
Towards Recognition of Degraded Words by Probabilistic
Parsing

Karthika Mohan
∗

CVIT
IIIT, Hyderabad

AP, India 500 032
karthika.nair@gmail.com

K. J. Jinesh
CVIT

IIIT, Hyderabad
AP, India 500 032

jinesh@research.iiit.ac.in

C. V. Jawahar
CVIT

IIIT, Hyderabad
AP, India 500 032

jawahar@iiit.ac.in

ABSTRACT
Though, Indian language OCRs have shown significant im-
provement in classification rates in recent years, recognition
of degraded words still pose a big challenge for the devel-
opment of robust OCR systems. Ours is an attempt to
formulate the problem of degraded word recognition in a
generic and formal structure. We formulate the problem of
degraded word recognition as a probabilistic parsing prob-
lem. A probabilistic parsing based framework is used to
rank and validate various possible hypotheses. We effec-
tively combine it with an alternate word generator, symbol
recognizer and verification unit to improve recognition rates
of degraded words without compromising good characters.
We demonstrate our method on Malayalam. We experiment
our method on a complete annotated book, where around
65% of the degraded words are correctly recognized using
this approach.

1. INTRODUCTION AND RELATED WORK
Recent years have witnessed a rapid progress in the re-

search and development of Indic Language OCRs [8]. High
recognition accuracies have been reported for good quality
images [15]. However, with degradation in image quality
we observe a steep decline in overall accuracy. This is pri-
marily due to the difficulty in correctly parsing connected
components present in the degraded words. Our focus, in
this paper, is on recognizing words with degradations such
as cuts: separation/splitting of genuine components and
merges: touching of genuine image components to form a
single connected component. Throughout this paper, we
assume that words are correctly segmented out. In other
words, our focus is restricted to recognition of words in iso-
lation. We demonstrate the performance of our methods
on degraded word images in Malayalam, a prominent south
Indian language.

There are myriad causes for image degradation. Cuts

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

Figure 1: Architecture with parser embedded for
enhanced performance

arise due to improper folding of paper, low quality of pa-
per or presence of foreign materials. Large ink-blobs create
merges. Heavy print can distort the symbols and render
them unidentifiable [19]. Dust, fading away of ink and float-
ing ink from facing pages accentuate the degradations. In
addition to all these, the modern word processors, which are
primarily designed for English introduce merges (and some-
times cuts) while formatting Indic scripts.

Basic recognition architecture for Indic languages com-
prises of three sequential steps: (i) Segmentation, where
the word image is decomposed into a set of symbols, of-
ten connected components. (ii) Classification/Recognition,
where the images of the symbols are converted to a set of
class identifiers, and finally (iii) Unicode generation, where
the sequence of symbols gets translated to Unicode or any
other appropriate standard representation. Degraded words
are often segmented incorrectly. Due to the linearity of the
above mentioned architecture, the errors introduced by seg-
mentation affect the accuracies of the ensuing modules and
decrease the overall OCR accuracy. We propose a frame-
work as described in Figure 1 wherein the parser is coupled
to the segmentation unit, the recognition unit and Unicode
generation unit. Our parsing scheme is motivated by the re-
cent attempts in computer vision to analyse and understand
complex and cluttered scenes [9, 18, 22].

In this paper, we model degraded word recognition as a
probabilistic parsing problem and resolve it with the help
of a parse graph. We proceed in two stages. In the first
stage, the input image is pre-processed to yield a set of image
fragments. In the second stage, the image fragments are
parsed based on a grammar to create a set of feasible fusions.
Ranked list of alternate words for the most probable word is
then generated using prior knowledge available in the form of

Figure 2: Valid symbols created by degradations,
makes the problem further challenging

Statistical Sub-character Language Models(SSLM) [14] and
confusion matrix. The correctness of words in the candidate
set is confirmed by a verification unit.

Image parsing may be expressed in simple terms as soft
labelling of pixels [17]. We partition the pixels in the word-
image into components such that any foreground pixel in the
image is contained in exactly one component. Image pars-
ing may also be construed as an integrated framework for
segmentation, detection and recognition [22]. The aim is to
decompose the image into constituent components such that
it retains a hierarchical structure that can be represented by
a parse graph [9].

Parsing a two dimensional image of a constrained text
block is detailed in [16]. Categories or high level descrip-
tions are assigned to segmented regions. In the first step
parser assigns a list of possible classes to each word. This
is followed by horizontal and vertical refinement. The out-
put is a ranked list of patterns based on the probability
that patterns are correct. The use of structural information
eliminated the need for perfect recognition and exhaustive
dictionaries.

Image parsing requires a framework comprising of gram-
mar, parse graphs, language etc. We now examine some
of the grammar and allied parsing schemes that have been
proposed to effectively parse images. Rekers and Schurr [18]
have described the use of layered graph grammars for defin-
ing and parsing visual languages. Two types of graphs namely
spatial relationship graph and abstract graph are put in
use. Spatial relationship graph is a directed graph that
depicts spatial relationships like above, contains etc. Ab-
stract graph elucidates the syntax and semantics of visual
sentence. Syntax of visual languages are defined by layered
context sensitive graph grammars that are more general and
less restricted compared to context free graph grammars.
Shaw [20] had proposed an entire picture description lan-
guage to aid picture parsing wherein the parsing algorithm
is based on a top-down goal directed syntax analyzer.

In this work, our focus is on parsing degraded word im-
ages. Our objective is to correctly recognize degraded words.
Earlier attempts in this direction formulated the problem as
that of detecting a valid hypothesis, rather than formulating
it as a probabilistic reasoning in a larger hypothesis space.
One of the first solutions for segmentation of merged char-
acters was classification based segmentation as put forth by
Casey and Nagy [6]. Though the basic approach remained
the same, further enhancements were proposed in [10, 13].

Degraded words were identified from reject set of OCR or
by a module that checked for obvious cuts and merges. Dif-
ferent techniques were employed to cut the merges and thus
decompose the symbol. The components so obtained were
then re-classified. Segmentation of merged characters using
a hybrid method integrating conventional as well as neural
network based technique was proposed in [24]. A penalty
metric based least cost path was used to determine the cut
in degraded words that were detected using feed forward
neural network. Penalty metric is chosen in such a way that
only reasonable cuts are produced. Constraints are imposed
to reduce time complexity and ensure efficiency.

Recognition of degraded words is a severe problem in In-
dian language documents. Garain and Chaudhuri [7] pro-
posed a technique based on fuzzy multi factorial analysis
for degraded document recognition. Break locations were
identified using a predictive algorithm. Five fuzzy factors
were designed based on their effectiveness and speed. Break
locations are confirmed by using predictive parser concept
since it significantly reduces the size of the candidate break
location set.

Bansal and Sinha [3] presented a two pass algorithm for
segmentation and recognition of merged Devanagari char-
acters. In the first pass, statistical information is used to
check if the segments, formed by decomposing word into
easily separable parts, contain composite characters. In the
second pass the composite character identified in the first
pass is segmented into constituent symbols by extensively
using structural properties.

An overview of character segmentation has been discussed
in [12]. Cuts or broken characters may be handled either
by using a merging process based on width and interval or
by adopting recognition based segmentation approaches. In
the merging process regions with minimum gap are merged
and the statistics is recomputed. The process is repeated
until the statistics fall within an acceptable range. Recogni-
tion based segmentation approach includes sliding window
method, closed loop segmentation etc. Composite charac-
ters are decomposed by recognition based or feature based
techniques. Feature based techniques make use of charac-
teristics like width, height, aspect ratio, candidate segment,
contour analysis etc. Segmenting based on objective func-
tions were formulated and its maxima served as cut within
the composite character.

As can be seen, most of the work on recognition of de-
graded words are based on a recognizer driven segmenta-
tion. In the case of Indian scripts, the problem is more
compounded. With the complex layouts of symbols within
the words (consisting of 1.5D placing of consonants and
vowel modifiers), simple rules for detecting possible cuts
and merges become impractical. Many of the modern word
processors make the problem further complex by providing
inconsistent spacing between symbols. It is very common
to have the space between two cut-components higher than
that of the distance between two consecutive symbols. Also
the number of components and similar shapes are high in
most Indian scripts. Therefore, often a cut or merge results
in a connected component which is similar to another valid
symbol as shown in Figure 2. All these point to the need
for a formal framework where the optimal recognized word
is obtained with the help of a probabilistic reasoning in the
image space.

Figure 3: Overall Recognition Pipeline

2. OVERVIEW OF PARSING AND RECOG-
NITION

As explained in Section 1 (and Figure 1), our recognition
process is driven with the help of a parsing module which
does dialogue with segmentation, recognition and Unicode
generation modules. A more detailed recognition pipeline is
shown in Figure 3. Major difference is that we avoid talking
to the segmentation module multiple times. The degraded
(as well as the normal) words are first preprocessed and seg-
mented. We assume that the word image is subjected to
thresholding, skew-correction etc. prior to this stage. At
this stage, components, including those which are fused are
segmented out. Often this module results in an over seg-
mentation of the word image. The fragments so obtained
are sent to the parser module, that is tightly coupled with
the recognition unit, visual verification unit and a Unicode
generation unit. Parsing image fragments by using gram-
mar, results in the generation of sequence of class indices.
This information is used to generate alternate words and
correct substitution errors, if any. The correction is aided
by confusion matrix and statistical sub-character language
models [14]. The ranked set of candidate words is processed
by validation unit to generate the unique text output. In
this paper, our interest is primarily limited to the parser
module. Rather than outputting a list of words, we output
the most probable word. This is done by applying back-
tracking algorithm which ensures that all available options
are explored systematically.

Parsing.
In this section, we dwell on fundamentals of parsing, parse

tree and grammar [1]. Parsing, also known as syntactic anal-
ysis or hierarchical analysis, is the process of determining if a
set of components (tokens) can be generated by a grammar.
Grammar, in general terms, is a set of rules that guides syn-
tactic analysis. Parse trees are used to conveniently repre-
sent grammatical phrases and pictorially depict how tokens
can be derived from the start symbol of the grammar. A
language is the set of all tokens that can be derived from
the start symbol of the grammar. Grammar consists of:

• Non-terminals: Syntactic variables or syntactic cate-
gories that impose a hierarchical structure on the lan-
guage defined by the grammar.

• Terminals: They are the set of tokens or basic strings

contained in the language.

• Start symbol: It is a non-terminal or start variable
such that set of strings/tokens denoted by it is the
language defined by the grammar.

• Productions: Set of rules that specify how non-terminals
and terminals can be combined to form strings.

We are interested in generating words that are part of
human language vocabulary. In other words the language
generated by graph grammar is finite. Hence in our case,
the parse graph grammar should be non-recursive.

We start by segmenting the word image into multiple com-
ponents during the segmentation and pre-processing stage.
Note that the word preprocessing is used in the context of
pre-processing for a parser. It should not be confused with
the traditional preprocessing in document image processing
(which includes filtering, enhancement etc.) The aim of pre-
processing module is to isolate different components as well
as to detect break locations such that two symbols that are
fused together can be broken or isolated. We look at feature
based segmentation techniques. Features like width, average
height, aspect ratio may be employed for break point detec-
tion. A careful examination of horizontal and vertical profile
of the word image, by looking at the number of peaks, num-
ber of valleys and smoothness of peaks and valleys, throws
light on possible break locations and aids in the generation
of candidate break location set. Some of popular methods
for this purpose in literature [4, 5, 11] are:

• T1: Identify local minima and local maxima in symbol
and make a cut passing through them

• T2: Use horizontal profile to identify top strip, core
strip and bottom strip. The word image is cut along
two lines that separate the three strips.

• T3: Using a priori knowledge about the script to iden-
tify components like vowel modifiers that create merged
components. Once the presence of these components
are confirmed, identify break locations using horizontal
profiling technique.

• T4: Use vertical profile to identify columns with min-
imal black pixels. Based on a priori knowledge, check
if the location of black pixels can serve as candidate
break location.

Our parsing module also looks at the statistical sub-character
language models (SSLM) as described in [14]. The SSLM
model describes the joint probability of pairs of adjacent
symbols (sub-characters) appearing in a language. These are
different from the typical uni/bi-grams computed at UNI-
CODE or Akshara level for various language processing tasks.
SSLM captures the distribution at symbol level. The utility
of the SSLM in recognition is demonstrated in [14] during
post processing of the classifier outputs. Generation of al-
ternate words, their ranking and selection of optimal word
are posed as an optimization problem in [14]. Here, we ex-
tend this framework by using the SSLM during the parsing
phase.

The parsing and word generation modules uses apriori
information in the form of (i) SSLM, (ii) Grammar and
(iii) Confusion matrix. They are script/language specific.
While generation of words, it talks with recognizer (or clas-
sifier), visual verification unit and Unicode generation mod-
ule. This module generates a candidate set of words for the
input word image. Accuracy is ensured by the use of sta-
tistical sub character language models. The set of classes
that could be confused for a given class in the input word is
obtained from the confusion matrix. Thus confusion matrix
helps in generation of alternatives in a probabilistic setting.
The task is modelled as a shortest path finding problem in a
multi stage graph [14]. A path from the source node to the
destination node in the multistage graph denotes the recog-
nized text corresponding to the input word and the cost of
the path influences the rank of the recognized text in the
candidate set.

Verification module facilitates the selection of correct word
from the ranked list of probable words returned by alternate
word generation module. We discuss three validation/ veri-
fication techniques: visual verification, verification based on
position and size and use of n-gram (or dictionary of partial
words). During the parsing step, we use visual verification.
We have a template based visual verification unit. Initially
templates are generated for all classes in the language by
superimposing example images. We store all templates in
a fixed resolution (usually 40x40). The image of the com-
ponent to be verified is converted to the same resolution as
that of the template and then pixel wise AND operation is
performed to determine the match score by aggregating the
results from all the pixels. The selection of a word from the
candidate set is based on a final score computed from the
match score and the rank of the word in the candidate set.

Another verification possibility is based on position and
size. We use this for punctuations. Suzuki et al. [21] have
proposed the use of this technique for rectifying the mistakes
in incorrectly recognized variables and numbers in mathe-
matical expressions. Indic scripts like Devanagari always
have a header line or shirorekha. There is a limited set of
symbols that can occur in the top strip, above the shirorekha.
Positional information can serve a strong criteria to reject
classes that do not belong to the permissible list. Punc-
tuation marks are a common source of error in document
recognition. Positional information can correct some of the
errors. For example, using positional information, it is pos-
sible to distinguish a comma from a closing single quote.

Dictionary of partial words (N-grams): Agglutination re-
sults in a large vocabulary size for most Indian languages.
For example, 16 vowels and 37 consonants in Malayalam re-
sult in more than 200 symbols or graphemes. Hence the use

of dictionary is not always recommended. N-gram (or dictio-
nary of sub-words) based verification is another alternative.
They are ideal for validation of the word or sub-word. They
may be used for identifying valid words. However, it is not
part of the parsing stage we discuss in this paper. Our re-
sults are reported without this stage.

3. PREPROCESSING AND PARSING
The parse graph comprises of nodes and directed edges.

Nodes hold information about non-terminals and terminals.
In this section, we discuss various techniques for generating
nodes in the parse graph such that the word image is prop-
erly segmented and every symbol is correctly recognized.
The type of degradation as well as the number of degra-
dations in the input word image determine the number of
nodes in the graph and the connectivity between them. Iso-
lation of fused components, results in splitting of a symbol
into two or more distinct symbols. In other words, whenever
there are merges the number of nodes in a graph tends to
increase. Cuts on the other hand, will result in two or more
components combining to form a single component. In the
case of cuts, there would be a reduction in the number of
nodes.

Figure 4: Frequently occurring degradations

Merges are handled as part of pre-processing. We analyze
the data corpus available and identify the most frequently
occurring forms of degradation patterns. Some of the fre-
quently occurring degradation patterns are shown in Fig-
ure 4. In the following paragraphs we discuss various ways
of handling degradations and show how observations from
careful study of the corpus and script can be put to good
use.

In most Indic scripts, vowels are represented either by us-
ing a diacritic or by applying changes to the form of the con-
sonant or conjunct. The shape of the individual characters
in many Indic scripts are such that we can visually identify
several valleys and peaks. Many a time merges occur when
a vowel represented by a diacritic gets fused with the con-
sonant or conjunct. The peaks and valleys in the symbols
can be identified based on the principle of local maxima and
local minima. These points can serve as candidate break lo-
cations as shown in Figure 5(a). However, we observe that
this technique creates several candidate break locations re-
sulting in more number of nodes in the parse graph than
expected optimally.

Figure 5: Identification of break locations on images

We now make an attempt to reduce the number of candi-

date break locations and correctly identify the desired break
location. Bansal and Sinha [2] had proposed a segmenta-
tion technique for Devanagari script wherein word image is
divided into top, core and bottom strips. Top strip is sep-
arated from core strip by a header line. Various techniques
may be applied to segregate the three strips. The height cor-
responding to the top most and bottom most black pixel of
each connected component is noted and their average value
is computed. This value will help us in identifying the lines
that separate the three strips. Another technique is to com-
pute the horizontal profile and identify these lines by using
a threshold value that may be computed as a function of
image width. The top and bottom profile of input word im-
age also comes handy while segmenting the image into three
strips. For our experiments, we have used a combination
of the first and last technique. Figure 5(b)(i),(ii),(iii) shows
the unique break points identified using this technique. The
vowel modifiers in Figure 4(b) and (c) form a confusing pair.
A diagonal cut as shown in Figure 5(b)(i),(ii),(iii) ensures
that features that are critical for distinguishing the confus-
ing pair are preserved. The flaw in this technique is that
it will segment symbols without merges also, as shown in
Figure 5(b)(iv).

Now we present an apriori information based parsing tech-
nique. From Figure 4(a), (b) and (c) we can observe that
merges are created by three different symbols that can be
identified not only by their vertical or erect structure in
the core strip but also by the fact that they extent con-
siderably beyond the core strip into the top strip or bottom
strip. These modifiers appear either on the right most side
of the connected component or on the left most side of the
connected component. We check for the presence of these
components on each connected component and locate break
locations only if their presence is confirmed. Hence images
without merges are not unnecessarily segmented.

Figure 4(d) represents yet another merge pattern that has
to be addressed. Based on an inspection of commonly oc-
curring merge patterns, we know that typical characteristic
of these merges are that they occur in the core strip. To
identify and rectify such merges, we compute the vertical
profile of the connected component and identify the column
with minimum number of black pixels. If the pixels are con-
centrated in the core strip, then all black pixels along the
column are converted to white, thus isolating the fused com-
ponents (Figure 5(c)). Unlike, the previous technique, this
has to be performed for all connected components, that do
not contain merge patterns in Figure 4(a), (b) and (c).

Unlike merges, it is not possible to identify a set of fre-
quently occurring cut patterns. However, Figure 4(e) de-
picts a cut pattern that can be resolved by keenly observing
Malayalam script. In this cut pattern, there are connected
components that are located directly under the connected
component that was parsed just before. To obtain connected
components we examine each column (from top to bottom)
as we move from left to right.Hence a component on top has
to be parsed before a component that lies right under it can
be parsed. Using our knowledge of Malayalam script we can
say that such cut patterns can be merged to form a single
component.

After a series of pre-processing operations, we have image
fragments that are unlikely to be a fused component.In the
next stage of degraded word recognition, we strive to create
feasible combinations of image patterns. There are various

Figure 6: Sample parse graph

parameters like classifier confidence, grammar etc. which
allow us to do this. Parsing proceeds in such a way that
minimal combinations or merged fragments are created. At
every stage, we prune the graph so that it has an optimal
structure with minimal nodes and edges. The next section
discusses parsing in detail.

3.1 Probabilistic Image Parsing
Image parsing is effected by building a directed parse

graph as shown in Figure 6. We follow top-down parsing
strategy. The nodes in the graph are encapsulated in lay-
ers. The last layer of the graph is called the leaf layer. N j

i

denotes a node in layer j labeled i. Nodes in non-leaf layers
represent image fragments and contain the classes associated
with the image fragments that they symbolize. The weight
of the node is equal to the confidence value returned by the
classifier for the image fragment that it represents. An edge
in the graph from N j

i to N l
k is denoted by ej:l

i:k. The weights
of the edges in layer 1 and the weights of edges from layer 1
to layer 2 of the graph denote the probability that the im-
age fragments contained in the corresponding nodes can be
successfully merged to form a single component. Weights of
edges from layer 2 to layer 3 indicate the probability that
the class label contained in the layer 2 node can be suc-
cessfully converted to Unicode. The edges between nodes in
layer 2 indicate the SSLM values corresponding to classes
associated with the nodes.

The graph grammar G, is a 4-tuple:

G = {V, Σ, R, S} (1)

The start symbol S denotes the nodes encapsulated in layer
1 that represent fragmented word images obtained after pre-
processing. The set of non-terminals V comprises of all
nodes representing image fragments that are encapsulated
in all non-leaf layers. Set of terminals Σ consists of nodes
representing Unicode that are encapsulated in the leaf layer.
V and Σ are disjoint sets i.e. V ∩Σ = φ. We have two pro-
duction rules in R:

• r1 : N1
i → N2

i,k where k denotes elements in the subset
of the set that contains labels of all terminal nodes
whose initial node is i. For example, N1

1 → N2
1,2 ;

N1
1 → N2

1,3 ; N1
1 → N2

1,2,3.

• r2 : N2
i → N3

i where N3
i = unicode(N2

i). It may be
noted that unicode(N2

i) represents the Unicode corre-
sponding to class label contained in node N2

i

We now explain the operations performed to generate the
parse graph. Initially we have image fragments that have
been pre-processed. The nodes in layer 1 represent these
image fragments and contain the class label assigned by the
classifier. The confidence value returned by classifier is the
node weight. The edge weights may be computed as the ra-
tio of difference between the width of initial word image and
horizontal distance between the furthermost pixels in the
image fragments contained by the nodes, to the width of
initial word image. Lesser the edge weight, higher the prob-
ability of merging the corresponding image fragments. If
the edge weights exceed a threshold, the edges are removed.
The criteria for deciding threshold could be as simple as the
maximum width of a symbol in the language. Threshold
value is crucial because number of edges in layer 1 influences
the number of nodes in layer 2 and hence the complexity of
parsing.

Layer 2 contains all candidate merges. The nodes in layer
2 are organized into sets. Seti comprises of nodes that sym-
bolize merged image fragments represented not only by N1

i

but also by all nodes in layer 1 that have an edge directed
towards them from N1

i . For example, nodes in Set1 always
contains the image fragment in N1

i and may also contain im-
age fragments in N2

i and N3
i because e1:1

1:2 and e1:1
1:3 exist. This

is the essence of production r1. The number of sets in layer
2 never exceeds the number of nodes in layer 1. The weight
of an edge from layer 1 to layer 2 is the ratio of difference
between weight of node in layer 2 and weight of node in layer
1, to weight of node in layer 1. Higher this value, higher the
probability of the concerned image fragments being merged.

After creating all sets, if we observe that there are no
edges with positive weights emanating from N1

i to any node
in layer 2, then we add that node to seti and rename it as N2

i .
This explains the presence of a node labelled 5 in layer 2. It
indicates that the likelihood of the image fragment within
the respective node to be a complete component without
any degradation, is very high. Pruning of graph for higher
efficiency may be effected by removing all nodes in layer 2
that have a negative edge entering it from layer 1.

We have to now identify the most probable word. There
are techniques such as dynamic programming that would al-
low us to identify the optimal path corresponding to most
probable word. However, we require all image fragments
to be present in the optimal path, just once. We adopt
backtracking technique to satisfy this constraint. The can-
didates are incrementally built. If the partial candidate does
not satisfy the constraint, then we reject it and backtrack.
This method is more efficient than brute force enumeration
of all candidate words. Rank of word is computed as the
product of node weights(confidence value) and edge weights
of all nodes and edges along the path. We apply r2 and cre-
ate nodes in layer 3. Nodes in layer 3 share the same labels
as that of the selected nodes in layer 2. The Unicode rep-
resentation of the word image may be obtained by reading
the nodes from left to right. This is under the assumption
that initial parsing of word image also proceeded from left to
right. The use of SSLMs considerably reduces the chances
of invalid Unicode sequences. However, in case the Unicode
is found to be invalid, the parser can either denote it us-
ing special symbol or backtrack and compute the next most

probable word from layer 2.

4. EXPERIMENTS AND RESULTS
To evaluate the effectiveness of our parsing framework de-

scribed in Section 3 we designed two different sets of ex-
periments. First one is to evaluate the effectiveness of the
algorithm on severe degradations. While another set of ex-
periments were identified to evaluate the performance on a
large real world corpus.

For the first experiment, we selected a word which is per-
fectly recognized by the classifier without the help of the
parsing framework.Then added many levels of degradations
which breaks the components severely. Figure 7 shows some
samples of the dataset. It was made sure that initial word
error rate for the set is 100%. That is no single word was
completely recognized by the existing recognizing system.

Figure 7: Sample of Degradations

For investigating the effectiveness of the method in real
world conditions, we picked the words which failed recogni-
tion from an already annotated book. The corpus is carefully
scrutinized to remove all those errors coming from misclas-
sification. Also, the word annotations available in Unicode
were verified. This gave us a corpus of degraded words with
100% word error rate (i.e., all words were incorrectly recog-
nized). Some samples of degradations in dataset is shown in
Figure 9 and Figure 10. Figure 8 shows some sample words
in the dataset.

4.1 Improving Severe Degradations
Experiments were conducted on the severely degraded word

image dataset. Since we were into testing the effectiveness
of the parsing with this experiment, all degradations added
were cuts. A dataset of 741 degradations were used for
the experiment. Table 1 shows the over all results on the
dataset.

Symbols
Accuracies

Symbol Level Word Level
Initial Final Initial Final

3705 8.8 78.14 0 60.30

Table 1: Results on Severely Degraded Words

Initial accuracy is the Unicode character level accuracy for
the recognition unit without the aid of parsing framework.
Final Accuracy is the accuracy of the system when the pars-
ing module is used to recognize degradations. Almost 70%
improvement in performance is obtained at Unicode level.
Accuracy at Unicode string level is calculated as edit dis-

Figure 8: Sample of degraded images present in data set

tance(Levenshtein distance) between annotation and OCR
output.

Table 1 also shows that 60.3% of words were corrected.
It means, of the dataset 60.3% of words were completely
recognized without any error.

4.2 Performance on Natural Book Dataset
Experiments and results in Section 4.1 shows that the

parsing framework is working very well with degraded im-
ages. But, degradation levels in normal pages are not com-
parable to the dataset used for the experiment in Section 4.1.
As shown in Table 2 and Table 3, initial accuracy in real
world datasets are usually very high. But word error rate
will be still high. Since the number of degradations per word
will be less, even a slight improvement of around 20% will
give an improvement of 70% at word level.

Experiments on natural dataset were conducted as two in-
dependent experiments. For that, the degraded words were
divided into ones with cuts (word with both cut and merge is
also added to this category) and another with only merges.
The results on the first set, shown in Table 2 represents the
performance on real world merge images.

Symbols
Accuracies

Symbol Level Word Level
Initial Final Initial Final

4040 71.31 93.63 0 70.45

Table 2: Results on images with cuts

Figure 9: Sample of cut symbols in dataset

The results on the second set actually represents the im-
provement after some artifacts are introduced by merge pro-

cessing or break point detection module in Section 3. As
evident from results shown in Table 3,65% improvement in
word level is still obtained.

Symbols
Accuracies

Symbol Level Word Level
Initial Final Initial Final

3615 75.66 92.5 0 65.55

Table 3: Results on images with merges

Figure 10: Sample of merged symbols in dataset

5. DISCUSSION
We have put forth a probabilistic image parsing technique

that would aid recognition of degraded images. We explic-
itly mention the set of operations that are to be performed
on the input word image to obtain the Unicode output. The
parse graph depicts the sequence in which these operations
are to be performed on the pre-processed image fragments
so that we can obtain the text corresponding to the input
image. Grammar governs the generation of non-terminals
and terminals such that for every degraded word, a parse
graph adhering to the grammar rules is created. Once the
parse graph is in place, the most probable word at Unicode
level is outputted by incrementally building solution sets us-
ing backtracking technique.

The effectiveness of syntactic pattern recognition for hard
core vision problems like scene analysis has once again brought
image parsing techniques to the fore. Hence the formula-
tion of degraded word recognition as a parsing problem is

deemed appropriate. There is also a widespread use of Prob-
abilistic Finite State Machines like Probabilistic Finite State
Automata, HMM’s etc. in fields that are closely associated
with pattern recognition. However the use of PFSA for our
problem is hindered by the fact that though PFSA facilitates
the finding of optimal path for a given string, it cannot find
the most probable string for a given problem [23].

We have come up with a formal structure to correctly
recognize degraded images. The architecture proposed is
generic and may be used for other languages to resolve the
confounding problem of degraded word images in a straight-
forward and uncomplicated manner. However, further ex-
plorations are required to convincingly conclude the appli-
cability for other languages like Hindi and Telugu. The mul-
tistage graph representation proposed in [14] and the parse
graph employed in this paper are structurally different. But
both of them help in two different phases of the recognition
pipeline – in segmentation/parsing and in post-processing.
One may look for an integrated framework where both these
are done together.

6. CONCLUSIONS
In this paper, we proposed a formal framework for parsing

and recognition of degraded words. The results in Section 4
clearly shows that the formulating degraded word recogni-
tion problem as a probabilistic parsing problem is a step
in the right direction. Parsing and ranking of degradations
is effective in case of severe degradations. The proposed
parser framework effectively handles the false break point
detection problems. This point to a possibility of using the
probabilistic parser as a formal and generic framework to
recognize degraded words.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers

Principles, techniques and tools. Pearson Education,
2005.

[2] V. Bansal and R. Sinha. A complete ocr for printed
hindi text in devanagiri script. In Proc of 6th ICDAR,
2001.

[3] V. Bansal and R. Sinha. Segmentation of touching and
fused devanagari characters. Pattern Recognition,
2001.

[4] T. Bayer, U. Kressel, and M. Hammelsbeck.
Segmenting merged characters. ICPR, 1992.

[5] T. A. Bayer and U. H. G. Krebel. Cut classification
for segmentation. International Conference on
Document Recognition and Pattern Recognition, 1993.

[6] R. G. Casey and G. Nagy. Recursive segmentation and
classification of composite character pattern. ICPR,
1982.

[7] U. Garain and B. Chaudhuri. On ocr of degraded
documents using fuzzy multifactorial analysis.
Advances in Soft Computing, 2002.

[8] V. Govindaraju and S. Setlur, editors. Guide to OCR
for Indic Scripts. Springer, 2009.

[9] F. Han and S.-C. Zhu. Bottom-up/top-down image
parsing by attribute graph grammar. ICCV, 2005.

[10] S. Harmalkar and R. Sinha. Integrating word level
knowledge in text recognition. ICPR, 1990.

[11] J. D. Hobby and T. K. Ho. Enhancing degraded
document images via bitmap clustering and averaging.
ICDAR, 1997.

[12] Y. Liu. Machine printed character segmentation- an
overview. Pattern Recognition, 28, 1995.

[13] M. Maier. Separating characters in scripted
documents. ICPR, 1986.

[14] K. Mohan and C. V. Jawahar. A post-processing
scheme for malayalam using statistical sub-character
language models. DAS, 2010.

[15] N. V. Neeba, A. M. Namboodiri, C. V. jawahar, and
P. J. Narayanan. Recognition of Malayalam
Documents. Guide to OCR for Indic Scripts, 2009.

[16] M. Prussak and J. J. Hull. A multi-level pattern
matching method for text image parsing. IEEE-CS
Conference in Applications of Arti cial Intelligence,
1991.

[17] D. Ramanan. Learning to parse images of articulated
bodies. Advances in Neural Information Processing
Systems, 2007.

[18] J. Rekers and A. Schurr. Defining and parsing visual
languages with layered graph grammars. Journal of
Visual Languages and Computing, 1996.

[19] S. V. Rice, G. Nagy, and T. A. Nartker. Optical
character recognition: An illustrated guide to the
frontier. Kluwer, 1999.

[20] A. C. Shaw. Parsing of graph-representable pictures.
Journal of the ACM, 1970.

[21] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and
T. Kanahori. Infty-an integrated ocr system for
mathematical documents. Proceedings of ACM
Symposium on Document Engineering, 2003.

[22] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image
parsing: Unifying segmentation, detection, and
recognition. ICCV, 2003.

[23] E. Vidal, F. Thollard, C. de la Higuera,
F. Casacuberta, and R. C. Carrasco. Probabilistic
finite state machines- part 1. IEEE Trans PAMI, 2005.

[24] J. Wang and J. Jean. Segmentation of merged
characters by neural networks and shortest-path.
Pattern Recognition, 1994.

