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ABSTRACT
The microscopic analysis of the urinary sediment is impor-
tant in making diagnoses for a variety of diseases, including
urinary tract infection, urinary tract tumors, occult glomeru-
lonephritis, and interstitial nephritis. A typical automated
system acquires images of urinary sediment by employing
a CCD camera, and then detects and recognizes the dis-
tinct particles automatically from these images. Automated
recognition of these particles represents a significant chal-
lenge due to poor image resolution, strong variability of
particle shape and size, and challenges associated with de-
tection of particles in the presence of noisy backgrounds.
In this paper, we present a novel method for urine particle
classification based on the use of local descriptors coupled
with regression based decision fusion. Specifically, DAISY
descriptors have been used to capture the textural character-
istics of each particle and subjected to dimensionality reduc-
tion across three linear subspaces to increase the diversity in
decision making along with lowering the“curse of dimension-
ality”. Classification in each subspace is based on computing
a similarity score, which is then fused through support vec-
tor regression to obtain a final classification. The approach
is applied to both brightfield and multispectral data to ascer-
tain the benefits of multispectral imaging for urine analysis.
Urine particles analyzed included crystals, casts and blood
cells, and the results obtained show an average classification
accuracy of 92.6% for 6 classes of urinary particles.

1. INTRODUCTION
Urinalysis (UA) is a vital laboratory test for evaluation of

the renal and genitourinary systems. It allows physicians to
diagnose asymptomatic patients. Once a diagnosis has been
made, it enables them to follow the progression of illness and
to recommend further treatment. The microscopic analysis
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of the urinary sediment is critically important in making
diagnoses for a variety of diseases, including urinary tract
infection, urinary tract tumors, occult glomerulonephritis,
and interstitial nephritis [23]. Current urinalysis techniques
follows a two step strategy, the first step is to observe the
characteristics of the urine such as color, pH, specific grav-
ity etc., followed by microscopic analysis of particles in the
urine sediment [18]. The microscopic examination of urine
involves identification of physical composition of sediment
color and morphological characterization of urine particles.
Manual microscopic analysis relies on human operators who
visually recognize the distinct particle types and provide a
count measure for each. Therefore, manual analysis is time-
consuming, labor-intensive, and difficult to standardize.

With recent advances in microscopy, it is appropriate to
envision a fully automated urinalysis system that can elimi-
nate the costs and errors associated with manual procedures.
A typical automated system acquires images of urinary sed-
iment by employing a CCD camera, and then detects and
recognizes the distinct particles automatically from these im-
ages [4]. Various types of particles that need to be recog-
nized include: 1) epithelial cells; 2) crystals (triple phos-
phate, uric acid, calcium carbonate and oxalate); 3) red
blood cells (nonglomerular, crenated and intact); 4) casts
(hyaline, granular, red blood cell, white blood cell, waxy);
5) yeast; and 6) bacteria. Automated recognition of these
particles represents a significant challenge due to poor im-
age resolution, strong variability of particle shape and size,
and challenges associated with detection of particles in the
presence of noisy backgrounds [19]. Further, combined clas-
sification of crystals, casts and various other particles is a
challenging problem to study.

In the design and development of an automated Urinalysis
system, detection and classification of sediment particles are
two critical issues related to image analysis. Many methods
have been proposed for classifying particles in urinary sed-
iment. In [17], the authors use a fuzzy neural network to
recognize distinct particles. The features used for classifi-
cation were computed from binarized images and comprised
of particle size, shape, and a degree of shape deformation.
Similarly, in [26], the authors used a neural network to clas-
sify white and red blood cells. In this case, the features used
were size, change rate of the gray level value measured be-
tween the particle edge and the central area, and the change
frequency within the central area. Mei-Li et al. [16] used
length, height, area, perimeter, equivalent radius, Fourier



descriptor, and shape features to train a support vector ma-
chine (SVM) for classifying urine particles. Another ap-
proach leveraging global descriptors was proposed by Dah-
men et al. [6], where Fourier-Mellin features were computed
and their distribution for each particle type was modeled
using a mixture of Gaussians. Using these models, they
achieved a test error rate of ≈15% for classifying three differ-
ent types of red blood cells based on gray-scale images with
a resolution of 128×128 pixels. Ranzato et al. presented an
automatic system to classify 12 object categories in urinary
images [19]. Without any segmentation, the differential in-
variants of brightness at multiple scales were described by
an average operator. With these invariant features, a classi-
fier obtained from a mixture-of-Gaussian generative model
achieved 93.2% accuracy. However, their dataset did not
include crystals. The current status of crystal morphology
modeling and prediction techniques further emphasizes the
need for better urine classification methods.

More recently, multispectral microscopes capable of ac-
quiring spectral images under transmitted illumination have
been used in analyzing cells and tissues [20]. Spectral images
are three dimensional cubes of data Ix,y(λ) comprised of a
series of 2D images, Ix,y, one for each wavelength. Each
pixel location, (x, y), contains a spectral signature, stored
along the λ axis, as is shown in figure 1. Studies have shown

Figure 1: Spectral image represented as a stack of images, where
each image corresponds to the image acquired at a specific wave-
length.

that biological tissue exhibits unique spectra in transmis-
sion. By exploring the spectral differences in tissue pathol-
ogy, many chemical and physical characteristics not revealed
under traditional imaging systems can be realized and used
to improve the analysis efforts [27].

In this paper, we propose a novel scheme for classifica-
tion of urine particles using multispectral urine sediment
images. First, we employ an adaptive thresholding approach
to detect the location of particles. A connected component
analysis is performed to identify distinct blobs and a re-
gion of interest (ROI) is identified by placing a bounding
box around each blob centroid. Features are extracted from
each ROI. We use DAISY descriptors to describe the char-
acteristics of the detected regions. In order to reduce com-
plexity and increase diversity in classification decisions, we
project the descriptor to three lower dimensional subspaces
based on Principal Component Analysis (PCA), Isometric
Projection (ISO), and Neighborhood Preserving Embedding
(NPE). Classification is based on a similarity metric to la-
beled examples in each subspace and the decisions are fused
by using support vector regression (SVR). Figure 2 shows
an overview of the proposed approach.

This paper is organized as follows: In section 2, we pro-

Figure 2: Overview of algorithm

vide details of our proposed approach, including the steps
of segmentation, feature extraction, dimensionality reduc-
tion, similarity score, and feature fusion. Section 3 presents
details of performed experiments and the obtained results.
Finally, the paper is concluded in section 4.

2. METHODOLOGY
The ability to provide a discriminative representation of

distinct urine particles while ensuring sufficient diversity is
important in the development of a robust classification sys-
tem. This poses a significant challenge due to variations in
size, shape, and gray-level values, even for particles of the
same type. For efficient local textural characterization of
objects, point descriptors such as SIFT, SURF, and DAISY
have been used extensively [14]. More specifically, DAISY
has been shown to be a compact local descriptor provid-
ing improved discriminative representation for local image
regions [24]. On the other hand, high-dimensional feature
spaces are difficult to analyze. In order to reduce the com-
plexity of the feature space, we project the computed fea-
tures into three lower dimensional spaces. Each subspace
provides increased diversity in representing a particle type.
Particle are classified by computing a similarity score in each
subspace and the final scores fused. Algorithm 1 shows an
overview of the proposed approach. Rest of this section



presents details of each of the steps in our proposed method.

Algorithm 1 Overview of the proposed algorithm.

for each image do
1. Extract individual blobs from image using local
adaptive thresholding and connected component anal-
ysis.
2. Bounding box is placed around each blob centroid to
delineate a region of interest.
3. While scanning the region of interest along the wave-
length axis (Figure 1), compute DAISY descriptor for
each pixel.
4. Subtract DAISY descriptor of corresponding pixels
in the neighboring wavelengths.
5. Arrange the difference of descriptors in one dimen-
sional vector.
6. Project the feature vector onto three subspaces based
on PCA, ISO, and NPE.
7. Compute similarity scores against representative fea-
tures from each particle class.
8. Fuse the scores obtained from each subspace using
support vector regression.

end for

2.1 Segmentation
Imaging of urine particles is typically performed under

transmitted illumination. This results in particles being
darker than the background. This is true in case of both
brightfield imaging as well as transmitted mode multispec-
tral imaging. With the intent of identifying the location
of different particles in an image, a multitude of threshold-
ing approaches can be leveraged to separate dark objects
against bright background, or vice versa. However, when the
background has non-uniform illumination, a fixed (or global)
threshold value can result in poor segmentation. To gain ro-
bustness to non-uniform intensity distributions, we employ
local adaptive thresholding to identify different particles [9].
Morphological smoothing is performed on the resulting bi-
nary image followed by connected component analysis to
identify the number of particles. The centroid of each parti-
cle provides an estimate of the spatial location. A bounding
box is placed around each centroid to delineate the region
of interest.

2.2 Feature Extraction
For each particle, we need to extract relevant features for

discriminative representation. Local image descriptors have
been widely used for addressing variety of problems in com-
puter vision, from wide baseline matching and the recogni-
tion of specific objects to the recognition of object classes.
They have been applied to image retrieval, image matching,
texture recognition, scene classification, robot navigation,
visual data mining, etc. [3, 25, 8]. In this work, we have
opted to use DAISY descriptors to characterize each seg-
mented region in the image.

DAISY:. DAISY was proposed by Tola et al. [24] with the
objective of solving the dense stereo estimation problem,
where the positions of the two cameras differ by a large
amount. This descriptor is shown to outperform other ap-
proaches (e.g. SIFT, SURF and pixel differences) in exten-

sive experiments. Unlike SURF, which can also be computed
efficiently at every pixel, it does not introduce artifacts that
degrade the matching performance when used densely. Not
unlike SIFT [15], a DAISY descriptor samples the image
derivative in different directions. Eight different directions
and three different scales are used. By sampling these fields
at different points around the feature location, a descriptor
of dimensionality 200 is obtained. Since the same fields are
used for all image locations, a dense field of descriptors can
be computed efficiently. Figure 3(a) and (b) displays the his-
togram of daisy descriptor, computed for a single pixel on
a WBC and Triple Phosphate crystal across three different
wavelength.

DOD: Difference Of Descriptors:. To extend the appli-
cability of DAISY descriptors to spectral images, we pro-
pose to compute the difference of descriptors as features.
This allows subtle differences among spectral data to be
represented through point descriptors. Moreover, the dif-
ferences are computed between neighboring wavelengths so
as to capture local variations across the spectra. To do so,
we compute the DAISY descriptor for each pixel across all
wavelengths. For each spectral cube, we scan the cube along
wavelength axis (refer to Figure 1), and for each neighbor-
ing spectral pixel along the wavelength axis, we subtract the
corresponding descriptor measure. As a result, if a spectral
image consists of 31 wavelengths, the resulting DOD de-
scriptor would have a dimension of 30×200, where 200 is the
length of the DAISY descriptor. Figure 3(c) and (d) shows
the DOD of WBC and triple phosphate crystal for a single
spectral pixel across 3 wavelengths. For a typical region of
interest of size 25×25 pixels and the number of wavelengths
in the spectral cube being 31, the resulting feature vector
would be of a size equal to 1 × (200 ∗ 25 ∗ 25 ∗ 30). This
imposes the “curse of dimensionality” and potentially penal-
izes classification. In general, high dimensional features tend
to limit the performance of feature matching techniques in
terms of speed and scalability. Furthermore, these descrip-
tors have traditionally been carefully hand crafted by manu-
ally tuning many parameters. To overcome these issues, we
use subspace projection methods to reduce the dimension of
the DOD features.

In the case of brightfield microscopy, we have a single
grayscale image and hence the dimensionality is not as large.
For the same region of interest, the feature vector would be
of size 1 × (200 ∗ 25 ∗ 25), where instead of DOD features,
the original DAISY descriptor is computed at each pixel.

2.3 Dimensionality Reduction
High-dimensional datasets present many mathematical chal-

lenges as well as some opportunities, and are bound to give
rise to new theoretical developments [7]. Several researchers
have addressed the problem of dimensionality reduction for
feature descriptors. For example, Herbert et al. [1] proposed
an approach (SURF) that combined the Hessian matrix-
based measure for the detector and Haar-wavelet responses
for the descriptor, resulting in a 64-dimensional feature rep-
resentation. PCA-SIFT proposed in [12] reduced the dimen-
sionality of the descriptor to 36 dimensions while providing
comparative performance to the original SIFT. The key of
PCA-SIFT is to apply the standard Principal Components
Analysis technique to the gradient patches extracted around
local features, therefore yielding a compact feature represen-



(a) Histogram of DAISY de-
scriptor for same spectral
pixel of WBC in different
wavelength.

(b) Histogram of DAISY
descriptor for same spec-
tral pixel of triple phos-
phate crystal in different
wavelength.

(c) Difference of Histogram of DAISY descriptor
for same spectral pixel of WBC in different wave-
length.

(d) Difference of Histogram of DAISY de-
scriptor for same spectral pixel of triple
phosphate crystal in different wavelength.

Figure 3: DAISY descriptor.

tation. In this paper, we reduce the DOD feature using three
dimensionality reduction methods in order to obtain a more
discriminant representation of the descriptors along with a
possible increase in the diversity of classification decisions.
Each projection provides a subspace within which a sample
can be classified and the result eventually fused to obtain a
combined result.

Data Arrangement:. Figure 4 shows our data arrangement
for dimensionality reduction. Initially, a training dataset is
established comprising of particles randomly sampled from
all classes and the number of each particle type representa-
tive of the probability of occurrence of that class. For each
particle, we raster scan the region of interest. In the case of
spectral images, the scanning is done along the wavelength
axis ((left)figure 4). DAISY descriptor is computed for each
pixel and read into a row vector ((right)figure 4). Hence,
a data matrix is generated from each image, where a row
of the matrix represents one region of interest or particle.
The data matrix is projected into a lower dimensional space
to reduce the feature size using Principal component anal-
ysis [11], Neighborhood preserving embedding [10] and Iso-
metric projection [2]. The feature vector is reduced to a 35
dimensional descriptor. The choice of the reduced number

Figure 4: Shows the data arrangement for dimensionality reduc-
tion, row represents a data.

of dimensions was determined empirically.

2.4 Similarity Score
Within each projected subspace, one can compute similar-

ity to representative (training) features in order to ascertain
a class label for a test sample. Since there exists a large
amount of variation within each particle class, it is difficult
to generate a single representative feature for each class la-
bel. As a result, we choose to compute a similarity score that
is established as a pairwise measure between a test sample
and all the samples in the training dataset. Algorithm 2
summarizes the calculation of the similarity scores.

Algorithm 2 Algorithm for similarity score computation.

for each training matrix row i do
1. Compute the similarity between test feature and all
representative features using a similarity metric.
2. Store the scores in a column vector at positions ((i)∗
size(training, 1) + 1 : (i+ 1) ∗ size(training, 1), 1) .

end for

We use the cosine distance metric as the function that
measures the similarity scores for each test sample. Let U
and V be two feature vectors. Say, U = (u1, u2, ....., un) and
V = (v1, v2, ......, vn), then

cos(U, V ) = (U.V )/ ‖U‖ ‖V ‖ (1)

A similarity score is computed independently in each of the
projected spaces.

2.5 Support Vector Regression
The final step in establishing a class label for each par-

ticle is to combine the similarity scores computed in each
projected space. Many approaches for combining local de-
cisions have been proposed in the past few years [13], many
of which assume independence of individual decisions. An
alternative approach we have considered in this paper is
one based on regression analysis that allows modeling of
values of a dependent variable from one or more indepen-
dent variables. Support Vector Machines, a popular mecha-
nism for classification purposes can also be used for regres-
sion purposes. The basic ideas of nonlinear-support vec-
tor regression are as follows: Consider the training sample
S = ((x1, y1), ((x2, y2), ....., ((xl, yl))), S ⊆ (x× y)l, x ⊆ Rd,
y ⊆ R. In ε-SV regression, the goal is to find a function f(x)
that has at most ε deviation from the actually obtained tar-
gets Yi for all the training data. The regressor must not
only fit the given data well, but also makes minimal errors
in predicting the values at any other arbitrary point in Rd.



Nonlinear regression is accomplished by fitting a linear re-
gressor in a higher dimensional feature space. A nonlinear
transformation φ is used to transform data points from the
input space of dimension D into a feature space having a
higher dimension L. The nonlinear mapping is denoted by

φ : Rd → Rl (2)

In the feature space, the original non-linear function be-
comes a linear function f(x).

f(x) = ωTφ(x) + b (3)

where ωT εRd,bεR. ω is called a weight vector and b is called
a bias. The optimal regression function is given by,

min
ω,b,ξi,ξ

∗
i

J =
1

2
‖ω‖2 + C

lX
i=1

(ξ + ξ∗) (4)

subject to following,

yi − ωTφ(xi)− b ≤ ε+ ξiω
Tφ(xi) + b− yi ≤ ε+ ξ∗i ξi, (5)

ξ∗i ≥ 0, i = 1, 2, ....d

where, C ≥ 0, measures the tradeoff between complexity
and minimizing loss, ξi and ξ∗i are positive slack variables
and ε is a fixed value of ε - insensitive loss function, which
is defined as:

Lε(x, y, f) = |y − f(x)|ε = max(0, |y − f(x)| − ε). (6)

The optimization problem in eq. (4) can be solved more
easily in dual formation:

max(−1

2

lX
i,j=1

(αi − α∗i )(αj − α∗j )− (7)

ε

lX
i=1

(αi + α∗i ) + ε

lX
i=1

Yi(αi − α∗i ))

subject to,

lX
i=1

(αi − α∗i ) = 0, αi, α
∗
i ε [0, C] (8)

where, αi, α
∗
i are Lagrange coefficients and K is termed as a

kernel matrix. There are several possibilities for the choice
of kernel function, including polynomial, sigmoid, and radial
basis function (RBF). In this study, RBF is used to map the
input data into a higher dimensional feature space, which is
given by:

K(Xi,Kj) = exp(−γ ‖Xi −Xj‖2) (9)

There are two parameters while using RBF kernels: kernel
parameter γ and penalty parameter C. The parameter se-
lection is done using grid search method1. Once the optimal
solution of eq. (7) has been found, the nonlinear regression
function in original input space is given by:

f(x) =

lX
i=1

(αi − α∗i )K(Xi, Xj) + b. (10)

For more detailed description refer to [22].
To learn the weighting parameters, we establish a vali-

dation dataset that comprises of particles from all classes,

1A grid search tries values of each parameter across the spec-
ified search range using geometric steps.

randomly chosen while ensuring no overlap with the train-
ing dataset. Features are computed and projected in each
of the three subspaces. Similarity score for each particle is
computed independently in each subspace against the cor-
responding training data matrix. Hence, for m samples in
the validation dataset and n samples in the training dataset,
the resulting similarity score is a vector of length m× n. A
similarity score matrix of size (m×n)×3 is realized by con-
sidering the scores from each subspace. SVR is then used
to compute the weighting parameters against the known
ground-truth class labels for each sample in the validation
dataset.

3. EXPERIMENTS AND RESULTS
To evaluate the merit of our proposed approach, we ob-

tained urinary sediment samples from 45 patients. Each
sample was imaged using a multispectral microscope under
transmitted illumination. The microscope was calibrated ac-
cording to the method described in [21] and 31 images were
collected for each field of view ranging from 400-700nm in
increments of 10nm. A single brightfield image was also
collected for each field of view. A total of 452 images were
collected. 60% of the images were randomly sampled to gen-
erate a training dataset. Approximately 25% of the remain-
ing images were sampled to generate a validation dataset
while the remaining 15% images were used to create a test
dataset. Each dataset was sampled to ensure representation
of all urine particles. Six distinct urinary particles, including
red blood cells (RBC), white blood cells (WBC), uric acid,
calcium oxalate, triple phosphate and hyaline, were manu-
ally identified and verified by two clinicians. Table 1 shows
the distribution of these urinary particles.

Table 1: Class Distribution

Uric Hyaline Triple Calcium RBC WBC
Acid Cast Phosphate Oxalate

26 32 47 153 97 97

Next, individual particles were detected in each image us-
ing the segmentation algorithm described in section 2.1. A
binary mask was generated for each of the segmented parti-
cle and its centroid used to place a bounding box to delin-
eate the region of interest (ROI). Difference of Descriptors
(DOD) was computed for every ROI to obtain the feature
matrix as described in section 2.2, resulting in a matrix cor-
responding to the three datasets, training, validation, and
testing. Each feature matrix was subject to projection into
a 35 dimensional subspace using PCA, ISO, and NPE as
explained in section 2.3.

For the training dataset, let the bases of the three space be
B1, B2, B3 and the respective projected spaces be P1, P2, P3.
The validation dataset is subject to projection using the
bases B1, B2, B3 for each of the three subspaces resulting in
the projected spaces V1, V2, V3, respectively. In case of par-
ticles from the training and validation datasets, each feature
is associated with a class label from the set {1, 2, 3, 4, 5, 6},
corresponding to the particle type. The next step is to estab-
lish a discrimination criterion in each of the three subspaces
and realize a weighted consensus that can be used for clas-
sification of the particles in the test dataset. Algorithm 3
details the steps of learning the decision function.



Algorithm 3 Algorithm for learning the SVR parameters.

for j = 1 to 3 do
for each validation row i do

for each training row k do
1. Compute the similarity score between ith vali-
dation row and kth training row.

end for
1. Store the similarity scores in column vectors.

end for
1. Concatenate all the similarity score vectors to form
one similarity score vector.

end for
for each validation row i do

for each training row k do
if validation label i == training label k then

1. Define label as 1.
else

2. Define label as 0.
end if

end for
1. Concatenate all the label vectors to form one label
vector.

end for
1. The three similarity vectors and label vector so ob-
tained are used in support vector regression [5] as de-
scribed in section 2.5 to obtain the weighting parameters
for fusion.

The training stage results in the weighting parameters
necessary for classification of new particles. Algorithm 4
details the steps for testing.

Algorithm 4 Algorithm for testing of a new region of in-
terest or particle.

1. Compute the descriptor for each pixel in the region
of interest and project the feature vector into the three
subspaces using the learned bases.
2. Compute the three similarity score vectors according
to algorithm 2.
3. Arrange the similarity scores obtained as detailed in
section 2.5 and using the weighting parameters obtained
from algorithm 3, get the fused vector.
4. Search the fused vector to find the value closest to 1.
5. Obtain the corresponding class label of the entry to
assign the particle to that class.

To quantify the performance of our approach, testing was
subject to 50-fold cross-validation. Hence, we established a
training, validation, and testing dataset 50 separate times
based on random sampling from the original set of images.
Each time, the performance of the algorithm was measured
in terms of accuracy, precision, and specificity. Formally,
these can be defined as:

1. Accuracy: Accuracy is the overall correctness of the
model and is calculated as the sum of correct classifi-
cations divided by the total number of classifications.

Accuracy =
tp+ tn

tp+ tn+ fn+ fp
, (11)

where tp and tn are the numbers of true positive and
true negative predictions for the considered class. tp+

tn + fn + fp is the total number of examples of the
considered class.

2. Specificity: Specificity corresponds to the true-negative
rate.

Specificity =
tn

tn+ fp
. (12)

3. Precision: Precision is a measure of the accuracy pro-
vided that a specific class has been predicted.

Precision =
tp

tp+ fp
, (13)

4. Recall: Recall is a measure of true positive rate.

Precision =
tp

tp+ fn
, (14)

The average result of 50 experiments is shown in figure 5 in
the form of a confusion matrix.

Figure 5: Classification of urine particles with decision fusion for
multispectral data. In the intersection of row i with column j,
we have percentage of items belonging to class i that have been
assigned to class j. Diagonal shows the percentage of correct
classification for each class.

We also evaluated the merit of decision fusion using SVR.
In this case, classification decisions were obtained in each
subspace independently. A training dataset comprised of
75% of the images such that the number of each particle
type present was representative of the probability of occur-
rence of that class. Rest of the images were used for test-
ing. 1-nearest-neighbor classifier1 was used for obtaining the
class label. Table 2 gives the overall accuracy, false positive
rate (FPR), and false negative rate (FNR) of all the classes
based on individual subspace classification as well as by fu-
sion using SVR. Fusion method shows an average accuracy
boost of 4.7% over the individual subspace classification ac-
curacy. In order to provide more insight into performance of
our system, we calculated specificity and precision of each
particle. Results are shown in table 3, table 4, and table 5
for specificity, precision, and recall, respectively.

In order to validate the significance of multispectral data
for urine sediment classification, we evaluated the perfor-
mance of classification based on features computed from the
brightfield image. In this case, only the DAISY features were
computed for each pixel in the ROI. Performance was mea-
sured by taking 75% of the images in each class for training
and rest for testing with random sampling from each class.
1-nearest-neighbor classifier was used for classification. The

1To classify an observation, we find the most similar example
in the training set by computing cosine distance and return
the class of that example.



Table 2: Classification performance of urine particles based on
fusion with SVR, PCA, ISO, and NPE using multispectral data.

SVR PCA ISO NPE

Accuracy 92.6% 86.0% 90.6% 87.2%
FPR 1.5% 2.8% 2.0% 2.7%
FNR 10.3% 16.9% 14.9% 14.72%

Table 3: Specificity of classifying urine particles based on fusion
with SVR, PCA, ISO, and NPE using multispectral data

SVR PCA ISO NPE

Calcium Oxalate 98.9% 97.3% 96.4% 91.9%
Hyaline 99.8% 98.3% 98.5% 99.3%

Triple Phosphate 98.5% 95.5% 98.6% 97.2%
RBC 99.6% 97.6% 99.2% 98.8%

Uric Acid 98.9% 97.9% 99.3% 97.9%
WBC 96.5% 96.5% 96.2% 98.8%

average result of 50-fold cross-validation is shown in figure 6.
Table 6 gives the overall accuracy, false positive rate (FPR),

Figure 6: Classification of urine particles with decision fusion for
regular microscopic examination. In the intersection of row i with
column j, we have percentage of items belonging to class i that
have been assigned to class j. Diagonal shows the percentage of
correct classification for each class.

and false negative rate (FNR) of all the classes based on
individual subspace classification as well as by fusion using
SVR. The results clearly shows the significance of multi-
spectral data. Fusion method for multispectral data shows
an accuracy boost of 11.0% over the brightfield data. Also,
multispectral data provides significant improvement in FPR
and FNR of the system in comparison to brightfield data.
To further examine the benefit of multispectral data, we
calculated specificity, precision, and recall of each particle
classified using brightfield data. Results are shown in table
7, table 8, and table 9 for specificity, precision, and recall,
respectively.

Table 8: Precision of classifying urine particles based on fusion
with SVR, PCA, ISO, and NPE using brightfield data.

SVR PCA ISO NPE

Calcium Oxalate 86.4% 91.8% 56.9% 59.6%
Hyaline 93.0% 100% 60.8% 27.8%

Triple Phosphate 87.2% 90.7% 30.4% 34.7%
RBC 82.0% 82.3% 72.9% 46.7%

Uric Acid 40.0% 61.9% 28.6% 0%
WBC 76.7% 69.0% 45.9% 39.3%

Table 4: Precision of classifying urine particles based on fusion
with SVR, PCA, ISO, and NPE using multispectral data.

SVR PCA ISO NPE

Calcium Oxalate 97.5% 93.1% 92.3% 81.9%
Hyaline 87.7% 82.8% 84.2% 92.0%

Triple Phosphate 86.2% 64.4% 85.0% 77.1%
RBC 98.6% 92.6% 97.14% 95.7%

Uric Acid 80.0% 59.4% 84.0% 67.5%
WBC 88.3% 88.1% 88.05% 95.7%

Table 5: Recall of classifying urine particles based on fusion with
SVR, PCA, ISO, and NPE using multispectral data.

SVR PCA ISO NPE

Calcium Oxalate 92.4% 77.1% 91.9% 95.0%
Hyaline 100% 96.0% 96.0% 92.0%

Triple Phosphate 80.0% 67.1% 72.9% 72.0%
RBC 98.6% 100% 97.1% 92.4%

Uric Acid 70.0% 63.3% 52.5% 73.0%
WBC 97.1% 95.0% 100% 82.7%

Table 9: Recall of classifying urine particles based on fusion with
SVR, PCA, ISO, and NPE using brightfield data.

SVR PCA ISO NPE

Calcium Oxalate 90.5% 80.4% 72.9% 41.4%
Hyaline 80.0% 94.0% 90.0% 74.0%

Triple Phosphate 58.6% 55.7% 40.0% 17.1%
RBC 91.4% 92.9% 72.9% 84.3%

Uric Acid 25.0% 32.5% 10.0% 0.00%
WBC 87.1% 97.1% 20.0% 17.1%

4. CONCLUSION AND DISCUSSION
Microscopic analysis of urinary sediment particles is a

challenging problem exasperated by variations in shape, size,
and texture of individual particles in the presence of noisy
backgrounds. In this paper, we have presented a novel method
for urine particle classification based on the use of local
descriptors coupled with regression based decision fusion.
Specifically, DAISY descriptors have been used to capture
the textural characteristics of each particle and subjected to
dimensionality reduction across three linear subspaces to in-
crease the diversity in decision making along with lowering
the“curse of dimensionality”. Classification in each subspace
is based on computing a similarity score, which is then fused
through support vector regression to obtain a final classifi-
cation. Moreover, the presented approach is applied to both
brightfield and multispectral data to ascertain the benefits
of multispectral imaging for urine analysis. Urine particles
analyzed included crystals, casts and blood cells.

We have tested our algorithm on a dataset of 452 images
and the results obtained show an average classification ac-
curacy of 92.6% for 6 classes of urinary particles. Compared
to brightfield data, this represents an improvement of over
11.0%. Results show that the proposed algorithm and the
use of multispectral information can significantly improve
the classification performance and can aid in the process of
identifying and differentiating various urine particles. This
approach can easily be augmented to support additional fea-
tures, such as those that may capture the morphometry of



Table 6: Classification performance for urine particles based on
fusion with SVR, PCA, ISO, and NPE using brightfield data.

SVR PCA ISO NPE

Accuracy 81.6% 82.1% 55.4% 42.8%
FPR 3.9% 3.8% 9.6% 11.8%
FNR 27.9% 24.5% 49.0% 61.0%

Table 7: Specificity of classifying urine particles based on fusion
with SVR, PCA, ISO, and NPE using brightfield data.

SVR PCA ISO NPE

Calcium Oxalate 93.2% 96.6% 73.6% 86.6%
Hyaline 99.5% 100% 95.1% 84.0%

Triple Phosphate 99.0% 99.3% 89.0% 96.0%
RBC 94.6% 94.5% 92.5% 73.5%

Uric Acid 97.6% 98.7% 98.4% 96.4%
WBC 92.6% 88.0% 93.5% 92.7%

particles. Combination of morphological and local features
can greatly influence the performance of classification. In
addition, Improved segmentation of particles can also boost
the classification system. These are consideration for our
future work.
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