able to find the best paths. Indeed, traf-
fic involves a complex and dynamic interaction of multiple
independent decision makers in the presence of limited re-
sources (the road). We pursue a decentralized approach,
which seems to more naturally capture such complex deci-
sion making. Each agent is autonomous and decides its path

independently based on its observation of changes around it.
We will see how it is easy to incorporate approximate solu-
tions in our framework. Decentralized simulations are also
parallelizable and have been shown to work well on multiple
cores [17].

One of the very first works on multi-agent simulation in
computer graphics can be traced to Reynolds [11], who mod-
eled a flock of birds, called Boids as a particle system. Each
boid used its perception of surroundings to find its collision
free path independently. Since then, various multi-agent sys-
tems have been developed using a variety of approaches to
suit specific applications [6, 19].

Our problem also bears resemblance to robot navigation.
Our approach is motivated by the class of techniques known
as decoupled robot planning [13], as opposed to centralized
planning [8]. The centralized approach is popular for robot
planning algorithms seeking to find optimal paths. However,
our goal is to mimic human behavior. Global path optimiza-
tion is not a criterion for us. Instead of directly relying on
robotic planning, we impose a number of behavioral rules
and car dynamics limitations to guide the “robot’s” search.
Like many decoupled approaches [7], our planning also has
two phases; our first phase approximately accounts for other
vehicles and the second finds the detailed path.

In a separate domain, car games are popular and provide
realistic simulation. However, the focus there is on individ-
ual car dynamics. Car navigation is mostly pre-planned. On
the other hand, we model only the gross dynamics and focus
on the planning, especially in high-traffic and road intersec-
tion scenarios.

Previous work in traffic simulations has taken many forms
[2, 22]. Public domain agent based simulators exist as well
[1, 4, 21]. One of the most recent works in traffic simulation
[18] uses agents that follow lanes. They provide a realistic
results that fit the data of spatio-temporal traffic data from
sensors that monitor highway traffic.

Our technique bears a similarity to that of [9] in that
they too model autonomous drivers who make their own de-
cision using individualized parameters like desired and max-
imum braking, acceleration, speed, inter-vehicle gap, over-
take margin, etc. In contrast, we directly use driver aggres-
siveness level to generate all the other parameters. Also,
their path finding is ad-hoc: they make discrete decisions
to either follow or overtake based on inter-vehicle gap. Fur-
ther, in their work gridlock is easily possible and requires
the invocation of a special centralized module to relieve it.
We require no such module and individual behavioral model
is able to find a path.

[5] focuses on intersections and models empirically ob-
served driver behavior as a set of logical pre-conditions and
post-conditions. Others have also modeled individual driver
behavior using cellular automata [12], case based reasoning
[10], robot planning [8, 13], etc. Like many robot planning
algorithms, ours is a primarily geometric algorithm with be-
havior expressed in terms of geometry. We do have a limited
configuration space and we have chosen to have vehicles not
reverse on a street. Our approach is different from previous
traffic simulators in that we do not assume any pre-defined
vehicle trajectories or lanes. There isn’t even a specific no-
tion of “following” a vehicle. Our experiments with human
crowd simulation approaches [16, 17] when applied to traffic
did not provide natural behavior.

Most other systems select for each agent, an optimal next

velocity. In contrast, our approach selects acceleration, al-
lowing velocity to vary linearly over a time step. We show
that this results in a more stable and realistic simulation.
Our system does not assume lanes, but in non-crowded sit-
uations degenerates to approximately lane based – a phe-
nomenon observed in practice.

3. OUR FRAMEWORK
In the rest of this paper, we refer to a two dimensional

road-aligned coordinate frame, when using x and y. Each
vehicle also has a local frame of reference aligned with its
current velocity (as is the vehicle). We refer to these di-
rections as forward and lateral directions. At the end of a
simulation step, the local frame is updated. Hence, the lat-
eral speed is 0. Similarly, acceleration in the forward direc-
tion is due to accelerating or braking and that in the lateral
direction is due to turning.

We assume that every vehicle computes its attributes in-
dividually. It also maintains an estimate of its neighbors’
attributes (which may be imprecise). We use a simple grid-
based road partition data structure to locate neighbors. This
grid is extremely simple to update as traffic moves on the
road.

We assume that the starting point (source) and the fi-
nal destination (sink) for each vehicle is known. We have
designated sources and sinks at the extremes of the road
network. We provide a user interface for specifying the road
network on a map. We also allow the user to specify macro-
parameters to generate the vehicle agents using a Poisson
process.

Given the source and the sink of a vehicle, we use Dijk-
stra’s algorithm to find the shortest route. It’s a path in the
abstract digraph representing the road map; two-way roads
are split into two, one in each direction. The intersections
crossed by the path are called junctions. The nominal junc-
tion is divided into three parts: left, middle, and right, each
one third of the road width. Now the target of a vehicle
is set to the left, the middle, or the right segment depend-
ing on the desired direction of the vehicle at the junction at
the end of the road. Once at the intersection, the vehicle’s
next target is again chosen to be the same segment of the
beginning of the next road. Thus we reduce the problem to
finding a path to the next target.

3.1 Model parameters
Each driver is given an aggression level, which is used to

derive other properties like preferred speed, safety zones,
etc. The aggression level is a normalized value between 0
and 1. For our experiments, we use a normal distribution
(with mean=0.5 and variance=0.25) to assign aggression lev-
els randomly to new drivers. Each driver also maintains an
estimate of neighboring vehicles’ speeds and accelerations.
(This estimate is within a range of the real speed and accel-
eration, respectively. We use a uniform distribution in the
range +-10% of the real values. This estimate can, in prin-
ciple, be individualized based on a driver “expertness” pa-
rameter.) Further, each vehicle has the designated preferred
speed, the maximum speed, the maximum acceleration and
braking power, and the minimum turning radius. Per-driver
maximum speed is computed based on a road speed limit.
The limit for a driver is generated between 1

2
×road-limit and

2×road-limit, as a linear function of aggression. Similarly,
the preferred speed is generated as a random number be-

Figure 1: Targets based on route

tween 3
4
×road-limit and 5

4
×road-limit, with the condition

that the preferred speed is less than the maximum. The
maximum and minimum acceleration values (minimum is
negative: deceleration) are also assigned in a range. (There
is no preferred acceleration, which is deemed to be 0.)

While these choices have not been validated with actual
user studies, we have found that the system is stable with
a wide range of parameters and once the real parameters
are available, it should be possible to plug them in. A few
more simulation parameters are introduced later (when the
context is clearer) – they can similarly be learned from real
data in the future.

3.2 Overview
The simulation proceeds at multiple levels:

• macro-planner runs every tm seconds. For each vehi-
cle, it provides guidance to the vehicle about empty
spaces on the road. tm should be more than a second.
At a high level it suggests local goals for each vehicle
in the intermediate-term. A goal designed to lead it
toward the next target.

• A micro-planner chooses the next best acceleration,
which remains constant over the next simulation step
tlook, tlook < tm. This acceleration is a vector with
components respectively tangent and perpendicular to
the vehicle (velocity). This acceleration is chosen to
avoid collision, while maximizing progress in time tlook.
We choose tlook to be equal to the average human re-
action time: 0.7 seconds. Note that it is possible that
no collision-free acceleration may exist unless a shorter
time-step is employed. In reality, this may indicate a
collision.

• Finally, the graphics update happens at its own rate,
say every tg. Vehicle positions and orientations are
updated for display every tg, based on the (constant)
acceleration value provided by the simulator.

There is no pre-ordained order among the vehicles: the
simulation (and rendering) for different vehicles can proceed

concurrently. This is useful for parallel contexts.

3.3 Reciprocal Velocity Obstacle
We first discuss a recently developed crowd simulation

technique Reciprocal Velocity Obstacle (RVO), which has
been shown to give stable results for crowded scenarios [17].
They select the optimal velocity for the next step for each
agent individually. In the context of traffic we found that
[15] generates jerky movements as vehicles are allowed to
make sudden changes to the velocity and the direction. The
kinematic constraints in RVO only ensure that the selected
velocities have less than the maximum possible speeds. Their
model also lacks anticipation: agents merely try to avoid col-
lisions with other agents or obstacles. They don’t identify
potential colliding or clear paths in advance.

3.4 Our acceleration based model
In order to alleviate the inadequacies of the RVO model,

we propose our model with the following salient features:

1. Our system is based on selecting the best acceleration
to maintain during the next simulation step tlook, one
that respects the physics of vehicle movement. This
ensures that the variation of velocity of any vehicle
over time remains smooth and we do not observe jerky
movement.

2. We model driver aggression by defining path planning
as a function of aggression level of the driver.

4. PATH PLANNING
Given the next target, we break the task of reaching there

into smaller steps. Macro-planner provides approximate in-
termediate goals leading to the target. It is a light-weight
operation only designed to help guide the detailed micro-
planner. Micro-planner determines a collision free path try-
ing to reach the intermediate target in several micro-simulat-
ion steps. Micro-plan is the actual path planner: it com-
putes the constant vehicle acceleration to maintain over the
micro-simulation time step. Macro-plan uses high-level in-
formation to create an ‘advice’ for micro-planner helping
restrict its search space.

4.1 Macro-plan
Macro-planner overlays a uniform grid on the road and

charts traversability of grid-cells in a manner similar to [3].
For each vehicle, it assumes that the average relative configu-
ration of traffic around it changes little over macro-simulation
time step tm. Thus it bases its advice on extrapolated path
of each vehicle j in the neighborhood.

Macro-planner first (Figure 2) computes potential travers-
ability of each cell in the grid. It starts with the extrapolated
path, or the track of every vehicle j. Cells on the track are
assigned a traversability value of 0, their immediate neigh-
bors a value of 1 and the next neighbors that of 2, etc. The
traversability is propagated thus for each track. Clearly,
multiple tracks may propagate certain values to any given
cell. Among all such values propagated to a cell, finally the
smallest is chosen. Thus the final traversability of each cell
measures the likelihood of collision free path through the
cell.

For vehicle i, a set of goal cells is chosen: the cells at the
distance tm ∗ pi, where pi is vehicle i’s preferred speed. The

Figure 2: Landmarks computed by Macro-planner

progress cost of these cells is set to 0 – this is where the vehi-
cle would like to be after tm. Other cells have a positive cost.
Again the progress cost is propagated outwards from the
zero cost cells. If the progress cost of a cell is c, c+1 is propa-
gated to the neighbor. The overall cost of a cell is its progress
cost + (Max Traversability−Cell Traversability)3, where
Max Traversability is the maximum of all cells’ traversabil-
ity values. This is a normalization of the traversability across
cells. The power of 3 is chosen empirically using concepts
similar to [3]. The plan finally chooses the target cell which
has the least cost path to it.

4.2 Micro-plan
For each vehicle i, the macro-planner suggests a track, di-

vided into a sequence of landmarks. Micro-planner attempts
to find the acceleration that vehicle i must maintain for the
next tlook to reach near the next landmark. It may choose a
different course to avoid collision but attempts to to continue
in the direction of the track.

The task of the micro-planner for i is to choose its ac-
celeration vector, given its approximate knowledge of other
vehicles’ speeds and accelerations. The motivation is that
even the aggressive driver wants to avoid collision.

During a small interval with fixed acceleration A, the po-
sition of vehicle j is given by P (t) = S + Ut + 1

2
At2, where

S is j’s starting location and U its initial velocity. S, U, P, A
are all 2D vectors.

The path P (t) can now be considered a 3D curve in x, y, t
space. However, since i only estimates that the magnitude
of U lies in a range [k:K], U may be in the range [kU :
KU]. Similarly, the estimates of the forward and lateral
acceleration ranges give a range for each component of A.

As a result P (t) lies in a range, i.e, each component of P (t)
lies in a range, namely, (Ax

min : Ax
max) and (Ay

min, Ay
max).

Thus P (t), for a given t, is bounded by the rectangle with
corners at

(Sx + kUxt +
1

2
Ax

mint2, Sy + kUy +
1

2
Ay

mint2)

and

(Sx + KUxt +
1

2
Ax

maxt2, Sy + KUy +
1

2
Ay

maxt2)

Figure 3: t-shape in x, y, t space

Therefore path P (t) is not the trajectory curve of a point
but rather of a rectangle whose size grows non-linearly as
it traverses t. This represents a 3D solid in [x, y, t] space
(Figure 3). We call it the t-shape of a vehicle. Vehicle i does
not collide with vehicle j, if their t-shapes do not intersect.

Now our micro-planning problem reduces to finding the
next acceleration for every vehicle i, given its current veloc-
ity U and the t-shapes of each neighboring vehicle j. We
assume that i knows its current parameters and computes
its next real acceleration, not just an estimate.

Note that P (t) is just a point on the vehicle. Its shape
must be accounted for. We use the vehicle’s bounding box
Bj for this purpose. Now the extremal coordinates of P (t)
are given by Bj . We only need to modify the starting point
S to obtain the full vehicle trajectory:

(Sx
min + kUxt +

1

2
Ax

mint2, Sy
min + kUy +

1

2
Ay

mint2)

and

(Sx
max + KUxt +

1

2
Ax

maxt2, Sy
max + KUy +

1

2
Ay

maxt2)

where, Sx
min is the minimum x coordinate of Bj and so

on. Furthermore, we allow a safety zone around vehicle j to
account for the fact that two vehicles are not allowed to get
too close. The safety zone is a function of the speed of ve-
hicle i and its aggression value. Aggression value is linearly
mapped to a safe-time lying between 0.5 and 3 seconds. The
safe distance is now Vi× safe-time computed separately for
the x and y components. Here Vi is i’s velocity. Bi is padded
with this safety zone.

To simplify the search of acceleration for vehicle i, we

reduce its t-shape to a curve by using Bij = B⊕
j B

(padded)
i

instead of Bj , where ⊕ denotes Minkowski sum [7].
In fact, to further simplify collision detection, we replace

each obtained t-shape of j with a bounding polyhedron: its
curved sides are replaced by planes. Note that t varies from
0 to tlook and tlook is small (we use 0.7 seconds to match
average human reaction time), so a linear approximation is
reasonable. This is easily done by increasing the maximum
x and y at both t = 0 and t = tlook. The shift is given
by equating tangent of the plane equal to the surface at t
where:

Utlook + 1
2
At2look

tlook
= U + At,

i.e., at t = tlook
2

. This distance is 1
8
At2look. See Figure 4 for

illustration.

Figure 4: Bounding a quadratic by a linear curve.
We choose a bounding plan which is tangent to the
quadratic surface. A choice of tangent of given by
the end points.

The solution, t = ttan is a vector and the value of expan-
sion in x and y are given by Uttan + 1

2
At2tan. We expand

the rectangles by this amount and draw planes connecting
corresponding edges.

The problem now reduces to finding, for each vehicle i,
a path for its center that is free of collision from the mod-
ified t-shapes of its neighbors. The search for the path is
posed in terms of a search for acceleration. The accelera-
tion curve is approximated again by a straight line for ef-
ficiency (although one might resort to quadratic program-
ming). The maximum distance between the curve and the
line is also padded to the Minkowski sum Bij to ensure that
if the straight line has no collision, the curve hasn’t either.

Our goal now is to find the “best” acceleration that leads
to a collision free path. Collision can be tested by consider-
ing the plane equations of the t-shapes and posing a linear
programming (LP) problem – we want to reach a point that
is on the exterior of each plane.

In its generic form, each possible acceleration can be asso-
ciated with a complicated reward function in terms of mo-
tion continuity, comfort-zone of the driver and progress to-
ward targets. If LP is feasible, we need to find a point in
the feasible space that maximizes the reward. Sampling is a
common approach to optimize arbitrary reward functions.

Although we implemented sampling based optimization
as well, we found that the following simplified scheme works
surprisingly well. We choose an objective function based
on the macro-plan track. The track provides an estimate of
point P (tlook). Assuming the current position is P0, P (tlook)−
P0 provides an objective function leading to the best progress
along the track. We incorporate this into the LP.

4.2.1 Final choice
Once the acceleration is found by the linear programming

solution, it may violate physical constraints. For example, it
may require a lateral acceleration requiring fast turn. We in-
corporate the notion of turning radius by limiting the lateral
motion as a fraction of the forward motion.

U lattlook +
1

2
Alatt2look < r[Uforwtlook +

1

2
Aforwt2look]

The constraint can be posed in the road’s frame of reference

and incorporated into the linear program

x < αy

Similarly absolute ranges for the speed and acceleration
can be limited (in lateral and forward directions) by more
inequalities in the road’s coordinate frame. All constraints
lead to constraints on x and y. For example if Ax ≤ Ax

max,
x ≤ Uxt + 1

2
Ax

maxt2

Unfortunately, acceleration limits lead to quadratic con-
straints. We again approximate them by linear constraints.

LP may not lead to a solution as it may be infeasible.
This means no acceleration or braking exists to guarantee a
collision-free path for vehicle i for time tlook. This may be
because a collision is imminent or simply that the estimates
of vehicle i are too conservative. In this case a smaller value
of tlook may succeed. In our implementation we check once
for tlook

2
before declaring collision.

4.2.2 Special Cases

Red lights.
Road is modeled as another obstacle with zero velocity

and acceleration. Similarly, traffic lights also are modeled
as artificial obstacles. Ones that appear when the light is
red. Unfortunately, the sudden appearance of an obstacle
can easily lead the simulation into a collision state. Traffic
lights are usually visible from a distance and this “prepara-
tion to stop”behavior is missing in our geometric algorithm:
deceleration happens only in response to stopped vehicles or
“sudden traffic barriers.” In order to model a more ordered
slow-down in the presence of red-light, we force the preferred
speed of vehicles to modulate as they approach the red-light.
Use of adaptive preferred speed ensures a slowing down be-
fore an approach to the intersection. The preferred speed for
a vehicle approaching a red light is decreased non-linearly
as a function of distance from that red light. This forces
the vehicle to slow down and come to a halt gracefully. Our
overtaking model as explained above ensures that vehicles
still overtake other stopped ones and find vacant spots for
themselves.

Turns.
Sudden turn is also unrealistic. Real drivers planning to

turn do slow down when approaching an intersection. Oth-
erwise, the lateral constraints would force the vehicles to fail
to negotiate the turn. We decrease the preferred speed of
vehicles approaching a turn – even without the red light –
to ensure that their speed just before the turn is close to
a preferred turning speed. Their aggression levels in the in-
tersection are also turned low (we use 0). High aggression
levels lead to constant attempt to overtake leading to un-
natural looking turns. We conjecture that drivers do tend
to drive less aggressively inside intersections. Vehicles are
further constrained to remain on the right of onward com-
ing vehicles (assuming driving on the left hand side of the
road).

5. SIMULATION RESULTS
We implemented the model as described in the previous

chapter in OpenGL on a Windows platform. Each simula-
tion has agents injected with randomized attributes at ran-
dom time intervals.

Figure 5: High vehicle density

Figure 6: Automatic lanes under dense traffic

5.1 Vehicular behavior
This section presents the visual or qualitative results of

the simulation under various traffic conditions.

5.1.1 Overtaking
Previous traffic simulations define overtaking in the form

of lane changes, and the lane changing trajectory is also
predefined, which makes overtaking predictable and robotic
e.g. [18] defines a hard coded clothoid trajectory for lane
changes. Our model does not assume any overtaking path.
The simulations show vehicles overtaking on trajectories as
per their own speeds and the space available. Moreover,
some vehicles try to change 2 - 3 lanes at a time1. The
simulated trajectories are similar to those defined in earlier
lane based simulators (because of vehicle dynamics being
respected), but the advantage is that there is no need to
predefine any paths.

5.1.2 Dense traffic
The simulation results show that in crowded situations,

vehicles tend to automatically arrange in virtual lanes in an
attempt to get as tightly packed as they can. This can be
seen in Fig. 6 and also when vehicles are stopped at red
lights.

5.1.3 Behavior at traffic lights
Traffic lights are one of the trickier cases of traffic simula-

tion, because at traffic lights the density of vehicles is much
higher than on moving roads, and also the vehicles them-
selves are in somewhat aggressive states - trying to find the
smallest vacant gaps to fit into, and then trying to accel-
erate as soon as they can. The simulation results for traf-
fic lights show that the path planning model is capable of
handling complicated vehicle behavior at red lights. In real
life, vehicles tend to arrange themselves in a tightly packed

1Vehicle changing 2-3 lanes simply means that the lateral
distance covered by the vehicle while trying to overtake was
equivalent to 2-3 virtual lanes. There are no lanes as such
in this system.

Figure 7: Vehicles stopped at red light

Figure 8: Vehicles emerging out of a red light

chunk at red lights. Our model simulates this well because
of proper overtaking behavior. A vehicle approaching a red
light tries to overtake already stopped vehicles and in the
process ends up trying to fit itself in any vacant space it
could find as shown in Fig. 7. The red light is conveyed
only to the front most row of stopped vehicles, the other
vehicles remain stopped for the lack of space ahead of them.
When the red light is released, the front row starts accel-
erating. The vehicles behind start moving only when the
row in front of them has moved a little as shown in Fig. 8.
Not all vehicles start accelerating immediately, rather they
start only when they see sufficient space. This appears ex-
actly like real life traffic where every vehicle starts moving
only when the vehicle in front of it has made sufficient room.
As soon as vehicles start gaining speed, there is some lane
changing and one can observe that at times one lane starts
moving out faster than others.

5.1.4 Behavior at turns
The special case handling of turns as explained in the pre-

vious section ensures that a vehicle approaching a turn has
already slowed down sufficiently according to its expected
turning radius. Vehicles move at nearly constant speeds
along the turn in low aggression modes, much like lane based
driving without any lane changes. When vehicles which have
to turn are stopped at a red light (Fig. 9), they start turning
with nearly zero speed. In this case, they slowly accelerate
up to their maximum turning speeds while turning. After
completing the turn, they again switch to their usual driving
modes.

5.1.5 Effect of lookahead time
Look ahead time tlook is the time period for which each

vehicle is planning in advance. The simulation results for
smaller lookahead time show less but sharper overtaking.
For larger lookahead times, the behavior is much more re-
alistic and the degree of overtaking becomes higher and
smoother. This is because at smaller lookahead times, every
vehicle tends to react to the presence of neighbors only when
it is sufficiently close to it. So it either keeps following the
vehicle in front of it (creating beelines) or tries to overtake
at a sharp angle. The effect of smaller lookahead time is

Figure 9: Vehicles at turn (speeds in km/hr marked)

Figure 10: Stopping at red light with lookahead time
= 0.7 sec and 0.4 sec. Note the unrealistic queuing
up of vehicles one behind the other.

best exemplified by the case of vehicles stopping at a red
light. A vehicle with smaller lookahead time cannot antic-
ipate stopped vehicles or find vacant spaces early enough.
By the time it realizes a jam ahead, it is already too close to
other vehicles to turn and find itself a vacant spot further up.
This leads to stacking of vehicles one behind another which
gets worse as the lookahead time is decreased as can be seen
in Fig. 10. For larger lookahead time, a vehicle approach-
ing a red light anticipates other already stopped vehicles in
front earlier and has time to find a vacant spot for itself.

5.2 Performance
We implemented a prototype of the simulation on a ma-

chine with Windows XP and 3.3 GHz Intel core 2 Duo pro-
cessor. Although we did not focus on code optimization,
microsimulation can proceed at over twenty frames a second
for more than a hundred vehicles. Even for a sufficiently
large scene with 500 vehicles, the simulation can complete
in time less than 0.5tm, i.e., 0.35 seconds in our experiments

No. of Vehicles Simulation time
50 16 ms
75 32 ms
100 47 ms
200 94 ms
300 172 ms
400 242 ms
500 318 ms

Table 1: Simulation Performance

(see Table 1). This is sufficient granularity to allow ren-
dering at interactive rates (more than 30 frames a second).
The rendering thread receives updates to vehicle accelera-
tions at the simulation rate. Indeed, for realistic car models
we found rendering to be the bottleneck. Again, no render-
ing acceleration techniques were employed.

6. FUTURE WORK
This paper presents a simple yet fairly complete model

for simulating traffic. There is still scope for optimizing and
parallelizing this model so that it can simulate thousands of
vehicles in real time. We have presented a visual analysis of
the simulation in this paper. A very important future step
would be to compare simulation statistics with real traffic
flow data. Such quantitative validation would be critical
before this model can be put to scientific use.

7. REFERENCES
[1] S. Algers, E. Bernauer, M. Boero, L. Breheret,

D. Taranto, M. Dougherty, K. Fox, and J. F. Gabard.
Smartest project: Review of micro-simulation models.
EU Project No: RO-97-SC, 1059, 1997.

[2] A. Aw and M. Rascle. Resurrection of second order
models of traffic flow. SIAM Journal of Applied Math,
60(3):916–938, 2000.

[3] P. Batavia and I. Nourbakhsh. Path planning for the
cye personal robot. In Proc. International Conference
in Intelligent Robots and Systems(IROS 2000), pages
15–20, 2000.

[4] A. Byrne, A. de Laski, K. Courage, and C. Wallace.
Handbook of computer models of traffic operations
analysis. Technical Report FHWA-TS-82-213, 1982.

[5] A. Doniec, R. Mandiau, S. Piechowiak, and S. Espié.
A behavioral multi-agent model for road traffic
simulation. Eng. Appl. Artif. Intell., 21(8):1443–1454,
2008.

[6] J. Ferber. Multi-Agent System: An Introduction to
Distributed Artificial Intelligence. Addison Wesley
Longman, 1999.

[7] J. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, Norwell, MA, USA, 1991.

[8] T. Li and H. Chou. Motion planning for a crowd of
robots. In in International Conference on Robotics
and Automation (ICRA), pages 4215–4221. IEEE
Press, 2003.

[9] P. Paruchuri, A. Pullalarevu, and K. Karlapalem.
Multi agent simulation of unorganized traffic. In
AAMAS ’02: Proceedings of the first international
joint conference on Autonomous agents and
multiagent systems, pages 176–183, New York, NY,
USA, 2002. ACM.

[10] D. A. Reece and S. A. Shafer. A computational model
of driving for autonomous vehicles. Transportation
Research, 27(1):23–50, 1993.

[11] C. W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics,
21(4):25–34, 1987.

[12] H. J. Ruskin and R. Wang. Modelling traffic flow at
an urban unsignalized intersection. In Proc.
International Conference on Computational Science,
pages 381–390, 2002.

[13] M. Saha and P. Isto. Multi-robot motion planning by
incremental coordination. In In IROS, pages
5960–5963, 2006.

[14] A. Treuille, S. Cooper, and Z. Popović. Continuum
crowds. ACM Transactions on Graphics,
25(3):1160–1168, Jul 2006.

[15] J. van den Berg. RVO library.
http://www.cs.unc.edu/~geom/RVO/Library/.

[16] J. van den Berg, M. Lin, and D. Manocha. Reciprocal
velocity obstacles for real-time multi-agent navigation.
In ICRA, pages 1928–1935. IEEE, 2008.

[17] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and
M. Lin. Interactive navigation of multiple agents in
crowded environments. In SI3D ’08: Proceedings of
the 2008 symposium on Interactive 3D graphics and
games, pages 139–147, New York, NY, USA, 2008.
ACM.

[18] J. van den Berg, J. Sewall, M. Lin, and D. Manocha.
Virtualized traffic: Reconstructing traffic flows from
discrete spatio-temporal data. In IEEE Virtual Reality
Conference 2009, pages 183–190, March 2009.

[19] G. Weiss. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. MIT Press, 200.

[20] J. C. Williams. Macroscopic flow models. In C. M.
N. Gartner and A. Rathi, editors, Traffic flow theory,
page chapter 6. Oak Ridge National Laboratory, 1997.

[21] Q. Yang and H. Koutsopoulos. A microscopic
simulator for evaluation of dynamic traffic
management systems. Transportation Research Part
C, 4(3):113–129, 1996.

[22] H. M. Zhang. A non-equilibrium traffic model devoid
of gas-like behavior. Transportation Research Part B,
36(3):275–290, Mar 2002.

