TASOCNN: A Topology Adaptive Self-Organizing Circular
Neural Network and its Application to Color Segmentation

Anandarup Roy

Uk
Swapan Kumar Parui

Utpal Roy

CVPR Unit CVPR Unit DCSS
Indian Statistical Institute Indian Statistical Institute Visva-Bharati University
203 B. T. Road 203 B. T. Road Santiniketan

Kolkata 700108, India
roy.anadarup@gmail.com

ABSTRACT

Topology adaptive neural networks are popular because of
its capability to adopt the underlaying topology of data.
In this paper we develop a topology adaptive self organiz-
ing circular neural network (TASOCNN) model for circular-
linear data sampled from an unit disk. The basic frame-
work uses the TASONN procedure of Datta et. al. [8].
The update rules and the distance measure are reformulated
with the inclusion of directional information. In the itera-
tive TASOCNN process, we create/update edges between
any two winner processors. These edges are weighted, hence
finally a weighted processor graph is created concerning pro-
cessors as vertices. By removing possible inter-cluster edges
from the connected components of this processor graph, a
set of subgraphs can be obtained. For this purpose we use
a cost function based on edge length and strength. Many of
these subgraphs become close to one another. These close
subgraphs are merged. Finally, each subgraph represents a
cluster in the data. We apply TASOCNN for color based
image segmentation. TASOCNN is constructed in the hue-
saturation space. The Berkeley segmentation dataset is used
to present the results. An evaluation is made by means of
probabilistic rand index. Our experiments reveals satisfac-
tory outcome of TASOCNN.

1. INTRODUCTION

Color image segmentation [1] is becoming increasingly im-
portant in many applications since color images are now
easily available and can provide more information than gray
level images. In this article we discuss color based segmen-
tation of images (“Color segmentation” in short). Such color
based segmentation processes consider only the color infor-
mation for image segmentation. In a natural scene, an object
of homogenous color may have different shades (or bright-

*Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICVGIP 10, December 12-15, 2010, Chennai, India

Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

Kolkata 700108, India
swapan@isical.ac.in

Birbhum 731235, India
roy.utpal@gmail.com

ness) due to change in light. If the effects of shade or bright-
ness are not ignored, the object may be segmented into sev-
eral parts according to brightness. This situation leads us to
the study of color based segmentation methods. In this con-
text, the hue-saturation-value (HSV) color system becomes
more suitable than the RGB system, since it separates out
color information. Typically, the hue and saturation com-
ponents together represent corresponding pixel color. Color
image segmentation methods can be roughly categorized
into three groups [2]: (1) clustering based segmentation, (2)
edge or contour detection based segmentation and (3) re-
gion or area extraction based segmentation. In this article,
we apply clustering based segmentation approach. The ba-
sic idea behind this approach is to directly cluster the pixels
in a certain color space by employing some clustering algo-
rithms. Generally clustering approaches may be parametric
or non-parametric. Popular non-parametric approaches in-
clude mean-shift and normalized-cut procedures [3] which
are used quite widely in vision community. In addition, self
organizing structures including Self-Organizing Map (SOM)
[4] and Neural/Growing Neural Gas (NGN/GNGN) [5], are
also studied for clustering. The SOM projects input space
on processors of lower dimensional grid, which can be used
to explore properties of the data. When the number of pro-
cessors becomes large, several clusters may be identified by
grouping similar processors. Vesanto et. al [6] discussed
hierarchical clustering process to group similar processors.
Concerning color image segmentation, Jiang et. al [7] pro-
posed clustering an image with SOM and merging “scat-
tered blocks” [7] to obtain different segments. Datta et. al
[8] proposed a topology adaptive self organizing neural net-
work (TASONN) to generate the skeleton of a pattern. This
model is a dynamic network that grows over time. Their
study showed better performance of TASONN compare to
SOM, NGN and GNGN. The discussions in [8] yields the fact
that the NGN and GNGN model use an edge destruction
procedure to eliminate certain non-relevant edges between
processors. This may cause a sudden loss of information.
The TASONN model, on the other hand, use a strength
measure with each of the edges. The strength increases for
the relevant processors and decreases for others. Several
other advantages of TASONN are discussed in [8].

In this paper we develop a self organizing network for
circular-linear data. This network is termed as TASOCNN.
Its basic structure is motivated by TASONN of Datta et.
al. The update rules are modified to make the processor

weight vectors get updated on an unit disk. A circular-
linear distance is defined to find the neighborhood proces-
sors. Though we present TASOCNN for two dimensional
circular-linear data, the same framework can be easily ex-
tended to multidimensional data. We construct a proces-
sor graph by creating edges between neighborhood proces-
sors. Several connected components are extracted from this
graph by eliminating certain undesirable edges. During this
deletion process we apply a cost function on edge lengths
and strengths. We realize different clusters as different con-
nected components of the processor graph. We perform ex-
periments with Berkeley segmentation dataset which is a
benchmark dataset containing ground truth segmentations.
The comparison is done using probabilistic rand index that
gives a score indicating performance.

2. TASOCNN: DESCRIPTION AND ALGO-
RITHM

Let the input patterns be X = {X1,...,X,»}, in which,
each X is an input pattern on an unit disk D. Each X; =
(61,81), (0 <6; <2m,0 < s < 1;0=1,...,m) is de-
scribed by the angular component 0; and the linear com-
ponent s;. We denote II = {m1,..., 7y} be the set of
processors where n(r) is the number of processors at itera-
tion r. Let the neighborhood of a processor 7; be the set N;
defined as N; = {mp|mp is connected to m;}. The processor
m; is a tuple (6;, s;) describing its position on D. An edge
between two processors m; and 7; is denoted by L;; and is
undirected. Next we give some definitions concerning the
TASOCNN procedure.

Definition 1. By sensitive region of a processor m; we mean
a circle of a given radius centered at the position of ;.
The radius is called the sensitive level.

Definition 2. A processor is said to win if it is the near-
est to the concerned input pattern among all other
processors. That processor is termed as the winner
processor. The second nearest processor becomes the
second winner.

Definition 3. One pass through the input vectors is said
as a phase. Several phases may occur in one iteration
of the algorithm.

Several control parameters of the algorithm are defined as
follows. These parameters are given as inputs to the algo-
rithm.

Sensitive level is denoted by 7 and used to create new
Processors.

Phase Completion threshold is denoted by e. The dif-
ference between previous and current processor set is
tested against € to complete a phase.

Learning rates are denoted by a1 and a2 (0 < a2 < a1 <
1), for first and second winners respectively. Learning
rates are variable unlike 7 and e.

Considering both the linear and circular aspects of the data,
the distance between two input patterns X; = (61, s1) and
X2 = (02, 52) on D, is defined as:

min(|91 — 92|,27|’ — |91 — 92‘)

d(X1, X2) = -

+[s1 —s2]. (1)

In this formulation, the first component is the normalized
circular distance while the second component is the linear
distance. The winners are detected using this distance mea-
sure. In TASOCNN model, for each input pattern, we con-
sider the winner and the second winner processors and up-
date them. Let, after presenting an input X = (0, s) at time
t, the winner processor be denoted by m, = (04, s,) and the
second winner by 7, = (6v, sv). The processors are updated
in both circular and linear directions. Let

Su = agt) sin€ + (1 — oét)) sin 0 and
Cu = agt) cosf + (1 — agt)) cos 0.

In other words, S, and C,, are the sine and cosine compo-
nents of the resultant vector after summing up 6 and 079).
Then the circular update is given by

_ S
Ut — tan™t [2%). 2
u an” | & (2)

Note arctan should take values in the range [0,27). The
update in 60" can be computed in a similar way using update
rate a2. The updates in the linear components s, of m, and
sy of m, with respect to the linear component s of X, are
given as

st = s o (s - s} 3)
s = s b al {s - s (4)

At a time instant ¢ the winners m, and 7, are joined by
an edge Lu,. A strength (., is associated with every such
edges. Initially all strengths are zero. During iterations the
strengths are updated as follows.

1
(t+1) _ (1) (1_ (t)). 5
/B’U/U uv + t+ 1 uv ()
For all other edges,
@+ _ bt oaw
ﬂi]' - 15—!—71/8” ’ (7".7) 7& (ua U)' (6)

Based on the above descriptions we now detail the precise
steps of the TASOCNN algorithm.

Initialization: Initially IT = ¢. The control parameters—
T, aﬁo), aéo) and e are given by the user. The input

pattern X, (¢t = 1), is presented for processing.

Processor creation: A new processor mpe. is created if
II = ¢ or X; is not inside the sensitive region of any
processors. The new processor is placed at the position
of X;. Also II is redefined as IT = IT U {7rpew }-

Winner detection: The winners are defined as in defini-
tion 3 and detected using equation 1. The second win-
ner may not exists.

Construct or update edge: If the second winners does
not exist go to next step, otherwise join the first and
the second winners (7, and m,) by an edge Ly,. If
the edge is newly created then its strength S, is zero.
Otherwise By of Ly is updated according to equation
5. All other strengths are updated using equation 6.

Processor update: The winner processors are updated by
applying the update rule with respect to the data pat-
tern X;. If the second winner doesn’t exists only the
first winner is updated.

Sweep: Set t =t + 1 and thus present the next input pat-
tern. Continue till all the input patterns are presented.

Phase Completion: After sweep ts if no new processor is
created and |TI(¢ts) — II(¢s—1)| < € then the current
phase is completed. Otherwise start a fresh sweep (i.e.
present X’ again). Only after a phase the learning rates
a1 and ay are subjected to a decay function. At time

ts the learning rate agt‘*) and ozém are computed by

0
o

1 1 ts

+ 56
0
alt) — ay”

2 = 115

+ 36

Processor insertion: The processors are inserted only af-
ter a phase is completed. If the termination condition
is not met, a processor is inserted between the two
neighborhood processors 7, and 7, where the edge
Ly between 7, and 7/ has maximum strength. Fur-
ther start a new iteration with X and the modified set
of processors.

Output: After termination, the output of TASOCNN is
a processor graph G(V,E) where V = II and E =
{Li]"ﬂ-ivﬂ-]' €Il Vi # .7}

The termination condition is set as follows. Our application
of the TASOCNN is to cluster the dataset X. If we con-
sider each processor as one cluster, then a handful of data
must be present in the Voronoi polygon of each processor.
If a certain number of data samples are not present in the
Voronoi polygon of all processor we may conclude that the
maximum number of processors are reached and terminate
the algorithm.

3. PROCESSOR GRAPH CLUSTERING

After completion of TASOCNN iterations, the processor
graph formed by joining the processors, represents the clouds
in the input data. We assume, the processor graph reflects
the properties of the input space. Thus, the clusters found
from the processor graph should be close to those found from
the data directly. Initially, let the connected components of
the graph, correspond to different clusters. We term the
edges among the processors of such a connected component
as intra-cluster edges. When the clusters are far apart, the
connected components are self contained in the sense only
intra-cluster edges are present with no inter-cluster connec-
tions. Then clustering can be done simply by picking the
connected components of the processor graph. Situations
become difficult when some clusters are close enough or even
overlap. Then the components for two or more clusters are
connected by the inter-cluster edges. This is a more general
scenario. We even obtained a single connected processor
graph in many of our experiments. In this situation clusters
can only be found by properly de-linking the components
by removing the inter-cluster edges. We here define a cost
function that puts a limit when we are removing edges. How-
ever, experiments shows, we may remove too many edges,
thus obtaining more clusters than necessary. So a graph
merging procedure is performed to merge certain connected
components i.e. subgraphs obtained after edge removal pro-
cess. This procedure is based on spectral distance measure

between subgraphs. Concerning literatures, our method has
a resemblance to graph partitioning based clustering meth-
ods. These methods take the data points to represent the
vertices of a graph G. An edge is used to join two data
points (vertices) if they are neighbors, given a pre-defined
neighborhood system. Graph partitioning methods involve
partitioning criteria such as the min-cut algorithm [9]. The
criteria are used to find mutually exclusive subgraphs by re-
moving edges from G. These subgraphs correspond to the
clusters. Here, we can say, the processors can correctly rep-
resent the image. In other words, each of the processors can
be a representative of the pixels that lie inside its Voronoi
polygon. Now considering the processors instead of origi-
nal image pixels, we may employ a graph based clustering
method. The edges are, however, defined during TASOCNN
procedure. An edge between two processors has a weight
that decides the connection strength of the two correspond-
ing processors. Since the processors at the high density ar-
eas of the data cloud win frequently, it turns out that the
edges among such processors have more weight than other
edges. We could obtain subgraphs by removing the weak
edges. These resulting subgraphs may successfully represent
the clusters. These weak edges are actually the inter-cluster
edges mentioned earlier. This approach is followed by a sim-
ple subgraph merging procedure to merge close subgraphs.
The processor graph partitioning criterion is based on two
basic properties of the edges: the edge strength and the edge
length. A large number of edges are removed based on these
two properties. Hence, in general the number of subgraphs
become larger than necessary. The merging procedure in-
tends to merge “close” subgraphs by applying a “closeness”
criteria. In the following subsections, we describe the edge
removal and subgraph merging methods.

3.1 Inter-cluster edge removal

We, at first, isolate the connected components of the pro-
cessor graph. Each component is examined separately to
remove the inter-cluster edges. For this purpose, we con-
sider the strengths of the edges. Our study reveals, most of
the intra-cluster edges have greater strength than the inter-
cluster edges. Thus, if we remove edges with less strengths,
the inter-cluster edges are expected to be removed. Yet,
considering only the edge strength gives insufficient infor-
mation. Also, it is not easy to find the threshold between
less and greater strength edges. Hence, we further consider
the lengths of different edges. We observe, the inter-cluster
edges having greater length compere to the intra-cluster
edges. This is justified, since more processors are inserted
in the portion with high data density, i.e. within a certain
cluster. According to the insertion process, each insertion
shorter the edge length. Thus, if we remove the long edges
we may end up to a desired processor graph representing the
clusters. Again, considering only the edge lengths may not
produce the proper solution. A better approach may be to
consider edges along with their strengths. In this context, we
observe a relation between edge length and edge strength.
The inter-cluster edges are mostly longer and having less
strength than the intra-cluster edges. During edge creation
a longer edge may be created between two processors far
enough. However, the strength of that edge gradually de-
crease according to edge update process. This is because
the chance of the two corresponding processors to become
winners is less after inserting more processors. So, the above

relation is justified. Let us denote an edge between m; and
by Lij = (Lij, Bij) with length [;; and strength 3;; (both nor-
malized). The length here is measured in the hue-saturation
space. We define a cost function g as:

9=> lj—Y_ Bi)
i, i

The function g actually defines the effect of strength on the
edge lengths. We remove the edges in an increasing order of
strengths, so first we delete the edge with smallest strength.
Consequently, we hope to remove the longest edge. We do
this iteratively until we reached at some pre-defined point.
With equation 7 the iterative process can be described as:

g = > li—) Bi
i ij

g1 = gt — Lij, st Liy = (Lij, Bis),
where 8i; < Bpq, Y(p,q) # (i,).

After the removal of possible inter-cluster edges we end up
into a set of M subgraphs GM = {G;|i = 1,...,M}. We
consider each subgraphs as a separate cluster. Thus a to-
tal of M clusters are obtained with this process. Note, a
set of isolated processors may be produced by the edge re-
moval process. We ignore isolated processors and eliminate
them from the set of final processors. Another implementa-
tion issue arise here. The processor graph, if complete, have
TI|(|TT|—1)/2 edges, which is a large number (of O(|TI|?)). In
practice, however, the processor graph does not become ex-
actly complete, yet contains a large number of edges. Many
of these edges have a minimal strength and removed in the
first few iterations of the edge removal process. We take
an attempt to rigorously eliminate these edges based on a
threshold on minimum edge strength. This speeds up the
edge removal process.

3.2 Merging subgraphs

After obtaining M subgraphs we may connect each sub-
graphs to a separate cluster. However, the edge removal
procedure tends to produce more subgraphs than the total
possible number of clusters. Hence we next design a proce-
dure to merge several subgraphs to obtain a subgraph that
originally represents a cluster. The merging procedure is
applied to the subgraphs Gi,...,Ga of GM till a pair is
found to merge. In each iteration, the two subgraphs hav-
ing minimum distance are merged. The distance between
two subgraphs G; and Gj is defined as follows.

d(G“ G]) = ﬂ'LEGI?,%ﬁeGj d(ﬂ'i, TI'j)

where, d(m;, ;) denotes the distance between processors 7;,
m; and can be computed using equation 1. In other words
the distance between two subgraphs is the maximum dis-
tance between all pair of processors from the two subgraphs.
This distance and the corresponding merging procedure re-
semblance to complete linkage principle. Certainly, another
way is to define the subgraph distance to be the minimum
of the pairwise processor distances. This method is similar
to single linkage principle. We apply both the two meth-
ods and compare their outcomes by means of an evaluation
measure. For both the merging methods, the choice of dis-
tance threshold that controls the merging is important. The
distance threshold puts a bound on the distance among sub-
graphs. Too large the threshold results too less number of

final subgraphs. In effect we have only a few clusters. On
the other hand too small the threshold may results large
number of clusters while many of them are undesired. Here,
the distance threshold is found empirically.

4. EVALUATION OF SEGMENTATION

In order to qualify the segmentation algorithm we have to
compare the resulting clusters with some ground-truth seg-
mentations. The evaluation of segmentation has become an
issue of interest since ages. As a result, a number of mea-
sures have been proposed for an objective evaluation of a
segmentation algorithm. In 2003, Martin [10] designed sev-
eral error measures to quantify the consistency between im-
age segmentations of differing granularities, and used them
to compare the results of normalized-cut algorithms to a
database of manually segmented images. Recently, Unnikr-
ishnan et. al. [11] proposed a Probabilistic Rand (PR) Index
which is a generalization of a classical non-parametric test
known as Rand Index [12]. Besides the examples described
by Unnikrishnan et. al., more recently, the PR index is ap-
plied to evaluate a color segmentation procedure designed
by Ilea and Whelan [13]. The PR index allows comparison
of a test segmentation with multiple ground-truth images
by evaluating the pairwise relationships between pixels. In
other words, the PR index measures the agreement between
the segmented result and the manually generated ground-
truths and takes values in the range [0,1], where a higher
PR value indicates a better match between the segmented
result and the ground-truth data. In this study we use the
PR index (PRI) to evaluate the segmentation process. Con-
cerning study of image segmentation evaluation, a number of
unsupervised methods has described by Zhang et. al. [14].
These unsupervised methods can perform objective evalua-
tion without having human visual comparisons or compari-
son with a manually-segmented reference image.

5. COLOR SEGMENTATION: RESULTS
AND DISCUSSIONS

Color segmentation considers only the color information
for image segmentation purpose. Color information is pre-
sented by hue and saturation values of an HSV image. Hue
and saturation values together represent a point on an unit
disc, therefore suitable for TASOCNN.

The results are presented on Berkley segmentation dataset
[15]. This dataset contains several color images along with
human segmentation results. Each image has an unique Id.
The images contain at least one distinguishable thing i.e.
identifiable object embedded in a natural scene. Some ex-
ample images are shown in Fig. 1. The images we consider
have ground-truth in the form of manual segmentation by
humans. These manual segmentations are performed by sev-
eral users independently. So, the number of clusters differs
from user to user. The ground truth have only components
information. A single cluster may have several components.
Since this information is missing, we consider each compo-
nent a single cluster. The manual segmentation is done
mostly based on human perception, rather than on some
computable features like color and texture. Martin et. al.
[15] prepared this dataset and used it to evaluate the per-
formance of segmentation algorithms and measuring proba-
bility distributions associated with Gestalt grouping factors
as well as statistics of image region properties.

Figure 1: Examples of images from the Berkeley
segmentation database [15]. Image Ids are (from top
left to right) “161062”, “24063”, “376020”, “291000”,
“100075” and “113044”.

5.1 Color segmentation results

Let us consider the “161062” image. This image contains
an identifiable pyramid object. The data cloud for this im-
age in the hue saturation space is presented in Fig. 2(a).
After applying the TASOCNN procedure, we obtain the pro-
cessor graph as displayed in Fig. 2(b). Here the dots are the
processors and edges are shown by black lines. This proces-

Figure 2: (a) The data cloud of “161062” image in
hue saturation space and (b) the initial processor
graph for “161062” image.

sor graph initially gives a total of 16 connected components,
hence, 16 clusters. Before performing the TASOCNN clus-
tering, we choose a threshold 0.0001 and the edges having
weight less than this threshold are removed. Now, let us
go through the TASOCNN clustering process. The inter-
cluster edges are eliminated using the cost function defined
in section 3. After this procedure many of the processors
become isolated, so removed. We finally obtain a modified
processor graph as shown in Fig. 3(a). Note, during the
edge removal process the initial 16 clusters remains intact.
The edge removal procedure can only increase the number of
clusters. However, it generates several isolated processors.
After removing isolated processors the number of clusters
may be less than initial clusters. Here, we get a total of 18
clusters after edge removal process. In other words, we have
18 subgraphs in our modified processor graph.

Now certain close subgraphs are to be merged. We set the
distance threshold to be 0.4 that is found empirically. So any
two subgraphs, at most 0.4 unit apart in spectral space, are
considered to be close. We here have two different merging
strategies. The single linkage principle takes the minimum
distances among the processors to be the subgraph distance.

The resulting set of graphs are shown in Fig. 3(b). The
other one, which takes the maximum of the distance among
processors to be the subgraph distance, results the processor
graph as presented in Fig. 3(c). This procedure is similar to
complete linkage principle. Here, the threshold 0.4 is used
only with the complete linkage principle. Too few clusters
(often one) are produced if we use the same threshold for
single linkage principle. So, we make another experiment
with the images and found 0.2 be a suitable distance thresh-
old for single linkage based merging principle. We get 6

Figure 3: (a) The processor graph after removing
inter-cluster edges. (b) After performing single link-
age based and (c¢) complete linkage based subgraph
merging.

clusters for single linkage based merging, whereas 4 clusters
are produced by complete linkage based merging procedure.
The results after performing subgraph merging are displayed
in Fig. 4. The boundary of each connected component is
marked in black. Here, we perform a 3 X 3 median filter-
ing on the clustered images to remove certain perturbations.
Observe, we have the boundary of the pyramid object, seg-

= T T -

@ ‘ ®)

Figure 4: The clustering results after performing (a)
single linkage based and (b) complete linkage based
TASOCNN clustering.

mented into a separate cluster with the single linkage prin-
ciple clustering. In contrast, it remains with the pyramid
with complete linkage principle. In Fig. 5 we present some
more results of color segmentation. In the images of Fig.
5, we may observe, several small connected components ex-
ists that are spatially close. These components belong to
different spectral clusters. These components are produced
since the spatial information is not considered during any
stages of TASOCNN. Such spatially close components can
be merged to form a large component by applying an appro-
priate merging procedure. However, we here we leave any
spatial merging for future consideration.

5.2 Evaluation of segmentation and compari-
son

The evaluation is done with respect to the set of ground

truth images. We again take the example image “161062”.

Table 1: Rand Indices for image Id. “161062” using (a) different TASOCNN clustering procedures and (b)

using two other clustering algorithms.

User Id . User Id
Clust
Methods \49GgT1i5 71121 [1123 T1124 | T || ‘methods [1109 [1115 [1121 [1123 [1i2a| L 4
L?;rl‘{galge 0.851 | 0.851 | 0.848 | 0.843 | 0.612 | 0.801 || K™ | 750 | 0.779 | 0.778 | 0.775 | 0.541 | 0.731
Complete | 29 1 0.859 | 0.856 | 0.851 | 0.620 | 0.809 || YM-Gauss | o214 | o714 | 0.711 | 0.706 | 0.470 | 0.663
Linkage mixture

(a)

iﬁk, P S P \réﬁ .- IS M - B

Figure 5: TASOCNN based color segmentation re-
sults. Single linkage and complete linkage based
clustering results are in the first and the second col-
umn respectively.

(b)

Both the single linkage based and the complete linkage based
results are evaluated by means of PRI. To analyze, let us
observe the evaluation results for the five users, manually
segmented the image. In table 1(a) we present the evalua-
tion results for both type of TASOCNN clustering methods.
Each cell in table 1 displays the rand index value for the
concerned user. The last column presents the PRI, which
can be expressed as an average of rand indices. To make
a comparison, we present in table 1(b), the evaluation re-
sults after applying K-means and the vM-Gauss procedures
both in the hue-saturation space. The K-means is performed
using the same number of clusters as obtained from the com-
plete linkage based TASOCNN clustering procedure (i.e. 4
in this case). The vM-Gauss mixture model was proposed
by Roy et. al. [16]. Unlike K-means, this is a paramet-
ric procedure of clustering. vM-Gauss procedure assumes
that hue-saturation information can be approximated by a
mixture model of von-Mises and Gaussian joint distribu-
tions. The widely used Expectation Maximization algorithm
is applied to estimate mixture parameters. The well-known
Schwarz’s Bayesian inference criterion (BIC) is used to pre-
dict the number of clusters.

According to table 1 we could note, the K-means gives
better PRI than the vM-Gauss parametric clustering proce-
dure. Also it gives better rand indices for all the users. How-
ever, the TASOCNN procedure seems to outperform both
K-means and vM-Gauss mixture model. Before discussing
further, we observe the performance results for some other
images. In Fig. 6 we present the performance of complete
linkage based TASOCNN clustering, the K-means using the
same number of clusters as in TASOCNN and the vM-Gauss
mixture model predicting number of clusters independently.

From Fig. 6 we could observe that K-means as well as
the vM-Gauss model performs better than TASOCNN for
the image Id. “113044”. For other images, TASOCNN
seems to outperform the vM-Gauss mixture model. To un-
derstand the relative performances of TASOCNN and vM-
Gauss model, let us construct a synthetic dataset having
two clusters. The data distribution of the two clusters are
shown in Fig. 7. Here, one cluster (let C) is displayed
in red while the other (C2) in blue. The data in cluster
C, are negatively correlated, whereas positive correlation is
present among data in C2. The vM-Gauss mixture model
[16] assumes that hue and saturation are independent ran-
dom variables. This may not be true always. When, highly
correlated data are subjected to vM-Gauss mixture model,
it may not correctly predict the number of clusters. As for
our synthetic dataset, a total of 7 clusters are predicted ac-
cording to the first local minima of the BIC criterion. The
plot of BIC values is shown in Fig. 7(b). The TASOCNN,

§ _ N
NS
7
N
R
S N
\ R
N
NS
3
N
N
XY
o
RRRY RN
N
XY
5y
T T T
37602 29100 10007 11304
Image Id

‘ TASOCNN 77 K-means [[[] vM-Gauss

Figure 6: Performance comparison of three algo-
rithms with respect to PRI.

Figure 7: (a) The Synthetic dataset consisting two
clusters and (b) the BIC curve after applying vM-
Gauss mixture model.

Figure 8: (a) The clusters produced by TASOCNN
and (b) vM-Gauss mixture model on the synthetic
dataset.

on the other hand, can estimate the number of clusters al-
most correctly and generating 3 clusters. The edges inside a
cluster have enough strength. Some of the edges connect the
processors situated in the two different clusters. These edges
become weak and removed. The portion where C1 comes in
contact with C2 have processors representing data in both
clusters. This portion is separated into a single third clus-
ter during TASOCNN clustering procedure. The clusters
obtained by TASOCNN and vM-Gauss mixture model re-
spectively are shown in Fig. 8(a) and Fig. 8(b). Even from
the theoretical point of view, it is clear that TASOCNN can
take care of correlation between hue and saturation while
vM-Gauss mixture model cannot.

Continuing our experiments with Berkeley segmentation
dataset, we observe, in most of the cases the TASOCNN
outperforms the vM-Gauss procedure. The K-means algo-
rithms, however, has a similar motivation as TASOCNN and
can compete with TASOCNN in some cases.

6. SUMMERY AND FUTURE SCOPE

In this paper a variation of TASONN, namely, TASOCNN
for circular-linear data is developed. The TASOCNN in-
cludes circular-linear updates and a circular-linear distance
computation. A processor graph is constructed by connect-
ing neighborhood processors of a data point. The different
clusters of the data can be realized from the components of
the processor graph. These components may be connected
with inter-cluster edges. They are made disconnected by
eliminating the inter-cluster edges by minimizing a cost func-
tion. The final set of connected components correspond to
different clusters. The TASOCNN is applied on the prob-
lem of color based image segmentation. Some initial results
are presented here. We compare TASOCNN with K-means
and vM-Gauss mixture model. From the experiments done
here, TASOCNN seems to outperform both K-means and
vM-Gauss mixture based clustering. Though in our initial
experiments we got satisfactory results, a close and elabo-
rated study is needed in this direction. Issues concerning
the TASOCNN include choice of learning parameters. An-
other critical issue is the choice of a suitable cost function.
The current cost function may sometimes fail to produce a
satisfactory result. From the results given in Fig. 5, it is
evident that a good post-processing method may bring the
results closer to the ground truth images. Concerning com-
parison, we should use more sophisticated and widely used
procedures such as mean-shift or graph based clustering.

7. REFERENCES

[1] H. D. Cheng, X. H. Jiang, and J. W. Y. Sun. Color
image segmentation: advances and prospects. Pattern
Recognition, 34, 2259-2281, 2001.

[2] J. Lee, J. Wang, and C. Zhang. Color image
segmentation: Kernel do the feature space.
Proceedings of the 14" European Conference on
Machine Learning, 253—264. Springer, 2003.

[3] W. Tao, H. Jin and Y. Zhang. Color image
segmentation based on mean shift and normalized
cuts. IEEE Trans. on SMC(B) 37(5), 1382-1389, 2007.

[4] T. Kohonen. Self-Organizing Maps. Springer-Verlag,
2001.

[5] T. M. Martinetz and K. J. Schulten. Topology
representing networks. neural networks. Neural

[12]

[13]

[14]

[15]

Networks, 7, 507-522, 1994.

J. Vesanto and E. Alhoniemi. Clustering of the
self-organizing map. IEEE trans. on Neural Networks,
11(3), 586—600, 2000.

Y. Jiang, K. J. Chen, and Z. H. Zhou. Som based
image segmentation. Lecture Notes on Computer
Sciences (LNCS), 2639, 630-643, 2003.

A. Datta, S. K. Parui, and B. B. Chaudhuri.
Skeletonization by a topology-adaptive self organizing
neural network. Pattern Recognition, 34, 617-629,
2001.

Z. Wu and R. Leahy. An optimal graph theoretic
approach to data clustering: theory and its
application to image segmentation. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(11),
1101-1113, 1993.

D. R. Martin. An Empirical Approach to Grouping
and Segmentation. PhD thesis, EECS Department,
Univ. of California, Berkeley, 2002.

R. Unnikrishnan, C. Pantofaru, and M. Hebert.
Toward objective evaluation of image segmentation
algorithms. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 29(6), 929-944, 2007.

W. M. Rand. Objective criteria for the evaluation of
clustering methods. J. Am. Statistical Assoc., 66(336),
846-850, 1971.

D. E. Ilea and P. F. Whelan. Ctex-an adaptive
unsupervised segmentation algorithm based on
color-texture coherence. IEEE Trans. on Image
Processing, 17(10), 1926-1939, 2008.

H. Zhang, J. E. Fritts, S. A. Goldman. Image
segmentation evaluation: A survey of unsupervised
methods. Computer Vision and Image Understanding,
110, 260-280, 2008.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A
database of human segmented natural images and its
application to evaluating segmentation algorithms and
measuring ecological statistics. Proc. Int Conf.
Computer Vision, pages 416—423, IEEE Computer
Soc., 2001.

A. Roy, S. K. Parui, and U. Roy. A color based image
segmentation and its application to text segmentation.
In Proc. of Indian Conference on Computer Vision,
Graphics and Image Processing, pages 313-319, IEEE
Computer Soc., 2008.

