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ABSTRACT

In this paper we propose a new theory for the order es-
timation of nonparametric Markov random field (N-MRF)
model. Texture synthesis based on N-MRF model performs
well visually for a wide range of natural textures, [9]. The
result of texture synthesis is dependent upon the model or-
der, and the computational complexity increases paraboli-
caly with the model order. Therefore, it is required to esti-
mate the minimum model order for computationally efficient
texture synthesis. In the proposed methodology, the ba-
sic definition of local conditional density is redefined. The
proposed model order estimation (MOE) approach for N-
MRF model has been tested with a number of stochastic
and near-regular textures, collected from the Brodatz’s stan-
dard database [3]. Results show the efficacy of the proposed
approach in solving the MOE problem efficiently.

1. INTRODUCTION

Texture synthesis is an important topic in the field of
computer vision and image understanding [9, 14, 1, 7, 6,
15, 13]. The basic problem is to synthesize an arbitrarily
sized texture from a small sample of natural texture. It
is difficult to find a unified algorithm for different kinds of
natural textures, varying from stochastic to near-regular.
Within this domain, nonparametric Markov random field
(N-MRF) model approach has gained good confidence, [9,
14, 1, 7]. The algorithms based upon N-MRF model can
be categorized broadly into two classes, 1) pixel-based algo-
rithms (PIX-AL) [9, 14, 1], and 2) patch-based algorithms
(PAT-AL) [7, 6, 15, 13]. In case of PIX-AL, one site is
synthesized, whereas PAT-AL synthesizes a fixed/arbitrary
size of patch within one iteration. Therefore, PAT-AL is
faster than the PIX-AL and maintains the local structure
within the synthesized texture. But, a significant drawback
of PAT-AL is the probable presence of broken features at
the boundary of adjacent patches. This problem have been
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attempted in [6, 15, 13].

In figure, 1(a), the effect of order in PIX-AL for texture
synthesis, is shown. From this figure it is clear that as the
order is increased, the synthesized texture looks much more
similar to the original one. From figure 1(b), it can be ob-
served that, as we increase the order, the computational
complexity increases. Therefore, it is required to estimate
the minimum order for which the synthesis result will be
visually similar to the original texture. We have attempted
to solve this problem in this paper.

Liang et al. [7] has described the effect of patch-size on
the synthesis results. They showed that as the size increases
the synthesized texture resembles closely the original tex-
ture. A parameter referred to as boundary zone width is
also used in patch-based algorithm, [7]. They stated that,
this second parameter can not be too small or too large.
Therefore, the estimation of these two parameters within
PAT-AL is required, but more difficult than the order esti-
mation problem of PIX-AL. We believe that, the proposed
order estimation methodology will pave a new direction for
solving more complex issues of parameter estimation within
PAT-AL’s.

1.1 A brief review of earlier methods

There have been several attempts in the past to estimate
the MRF model order. These approaches can be classified
into two groups, 1) maximization of pseudo-likelihood mea-
sure and 2) indirect approaches. Besag in [2], has proposed a
pseudo-likelihood measure for parametric MRF model. The
second approach given in [11], builds around the concept of
combining the spatial periodicity and the order estimation
problem. This second approach is restricted to near-regular



textures, where one can find a spatial periodicity and can
depend upon it for order estimation. Natural textures how-
ever, cover a wide range from near-regular to stochastic.
Therefore, this approach described in [11], has both theo-
retical and practical limitations.

In this paper, we will consider the only first approach,
and concentrate on the maximization of pseudo-likelihood
(PL) measure and the estimation of local conditional density,
based on the work described in [2]. In section 2, we give a
brief description of the N-MRF model and texture synthesis
algorithm based upon N-MRF model. Section 3 discussed
the PL measure. The limitations of this methodology is
briefly given in this section. In section 4, we provide the
solutions to overcome the limitations of the PL based order
estimation problem. Results obtained for a wide range of
natural textures are given in section 5. Section 6 concludes
the paper.

2. NONPARAMETRIC MARKOV RANDOM
FIELD AND TEXTURE SYNTHESIS

2.1 N-MRF model Definition

Let Y, define a random variable , assuming values from
a finite set of values L, at site s on a lattice S = {s =
(¢,7) : 0 < 4,5 < M}.The neighborhood set of site s can
be defined as, X; = {r € S,s.t.||r — s|| < ||o||}, where o
is the order (the only parameter in the MRF) and ||.|| is
the L? norm. For simplicity let us define the neighborhood
vector of random variable Y; as, X = {Y;;r € X,}. The
Markovian assumption in the given context is,

p(Ys|{Yr;r € S,r # s}) = p(Ysl{Yr;7 € Rs}) = p(Y5]X5)
(1)
this describes the fact that given the random variables at
neighborhood sites, N;, the r.v. at s is independent of all
other sites, {r;r € S — {s} — N,}. This conditional proba-
bility is termed as local conditional pdf (LCPDF).

In [9] the nonparametric MRF is defined as the nonpara-
metric estimation of the local conditional probability density
function.

(VoI Xy) = L Zoesy Tre “YE(X = X))

P T Y, KX = X))
, where ¢ € Sin, h (the window parameter) = o{4/(n(2d +
1))}/@+9: s the number of data points, i.e., the num-
ber of pixels within the input texture; d is the dimension of
the neighborhood vector, ¢ is the average marginal vari-
ance of Ys, and the kernel function is defined as Kj(z) =

exp{—%}7 where ()7 defines transpose.

2.2 Brief description of synthesis algorithm

The sampling of new pixel (¢ € Sout) at the output texture
(Sout), is done according to ICM algorithm, as described in
[2]. In the original code [8], the authors of [9] have imple-
mented an approximate version of ICM. Rather than evalu-
ating the true LCPDF, they considered the similarity metric
(say Ds,q) between the X5 and X4, where s € S;;, the input
texture and g € Syt the output texture, as shown below.

Ds,q = (Xs - Xq)T(I)q(Xs - Xq) (3)

Here, ®, corresponds to the temperature matrix at site g €
Sout required for the local simulated annealing, [9]. If for

a given s € Sin, this distance is minimum, then replace
the pixel at ¢ € Sout with the pixel value at s, i.e., Y.
Approximately, one can say that, if this distance is minimum
then for Y, = Y, the LCPDF described in equation 2 will
be maximum. It can happen that for a set of sites {s € S;,}
the metric D, 4 is same. In that case, we pick any site from
this set {s} for the synthesis of site at ¢ € Sous. In our work,
we have followed this approximate ICM methodology.

3. MAXIMUM LOG-PSEUDO-LIKELIHOOD
OF THE LCPDF AND ORDER ESTIMA-
TION

In [2], Besag had proposed a pseudo-likelihood measure
for parametric MRF model. The joint probability of a time
sequence can be written as a multiplication of local condi-
tional probabilities, according to the Markovian theory of
conditional independence. But, in case of a spatial dis-
tribution, such as an image, the joint distribution of the
pixel random variables cannot be written as a multiplica-
tion of LCPDF’s found at the sites of the lattice. In such
case, one needs a pseudo-likelihood (PL) measure, which
is actually multiplication of the the local likelihoods, i.e.,
PL =]l cs,n P(Ya|Xq). CsiszAar and Talata in [4], Ji and
Seymour in [5] have studied the consistency problem of para-
metric MRF neighborhood order estimation, using log of PL
measure (LPL). This is given by,

LPL = log[P(YsX,)] (4)
q4€Sin

In case of N-MRF model, the estimation of LCPDF, i.e.,
P(Y4]X4), has to be nonparametric, rather than parametric.
Let us say this is N — LPL. By nonparametric we mean
that, the likelihoods P(Y;|X,) are evaluated according to
the equation 2. However, there is a problem in using the
N — LPL for model order estimation. This is explained in

the next section.

4. PROPOSED N-MRF MODEL ORDER ES-
TIMATION METHODOLOGY

To estimate the order, one has to evaluate the N — LPL
measure for each order o = 1,2,..., K, say K = 40. If the
N — LPL attains a maximum value and saturates beyond
order o = z, then the minimum order for faithful texture
synthesis according to N-MRF model is 0 = z.

4.1 Why the N — LPL is not suitable ?

In figure 2(a), the variation of the log-pseudo-likelihood,
i.e., N — LPL with the model order is shown for a number
of textures (both near-regular and stochastic). Figure 2(a)
shows that if we measure the LCPDF using the equation
2, the measure N — LPL does not saturate for any of the
textures. In practice, it is known that beyond a certain order
the synthesis results do not improve. Therefore, it can be
concluded that, the earlier definition of LCPDF estimate,
i.e., equation 2, cannot provide the solution for model order
estimation (MOE) problem.

This measure N — LPL is not saturating due to the nor-
malizing parameter h as shown in the equation 2. Accord-
ing to Scott [10], h = o{4/(n(2d + 1))}'/@+D  Therefore,
the parameter varies with the dimension d of the neighbor-
hood vector. This dimension d increases parabolically as the
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Figure 2: Limitation of Order estimation in the case
of LCPDF evaluation

order o increases, as shown in figure 1. Again, this band-
width parameter h is also used within the kernel argument,
as Kp(z) = exp{—‘;TTQZ}. If one has to remove this effect of
parameter h, one has to consider Dirac delta function as the

kernel function.

4.2 Why the Dirac delta kernel v — LPL is not
suitable ?

In case Dirac delta is used as a kernel function the equa-
tion for the likelihood evaluation take the form,

Zsesm 5h(Ys - Yq)(sh(Xs - Xq)
> ses,, on(Xs — Xq)

The variation of N — LPL according to the likelihood
defined in equation 5, is shown in figure 2(b). From the
figure, we note that, the N — LPL saturates for an order
that is less than or equal to order o = 4, for all textures.
From experience, it is known that in general, the natural
textures cannot be synthesized with such low order model
(with single level resolution).

Given the facts that, neither Gaussian nor Dirac delta
kernel is useful to provide a practical solution for the MOE
problem, we now look into the texture synthesis algorithm
more closely and try to infer what should be the form of
equation 2 so that MOE problem can be solved with respect
to faithful texture synthesis.

4.3 New Definition for LCPDF

Let us define a new LCPDF evaluation, and the corre-
sponding N — LPL measure, as given in equation 6. In this
new definition, we have used Dirac delta kernel for the center
pixel random variable Y;, and Gaussian kernel for the neigh-
borhood vector X,. In figure 3, we show the variation of the
N — LPL measure according to the new LCPDF evaluation
described by equation 6. It can be observed that, this new
N — LPL attains saturation at different model orders de-
pending upon the texture. A more detailed analysis of these
results is given in section 5. The next sub-section provides
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Figure 3: Proposed LPL variation with respect to
the model order

intuitive reasons for using this new definition of LCPDF.

Zsesm 6(Ys — Yg) Kn(Xs — Xy)
Zsesm Kn(Xs = Xq)

p(Yq|Xq) = (6)

4.4 An intuitive reason for the new LCPDF
definition

If one considers the texture synthesis algorithm as de-
scribed in section 2.2, it becomes clear that, the algorithm
replaces the current value of Yy, ¢ € Sou: with the value Ys,
s € Sin, for which Dy s is minimum. In other words, it sam-
ples from the set {Ys : s € Sin,q C Sin}, where Vsi,s2 €
Sin,qs Ds1,¢ = Ds2,q and for any u € Sip, Du,q > Ds1,q. This
implies that the value of Y; is sampled from the histogram
of the data set {Y; : s € Sin,q}. From a probabilistic point
of view, one does not require a kernel function (which has a
finite bandwidth) for sampling of Yj.

Again, the set {Y; : s € Sin,q} is formed according to
function Ds 4, given in equation 3. Now in the synthesis
algorithm, we start with a random variation of pixel val-
ues, and therefore, if this function D, is considered as
d(Xs — Xg), the texture synthesis algorithm will fail. Since,
at any stage (when the synthesis algorithm has not con-
verged to the global solution) the neighborhood vector X,
will not be equal to any of the neighborhood vector X,
s € Sin. Therefore, one can conclude that, with respect to
the synthesis algorithm, the kernel function for the neigh-
borhood vector should not be the Dirac delta.

Intuitively we have reasoned out that, according to the
texture synthesis algorithm, why one should use Dirac delta
kernel for the center pixels Y; and continuous finite band-
width kernel for neighborhood vector X,. In the following
section, we will analyze the results.

5. RESULTS
Figure 4 provides D104 texture synthesis results for a
number of orders, o = 2,4,8,...,24. (Here we have chosen

only even number of orders not because of any particular
reason, it is just to show the variation of synthesis results in
aregular interval of orders. ) The estimated order according
to the proposed LCPDF is o = 12. This is a near-regular
texture. Again, figure 5 provides results for the texture D9,
with orders o = 1,3,5,...,23. Here the estimated order is
o = 9. This is a stochastic texture. As can be seen from
these two examples that, the estimated order produces visu-
ally good result and moreover, the synthesis results change
marginally in terms of a preattentive perception. In this pa-
per, we have shown these results with the variation of order
for only two textures. The rest of the results are considered
with respect to the estimated order only.



For testing the proposed definition of LCPDF, we have
considered three sets of textures, 1) Near-regular (NR), 2)
Stochastic (ST), and 3) NR+ST. The last category of tex-
tures, i.e., NR+ST, has a regular pattern with a stochastic
perturbation, or vice versa. The test sets are chosen from
the Brodatz’s standard database, [3].

Earlier we have shown the proposed LPL variation with
respect to a number of different textures, in figure 3. We
have implemented two texture synthesis algorithms to test
the performance of the proposed order estimation method-
ology in terms of visual similarity with the original texture
sample. The first algorithm is based on the original texture
synthesis paper [9], and the other algorithm implemented
is based on [12]. In figure 6, the synthesis results for near-
regular textures are shown with the estimated order. Fig-
ure 7 shows the results for Stochastic textures, and figure
8 provides the result for NR4+ST set of textures. With an
un-optimized code (ct*), the time taken to get the results
is around lhour to 3 hours, depending upon the nature of
texture.

Within the supplementary result
(ICVGIP_order_estimation NMRF_sup_mat-pdf)
we have shown the results for each texture for all orders.
From the wide spectrum of results shown, it can be easily
observed that, the estimated order can synthesize the in-
put texture faithfully, along with minimum computational
complexity.

6. CONCLUSION AND FUTURE WORK

To the best of our knowledge, the proposed work is the
first methodology that has handled the issue of N-MRF
model order estimation from a theoretical as well as prac-
tical point of view. We have redefined the estimation of
LCPDF according to the need. The results obtained for
a wide range of natural textures taken from a standard
database, [3], establish the efficacy of proposed methodology
in solving the MOE problem. There are several challenges
that need to be addressed, 1) estimation of the order for
in-homogeneous or structural textures, 2) extension of the
idea of order-estimation for PAT-AL’s, 3) defining texture
similarity measures based upon the proposed methodology
of order estimation, 4) application in unsupervised texture
classification and segmentation with N-MRF model, etc.

We very much appreciate the reviewers’ suggestions and
questions. As it has been pointed out that this research is
not complete from both theoretical and practical point of
views. We would definitely like to experiment inclusion of
the estimation of bandwidth parameter within this exper-
imental setup, in near future. Although we belief that by
estimating the bandwidth parameter will not solve the or-
der estimation problem, and this proposed change of kernel
function is one of the practical choice for the model order
estimation problem. Moreover, at this juncture, we are not
able to provide any theoretical justification of getting results
with respect to our proposed defination of LCPDF. In near
future, we will definitely try to do so, from the theoretical
perspective. One possible pathway for theoretical justifica-
tion is described in the following.

We know that as number of dimension increases, the re-
quired number of samples for the kernel density estimation
also increases (almost exponentially). But, in our case we
lack that many number of sample points. This practical lim-
itation has to be taken into account during the calculation
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of density and corresponding LPL. We belief that this prac-
tical limitation has forced the choice of kernel for Ys within
LCPDF function.
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