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ABSTRACT
In the context of automotive driver assistance, we focus on
the problem of simultaneous localization and object detec-
tion considering a video sequence acquired by an on-board
camera. This paper presents an original approach permit-
ting localization and object detection by using coarse resolu-
tion images. It is based on an a-contrario model previously
introduced for land cover monitoring using remote sensing
data. Applied to the problem of detecting scene changes
from the acquisition of a video sequence from an on-board
camera, we show that such an approach permits to detect
appearing objects even when the illumination and the ge-
ometry of the scene vary, and this in a much more robust
way than keeping full resolution data. Results obtained in
the context of real data acquired using a frontal camera on-
board a car illustrate these statements.

1. INTRODUCTION
One of the major applications of on-board automotive

driver assistance systems is to alert the driver about driv-
ing environment events and possible collision with obsta-
cles (other vehicles, pedestrian, etc.). In this context, Ad-
vanced Driver Assistance Systems (ADASs) are able to pro-
vide more and more precise information to the driver [15, 12,
3], such as the road position, the distance to other vehicles
[26], the presence of pedestrians on the road [11, 10, 6]. Part
of this information can be derived by simple sensors (such as
radar or lidar) providing estimations of the obstacle/vehicle
distance). Their main advantage is that they allow measure-
ments (e.g. distance) without requiring powerful computing
resources. However, their spatial resolution is generally low,
leading to detection failure when the number of targets to
detect is large typically.

Besides, vision-based systems allow to derive various types
of information using a single sensor (or double in case of
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stereovision). For instance, obstacles can be detected as well
as horizontal or vertical road signs (e.g. road surface mark-
ings or traffic signs) by using a frontal on-board camera.
For such systems, stereovision provides information on the
distance to the objects present in the scene. For instance,
the GOLD system [18] addressed both lane and obstacle de-
tection at the same time by using stereovision. Stereovision
methods are based either on disparity maps or on inverse
perspective mapping, or on a combination of both [2]. In
all cases, their computational cost is important. For in-
stance, the computation of a disparity map requires to solve
the matching problem in every pixel and its complexity can
even be increased in case more than two cameras are being
used [21].

Some methods are motion-based, using optical flow com-
putation (e.g. [1]). They are capable to distinguish moving
objects all the more easily so as this movement is different
from the global scene movement (due to the vehicle move-
ment). Thus, a strong drawback of these methods is that
they would not detect stationary obstacles. Finally, some
other methods are based on specific features present in the
researched objects: symmetry [14], color or shadow, verti-
cal or horizontal edges [25, 19]. In [6], the authors distin-
guish six main steps for pedestrian detection: (i) preprocess-
ing; (ii) foreground segmentation; (iii) object classification;
(iv) verification/refinement; (v) tracking; and (vi) applica-
tion. The preprocessing step includes camera calibration
and extrinsic parameter updating. Then, foreground seg-
mentation aims at extracting ‘Regions Of Interest’ (ROI). It
can either be 2D-based or, preferentially, stereo-based com-
bined possibly with other information, e.g. Thermal Infra-
Red imaging [13], or motion analysis [9]. The two follow-
ing steps are even more specific to the pedestrian detection:
object classification for instance uses silhouette matching or
appearance measured through various descriptors, e.g. Haar
wavelets [22] or histograms of oriented gradients [17], that
are the SIFT-inspired features. The most used classifica-
tion approaches are supervised ones (database learning) and
based on SVM (Support Vector Machines) and AdaBoost.
Then, as a complement to the previous classification step,
the verification step aims at removing false positives whereas
the refinement one aims at obtaining a fine segmentation of
the pedestrian and an accurate distance estimation. Track-
ing is generally done via a Kalman filter or a particle filter.
Its interests are related to the other steps, e.g. removing
remaining false positives, predicting next ROI, decision at
the application level.



This study is motivated by the creation of a vehicle em-
powered with an autonomous system allowing self-positioning
in a learned environment and the detection of changes aris-
ing in this environment (in particular, the arrival of new ob-
stacles). Therefore, relatively to the motion-based approach
described earlier, in this paper we focus on the ‘extraction
of ROI’ step. More precisely, we consider a vehicle with an
on-board camera acquiring a video sequence as it is moving
and a reference image sequence of the same route without
”obstacles”(refered to as ‘learning image sequence’ in the fol-
lowing). Given a newly acquired image at time t, our goal is
to identify the closest image in the learning image sequence
and then to detect the actual changes between this new im-
age and the learning sequence. We refer to this problem
as SLOD, as the acronym of Simultaneous Localization and
Object Detection (as opposed to the SLAM acronym of Si-
multaneous Localization And Mapping). A similar problem
has also been considered by Wang et al. [5] for robotics, as-
sociating SLAM with object tracking. However, they focus
on the motion modeling of a robot and generalized objects,
whereas we focus on the detection of objects encountered
along the route of the vehicle.

More precisely, as the newly acquired sequence might dif-
fer from the learning sequence of reference, our main prob-
lem here is to detect changes that are due to the emergence
of a new object when various other changes attributed to a
”normal variability” are likely to occur also, due to changes
in acquisition conditions (illumination and geometry). To
that aim, first, we propose to lower the spatial resolution of
the learning sequence in order to filter minor changes (e.g.
leaves in the trees) and to quantify the newly acquired im-
ages for robustness to changes in illumination conditions.
Then, the most significative changes will be detected by us-
ing an a-contrario criterion to evaluate the consistency be-
tween a new quantified -but high spatial resolution- image
(QHR) and each low spatial resolution image (LR) of the
learning sequence.

In Section 2, the choice of using a LR learning sequence
as well as a QHR image is further explained and motivated
through synthetic examples. Then, Section 3 details the
model used for the SLOD problem which ensure a control of
the average number of false detections. Section 4 states the
algorithm before some results are shown in Section 5 through
examples using actual data acquired by an on-board camera.
Finally, Section 6 gathers the conclusions and perspectives
of this study.

2. PROPOSED APPROACH
The cornerstone of our approach stands in lowering the

resolution of both the learning sequence (spatially) and of
the new image (in grey-levels, by quantification) for robust-
ness and computation time purposes. In this section, we ex-
plain the reasons of this choice and illustrate them through
several simple examples which characterize typical improve-
ments obtained by using an image quantification and lower-
ing the spatial resolution.

The acquisition conditions of the learning sequence may
differ from those of the image at instant t as both the illu-
mination conditions and the geometry of acquisition change.
Most methods in the literature cannot handle that type
of situation and come up with false detections (detections
that do not correspond to actual changes). To avoid such a
drawback, we suggest to introduce a tolerance to changes in

grey-levels by adopting a class-based comparison instead of
a greyscale-based one.

Let us illustrate typical drawbacks of a greyscale-based
approach through the simple example shown in Figures 1,
2, 3. Different types of changes are present in these three fig-
ures: some grey-level changes that appear within an object
are not to be detected whereas the changes that correspond
to the arrival of a new object (e.g. square about in the center
of the image, in this synthetic example) must be detected.
This latter type will be referred to as an actual change in
the following. Figure 1 illustrates the different type of errors
(false negatives and false positives) obtained typically when
processing the images at a grey-scale level (without quantifi-
cation). Other authors have proposed to consider the image
edge information (e.g. [25, 16, 7]). Such an approach is il-
lustrated in Figure 2 together with its sensitivity to image
noise.

(a) t = 1 (b) t = 1 with noise (c) Abs. diff.

(d) t = 2 (e) t = 2 with noise (f) Opt. thresh.

Figure 1: Detection of an appearing square in syn-
thetic images 16× 16: figures (a) and (d) correspond
to the state of a scene resp. at time t = 1 (with
grey-level values in {20, 100, 180, 255}) and t = 2 (with
grey-level values in {20, 60, 100, 180, 220}). Notice the
appearing square and the change of grey-level val-
ues; images (b) and (e) are simulated resp. from (a)
and (b) by using a Gaussian noise of standard devi-
ation equal to 15; (c) shows the absolute difference
image (|(e)− (b)|) and (f) results from the “optimal”
thresholding of (c). Note that the actual change
(square) is only partly detected due to grey-level
conflicts and that the bottom rectangle is improp-
erly detected.

Now, to introduce the idea of a class-based approach, the
third raw of Figure 2 shows the result obtained considering
a QHR image with four levels of quantification instead of
the 255 grey levels. Let us remark that the result has been
improved a lot simply by using image filtering and quantifi-
cation. However, the edge binary difference is not trivial to
interpret in term of scene changes. Hence, we rather adopted
a region-based approach, following Robin’s idea [23] where
a classification image is used to infer the structure of the
image. Following this approach, the grey-level values are
not important per se but relatively to the average grey-level
values of other classes. Thus, the detection process is ro-
bust to changes of illumination (e.g. due to an automatic
re-calibration of the camera) that would affect all grey-level
values of the image.

As announced in Section 1, in this paper any ‘new’ image



acquired at time t will be quantified using k levels, assimi-
lated to classes in the following. Relatively to an approach
that only considers edges, this adds the constraint for the
different objects of a same quantification class to be rep-
resented by a same value of quantification at each of the
considered dates (but this value may varies between the two
dates).

Figure 2: Binary images of edges of size 16× 16 (ob-
tained using a morphological gradient and tuning
the threshold for edge detection) resp. acquired at
t1 (1st column) and t2 (2nd column) and binary dif-
ference of the edge images (3rd column); 1st raw:
synthetic images; 2nd raw: simulated images assum-
ing a Gaussian noise of standard deviation equal to
15; 3rd raw: quantified images on 4 levels. We note
that edge-based approach fails as soon as the noise
level is too important. Due to the image filtering
and simplification, a better result is obtained using
only few levels of quantification.

Having explained the interest of image quantification and
of a classification-based approach, let us now illustrate the
interest of a LR learning sequence, through the synthetic
example presented Figure 3. Here, in order to separate the
sources of errors, we ignore changes in illumination condi-
tions but misregistration errors have been introduced. Hence
two images acquired at time t1 and t2 have the same levels
of quantification but the image at t2 is 1/4 pixel shifted rel-
atively to the image at t1. It appears clearly that the false
positives that are present using full resolution images disap-
pear by applying a spatial resolution reduction of factor 2×2
to the initial images. In the following, we perform both im-
age transformations: intensity quantification and reduction
of the spatial resolution (by window averaging), but each
separately on a different image:

• The ‘new’ image acquired at time t is quantified into
k levels (or classes). Then, the algorithm estimates
automatically the grey-levels characterizing each class
by using the values of the learning sequence (using the
a-contrario criterion described in Section 3). The im-
age comparison will then be based on the consistency
of the classification induced by the quantification rel-
atively to the images of the learning database.

(a) (b) (c)

(d) (e) (f)

Figure 3: Case of misregistration: images 16 × 16
resp. acquired at time t1 (a) and t2 (b), where a
square appeared in (b) together with a 1/4 pixel shift
relatively to t = 1; (c) shows the absolute difference
|(b)− (a)| and (d) the result of the ‘0−false negative’
thresholding; (e) shows the absolute difference be-
tween grey-level pixel values of the 2 × 2−reduced
images and (f) the ‘0−false negative’ thresholding
result. Notice that the shift that is wrongly de-
tected in (d) is no longer detected in (f), showing
the potentiel of using a reduced spatial resolution
to be robust to slight misregistration.

• The reduction of the spatial resolution is performed on
the images of the learning sequence. Then, the spatial
transformation between a ‘new’ image and its ‘closest’
image in the LR learning sequence is approximated by
a translation. Such an approximation is,at the same
time, reasonable since we can search for a position of
an acquisition viewpoint in the learning sequence that
would be close to those considered at t and coarse if
the route followed by the vehicle is not parallel to the
one of the learning sequence. Therefore, comparing
with LR images leads to some robustness relatively to
noise registration (in addition to an interest in term of
management of the memory resources).

In summary, our approach is based on the two following
ideas: firstly, the transformation of the acquisition condi-
tions can be estimated only roughly and, secondly, the im-
precision on the previously mentioned transformation can
be partly ‘filtered’ by considering some images with lowered
precisions both spatially and in intensity. In other words,
the fact to consider lowered resolution allows to introduce
some ‘fuzzyness’ in the image models.

3. MODEL
The proposed model comes from a previous study per-

formed in the context of unsupervised sub-pixel change de-
tection using time series of satellite images [23, 24]. In this
latter work, a high resolution classification image is used as
a description of the reference state of the scene and a LR se-
quence of images is used to monitore the changes along with
time. A consistency measure has been introduced between
the classification and the sequence, permitting an estima-
tion of the image sub-domain where the LR sequence cor-
responds significantly to the classification of reference while
controlling the average number of false alarms. The esti-



mated change domain is then directly obtained by taking the
complementary part of the latter image sub-domain. Notice
that in [23, 24], all images correspond to the same scene and
are assumed to be perfectly registered. One major property
of this consistency measure is that its value can be compared
and interpreted for different images or data sets. Indeed, it
corresponds to an expectation which, conversely to a prob-
ability measure, can be interpreted in itself. Here, the scene
is no longer static as we consider a moving camera. Thus,
our goal is now to detect appearing objects in a ‘moving’
background. In this context, this method presents the no-
ticeable advantage of allowing to measure the consistency
of different images even though they are not superimpos-
able, and to compare the levels of consistency of each pair
of images thanks to the previously mentioned property of
the expectation. In this paper, as introduced in Section 2,
we aim at comparing a LR image sequence with a QHR im-
age. As in [23, 24], we propose to measure the degree of
consistency between the image at an instant t and the im-
ages of the learning sequence that have been acquired ear-
lier, thus with different acquisition conditions -lightning or
geometrical- (e.g. from different viewpoints if the vehicle is
positioned differently on the road, at different hours of the
day or with a different weather). More precisely, we sug-
gest to search the LR image in the learning sequence that
is the most ‘consistent’ with the QHR image, according to
the defined consistency criterion. This consistency of a LR
image relatively to the QHR image is measured in term of
contradiction of an unstructured model The arrival of new
objects with regard to the learning sequence is then detected
and localized as the complementary part of areas where the
LR image is the most consistent with the QHR image. Let
Ω and Ω′ denote respectively the high resolution and low
resolution image domains. The QHR image is defined on Ω
with values in L (set of all levels of quantification, of car-
dinal |L|). The LR sequence is denoted by (vt)t, where for
each instant t the image vt is a real-valued function defined
on Ω′. As each LR image is obtained by block-averaging a
high resolution image, the expectation of the measurement
performed over a LR pixel is the average of the measure
corresponding to each level of quantification (in the QHR
image) weighted by its occupation rate in the pixel. The
value observed within a LR pixel x at an instant t can hence
be estimated by

v̂t(x) =
∑

l

αl(x)Mt(l), (1)

where αl(x) denotes the relative area of the LR pixel x cor-
responding to the level of quantification l (by construction,∑

l∈L αl(x) = 1) and Mt(l) represents the average inten-
sity corresponding to the each level of quantification l at
the instant t. Note that as the QHR image is given, the
proportions αl(x) are known. The minimal residual error
between the observations and the reconstruction obtained
from a given distribution of the quantification levels can be
measured over a sub-domain ω ⊂ Ω by using the squared
Euclidean norm by

Eω = min
M

||(vt(x)− v̂t(x))1ω(x)||22. (2)

Then, the average intensity Mt(l) can be estimated by mini-
mizing the residual error over the sub-domain ω ∈ Ω′. From
there, the sub-domain for which the residual error is partic-
ularly small is assumed unchanged, following the idea that

the image vt is then well approximated from the QHR image
(through v̂t). Then, a core issue is the choice of a threshold
from which deciding that the residual error is acceptable for
an unchanged domain. Following the general framework of
a-contrario modeling, let us consider the probability to ob-
serve the residual error Eω by chance, denoted by PH0(Eω).
This can be done by assuming the a-contrario random model
(H0): a LR image v is a random field V of |Ω| independent
Gaussian centered variables with a given variance σ2. The
purpose of this model is not to reasonably model the data
but only to define a noise model against which detecting
significant structures in the data. From there, we define the
consistency measure over a spatial sub-domain ω by

NFA(ω, Eω) = η(|ω|) · PH0(Eω), (3)

where η is a normalization term chosen so that the expected
number of false alarms can be controled. After computation,

PH0(Eω) =
1

Γ( |ω|−|L|
2

)

∫ Eω/2σ2

0

e−tt
|ω|−|L|

2 −1dt, (4)

where Γ is the usual Euler function. Here, we choose η =
|Ω|(|ω||Ω|

)
in order to distribute the risk uniformly with respect

to the domain size. This measure depends on the size of the
considered sub-domain |ω|, on the number of quantification
levels |L| and on the variance of the a-contrario model. All
these parameters are obtained directly from the data, except
the variance σ2 which is chosen arbitrary, fixed equal to the
empirical variance of the current LR image. The model is
then free of parameters meanwhile ensuring a robust control
of the average number of false alarms. As mentioned ear-
lier, the value of this NFA function has a meaning in itself
(in absolute terms). Thus, it can be evaluated and com-
pared for different images. This is the principle we use in
order to find the image of the LR sequence that is the most
consistent with the QHR image (maximizing the NFA over
all images). In addition, when all images of the sequence
are not superimposable, this property can also be used in
order to estimate the transformation to apply to an image
to register it with the reference one (among a finite set of
simple transformations). In practice, Section 4 details how
this model is used for SLOD.

4. ALGORITHM
As the consistency measure (4) corresponds to the expec-

tation of the number of false alarms, with respect to the
defined a-contrario model (Section 3), its value can be com-
pared and interpreted for different images. Thus, looking
for the image sub-domain that minimizes the NFA permits
to detect changes whereas comparing the NFA minimum
value obtained for different dates gives the date for which a
LR image is the most consistent with a QHR image, i.e. the
image in the learning database corresponding to the QHR
image of interest (in which objects need to be detected).
Moreover, in the same spirit, the NFA measure can be used
to register two images. Indeed, as the camera is moving with
time, the images acquired are slightly shifted from one date
to another. Here, as a first approximation, we assume that
the transformation linking two images is a simple translation
(tx, ty), and for a given set of translations to explore, we de-
cide for the translation which minimizes the NFA. The al-
gorithm is based on a random sampling strategy (cf. [8]) for
pixel selection. This strategy, combined with the a-contrario



model, leads to a robust detection method. Notice that all
parameters of the NFA can be obtained directly from the
data except the cumulated quadratic residue Eω which de-
pends on the means Mt(l) corresponding to each level of
quantification l, a priori unknown. The mean estimation
and the detection itself are two closely linked problems as
the quality of the estimation has a strong impact on the per-
formance of the detection. The algorithm described below
achieves both tasks simultaneously and is thus fully unsuper-
vised. It takes a learning sequence and a current sequence as
inputs and returns, for each image of the current sequence,
the closest image in the learning sequence (t), the transla-
tion to apply to it for registration ((tx, ty)) and the detected
objects (domain ω).

- Initialize table NFA[tx][ty][t] to +∞.

- For translations (tx, ty, t) = (0, 0, 0) to (txmax, tymax, nt),

– Shift the QHR image of (tx, ty),

– Repeat N times

1. draw randomly |L| LR pixels x,
denoted by I = (x1, · · · , x|L|) ;

2. estimate the mean values (Mt(l))t,l by linear
regression

3. compute the residuals rt(x) = (vt(x) − v̂t)
2,

for x ∈ Ω′;
4. sort Ω′ into a vector (xi)1≤i≤|Ω′| by increasing

error r(xi);

5. initialize E =
∑|L|

i=0 rt(xi);

6. for each index i ∈ {|L|+ 1, . . . , |Ω′},
∗ set E = E + r(xi);

∗ if E < Emin[i] then

· set Emin[i] = E;

· compute the corresponding NFA[tx][ty][t]
value;

· update NFAmin and ω

∗ end if

7. end for

– end repeat

- end for

Notice that, in practice and thanks to the high robustness
due to spatial resolution lowering, time computation can be
considerably reduced by first optimizing the NFA criterion
over the time t in order to find the closest image in the
learning sequence (even if it contains a shift from the QHR
image) and then optimize the NFA criterion over a finite
set of translations (tx, ty) in order to precise the object de-
tection.

5. RESULTS
In this section, let us consider a sequence acquired along

several round trips on a same road. The vehicle containing
the camera onboard is a dedicated vehicle for research about
autonomous or quasi-autonomous systems [4, 20]. The cam-
era onboard is a standard color camera (three channels in
the visible domain) acquiring 25 images per second, each
one of size 240 lines by 320 columns. The learning im-
age database is composed of the images acquired along the

first round trip (images acquired at t ∈ [1300, 1600]). The
SLOD algorithm is then applied for images acquired at t ∈
{5620, 5750, 5800, 5870} in order to find the closest image in
the learning database. For first experiments, we consider
quantification images with 6 levels and a spatial resolution
ratio equal to 8 × 8, each LR image being obtained from a
high resolution one by block averaging. To ensure conver-
gence, the algorithm was run using a number of iterations
equal to 100000. For the localization step, we look for the
image in the learning sequence which, for a given quanti-
fied image, minimizes the NFA (thus minimizing the con-
sistency, see Figure 5). In figure 4, the NFA values obtained
using the quantified image corresponding to the time index
t = 5750 and the learning sequence are plotted as a func-
tion of time. Notice that the minimum is sharply obtained
for the closest image (indexed 10). Figure 5 illustrates the
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Figure 4: Evolution of the NFA values obtained (in
ln scale) as a function of the time index in the se-
quence. Note the sharpen figure of the minimum.

Object Detection part of the SLOD proposed algorithm. It
shows, from top to bottom: the image at time t, the image
at t after quantification (6 levels), the LR image (8×8 block
averaging) found as the corresponding image in the learn-
ing sequence, and the corresponding LR image found after
registration, by optimizing the NFA over a set of spatial
translations of the image at t. On these two last images,
the black pixels are the pixels of change or detected objects.
The objects to detect are the moving cars and the pedestri-
ans since these latter were not present during the learning
sequence acquisition. Note that in general the objects to
detect are well detected. On the left example (t = 5620), a
pedestrian and a car are both well detected. On the right
example (t = 5750), the three cars are well detected once the
images are registered (4th row) but only the pedestrian in
the foreground is well detected (the second pedestrian on the
edge of the road is a missed detection, probably too assim-
ilated to the edge). Notice the very small number of false
alarms as the black pixels on the right side of the image
(column) correspond to the geometric transformation be-
tween the two acquisitions. Besides let us remark, in these
two cases, that the spatial translation optimization allows
to reduce the number of false positives (removal of the de-
tection of the sky pixels). Similarly, Figure 6 shows other
examples with images 5800 and 5870 in the same sequence.
The approach has been run optimizing directly over the set
of translations. On these examples, all objects are well-
detected: the pedestrian, the motorbike and the cars, close
as those about at the horizon, showing that the approach is



Figure 5: SLOD, case of moving cars and pedes-
trians: row-1) images at time t = 5620 (left) and
t = 5750 (right); row-2) same images after quantifi-
cation with 6 levels; row-3) LR images (resolution
ratio: 8 × 8) found in the learning sequence as the
most consistent with row-2 images; row-4) Detected
objects (black pixels) in the same LR images after
registration with the image at t (by estimating the
spatial translation optimizing the NFA). The mov-
ing cars and pedestrians are well detected in both
cases. Detected pixels on the borders are due to the
fact that the left and right images are not perfectly
superimposable. Notice the improvement by using
the registration step: e.g. the sky detected in row-3
is no longer detected in row-4.

Figure 6: Some results of the SLOD: from top to
bottom, the image at t (1st column: image 5800, 2nd

column image 5870), the image at t after quantifi-
cation (6 levels), and the ‘correspondent’ image LR
after estimation of spatial translation of the image
at t. The black pixels are the pixels of change or de-
tected objects (except at the image border). Notice
that even cars near the horizon and motorbike are
well-detected.

robust to the size of the object to detect. Figure 7 shows
the index of the image found in the learning sequence ver-
sus the index of the image at t. It illustrates the robustness
of our approach for the Localization part of the SLOD pro-
posed algorithm. Indeed, the obtained curve is monotonous
(non-decreasing) almost everywhere, that is consistent with
the fact that in both sequences (learning and current) the
car did not go backwards. Besides, the flat part of the curve
with dates t ∈ [5650, 5700] corresponds to a stop of the car
at the crossroads.

Figure 7: Index of the image found in the learning
sequence versus the index of the image at t. Note
the non-decreasing feature of the curve is consistent
with the absence of going backward, and the flat
part corresponding to a car stop.

We now illustrate qualitatively the necessity of the low-
ering (both for the spatial resolution and for the number



of quantification levels) in the case of the Object Detection
part of the SLOD proposed algorithm. Figures 8 and 9 show
the sensitivity to the spatial resolution ratio: from 2× 2 to
16 × 16 (the number of quantification levels being equal to
6), and to the number of quantification levels: from 4 to
24 (the spatial resolution ratio being equal to 8 × 8). Con-
cerning the spatial resolution ratio, we see that for too low
ratio (2×2 or even 4×4) there are numerous false positives.
Even worse sometimes these false positives form block pixels
(this is particularly clear on the image at t = 5620) that are
not present increasing the spatial resolution ratio. However,
we also note that the localization of the detected objects in
the image is as fuzzy as the resolution ratio is important (as
illustrated in the case of the 16×16 ratio in the shown exam-
ple). Concerning the number of quantification levels, we see
that for too numerous levels (18 or greater) there are very
numerous false positives. In the shown example, almost all
the image is detected (every pixel labeled ‘change’) mainly
due to the wrong estimation of the radiometric values of the
classes. Decreasing the number of quantification levels the
class value estimation is more robust and allows good result
achievement. However, for too low number of quantification
levels (this is obvious in the case of 1 level, and it is illus-
trated for 4 levels in the shown example), the information is
so lowered that no change can be detected.

Figure 8: Sensitivity of SLOD to the spatial res-
olution ratio, defined as the number of HR pixels
included in a BR pixel; from top to bottom: 1- ratio
2 × 2 (1st column: t = 5620, 2nd column t = 5800); 2-
ratio 4× 4; 3- ratio 8× 8; 4- ratio 16× 16. Notice the
numerous false positives using a spatial resolution
ratio lower than 8×8 and the object location impre-
cision increase with the spatial resolution ratio.

6. CONCLUSIONS

Figure 9: Sensitivity of SLOD to the number of
quantification levels of the HR image. From top to
bottom: row-1) 18 levels (1st column: t = 5710, 2nd

column t = 5870); row-2) 12 levels; row-3) 6 levels;
row-4) 4 levels. Notice the numerous false positives
due to the class grey value wrong estimation using
a too high quantification level number (here 18) and
the numerous false negatives due to the informa-
tion imprecision using a too low quantification level
number (here 4).



In this study, we defend the idea that in order to be robust
to non-significative changes, such as a change in illumination
conditions of the scene or a change in the geometrical view-
point of the image acquisition, the actual change or object
detection could be performed between slightly imprecise im-
ages, as far as this imprecision somehow boils down to an
image ”filtering”. We suggest two different types of such fil-
terings: a reduction of the number of grey levels that allows
a class-based comparison, and a reduction of the spatial res-
olution that increases the tolerance to slight misregistrations
between images. Besides, using on the one hand a high spa-
tial resolution classification and on the other hand a coarse
resolution image, the algorithm firstly developed for change
detection in remote sensing data in [23] can be applied.

Such an idea was applied in the context of vision-based
Advanced Driver Assistance Systems to detect the objects
appeared in the environment since the date of acquisition
of a video learning sequence: typically pedestrians or cars
on the road. From this video learning sequence (stored at
coarse resolution) and a new image (quantified) we solve si-
multaneously the localization of the current vehicle and the
detection of the changes. Our solution is based on the use
of the NFA criterion that allows the comparison between
different solutions in terms of image geometrical translation
spatio-temporal and unchanged pixel sub-domains. Using
actual data, we show the good performance of the proposed
approach and establish that some compromises should be
found for the spatial resolution ratio (between high and ar-
tificial coarse resolution) and for the number of quantifica-
tion levels or classes considered at high resolution. Perspec-
tives deals with the reduction of the processing time, first
by subsampling of the learning sequence, and then by imple-
menting the proposed algorithm on GPU (Graphic Processor
Unit).
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Survey of pedestrian detection for advanced driver
assistance systems. IEEE Trans. Pattern Analysis and
Machine Intelligence, 32(7):1239–1258, 2010.

[7] F. Dibos, G. Koepfler, and S. Pelletier. Fast detecting
and tracking of moving objects in video scenes. 2006.

[8] M. Fischler and R. Bolles. Random sample consensus:
a paradigm for model fitting with applications to

image analysis and automated cartography.
Communications of the ACM, 24:381–385, 1981.

[9] U. Franke and S. Heinrich. Fast obstacle detection for
urban traffic situations. IEEE Trans. Intelligent
Transportation Systems, 3(3):173–181, 2002.

[10] T. Gandhi and M. Trived. Pedestrian protection
systems: Issues, survey, and challenges. IEEE Trans.
Intelligent Transportation Systems, 8:413–430, 2007.

[11] D. Gavrila. Sensor-based pedestrian protection. IEEE
Intelligent Systems, 16(6):77–81, 2001.

[12] W. Jones. Building safer cars. IEEE Spectrum,
39(1):82–85, 2002.

[13] S. Krotosky and M. Trivedi. On color-, infrared-, and
multimodal-stereo approaches to pedestrian detection.
IEEE Trans. Intelligent Transportation Systems,
8(4):619–629, 2007.

[14] A. Kuehnle. Symmetry-based recognition for vehicle
rears. Pattern Recognition Letters, 12:249–258, 1991.

[15] M. P. L. Vlacic and F. Harashima. Intelligent Vehicle
Technologies. Butterworth-Heinemann, 2001.

[16] J. Lisani and J. Morel. Detection of major changes in
satellite images. In IEEE ICIP, pages 941–944, 2003.

[17] D. Lowe. Distinctive image features from
scale-invariant keypoints. Int’l J. Computer Vision,
60(2):91–110, 2004.

[18] A. B. M. Bertozzi and A. Fascioli. Obstacle and lane
detection on argo autonomous vehicle. IEEE
Intelligent Transportation Systems, 1997.

[19] E. H. M. Betke and L. Davis. Real-time multiple
vehicle detection and tracking from a moving vehicle.
Machine Vision and Applications, 12(2), 2000.

[20] R. R. Mounier H., Bouaziz S. A first step towards
anytime invariant quasi static feedback for real time
tracking. In Proc. of the IEEE Information and
Communication Technologies Int. Symp ICTISŠ04,
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