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ABSTRACT

In this paper, we present a novel scheme for segmenting
video data into scenes. Based on visual similarity, the shots
are first classified into clusters using modified k-means algo-
rithm. Number of optimal clusters is decided using cluster
validity analysis based on Davies-Bouldin index. Each shot
is assigned a tag denoting the cluster it belongs to. Thus,
the video data is represented by a sequence of cluster tags.
The sequence is then analyzed by introducing the concept of
stable and quasi-stable state. The elements of the sequence
are merged into states and isolated elements are linked with
the states to generate the scenes. The scheme is free from
the dependency on critical parameters and capable of han-
dling different types of scenes.
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1. INTRODUCTION

A scene in a video data is the collection of semantically
related consecutive shots sharing similar visual properties or
representing the same event. A one hour video may contain
few hundred shots. Thus, in the context of efficient organi-
zation and browsing of video data, shot based representation
is quite inefficient. Hence, the focus has shifted to scene level
representation and segmenting the video data into scenes be-
comes the fundamental step. Unlike Shots which are charac-
terized by the physical boundary, the scenes are marked by
the semantic boundary. Thus, the task of scene boundary
detection is far more difficult.

Wide variety of approaches has been tried by the researches
to extract scene boundary. Different graph based schemes
have been proposed [2, 23, 6, 10, 20, 18, 19, 25]. Bouthemy
et al. [2] considered an oriented graph where clusters of the
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shots are the nodes and edges denote the succession links
between the clusters. Yeung et al. [23] have dealt with a
shot transition graph where each shot corresponds to node
and edge between them reflects the spatio-temporal relation.
Based on hierarchical clustering graph is splitted into sub-
graphs denoting the scenes. Hanjalic et al. [6] considered
a scene as a logical story unit consisting of the shots hav-
ing dissimilarity among them within a threshold. A discrete
graph based scheme is presented in [10]. Rui et al. [20] intro-
duced a group threshold to group the shots based on spatio-
temporal correlation and the groups were further clustered
to form the scene subjected to another threshold value. Lin
et al. [13] have proposed a pseudo-object-based shot corre-
lation analysis to group the shots. A new grouping method
called expanding window is proposed to cluster correlated
consecutive shots into a scene. A sliding window based
scheme is presented in [24] where shots are grouped con-
sidering visual similarity and temporal condition. The size
of sliding window is a critical factor to decide. A two pass
algorithm is presented in [18] where the shots are first clus-
tered by computing a backward shot coherence and potential
shot boundaries (PSB) are detected by measuring the shot
colour similarity. In the second pass, scene dynamics based
merging scheme is followed to remove the weak PSBs. But,
the selection of window size in computing the backward shot
coherence is an important issue. In another approach [19],
the scene detection problem has been mapped onto graph
partitioning problem and a scene detection process is car-
ried out by forming a shot similarity graph. Zhao et al. [25]
have proposed normalized cuts method to determine the op-
timal scene boundary.

In various schemes [1, 8, 12, 21], along with visual fea-
tures, audio features are also considered for grouping the
shots into scenes. Kang [9] has proposed a hierarchical ap-
proach for scene segmentation. In first phase, initial scene
boundaries are detected by following a continuous coherence
computing model. Subsequently, a refinement process based
on k-means clustering and cluster validity analysis is carried
out to obtain the result. Several researchers [22, 25] have
tried to categorize the scenes into different types like, par-
allel scene, serial scene and tried to exploit the definitions.
But, such categorizations are ill defined.

In [27], shots are first grouped by defining the correlation
of a shot with its preceding and following ones. Finally,
a group merging scheme is introduced to merge adjacent
groups with higher correlation. Chasanis et al. [3] have clus-
tered the shots into groups based on their visual similarity



and a label is assigned to each shot depending on the group
that it belongs to. Then, a sequence alignment algorithm
is applied to detect the change in shot label pattern and
thereby segmentation is achieved. Choice of window size in
sequence alignment process may bias the outcome. Zhu et
al. [26] have considered coherence between the shots within a
temporal constraint window to cluster the related shots into
the same scene. But, the effectiveness of the scheme heavily
depends on the size of the temporal constraint window and
threshold values.

From the study of past work, it appears that the detection
of scene, the semantic unit of a video, is a challenging task.
The collection of consecutive shots depicting a theme may
not be always visually similar. The span of the variation in
the visual content of a scene depends on the dynamics of
alternating sequences and editing process. In this context,
it may be pointed out that wide variation may exist in the
scene model. Thereby, a methodology to sustain consider-
able variety is still in demand. Most of the schemes depend
heavily on sensitive parameters like, window size, threshold
values. These observations have motivated us to develop a
strategy with not so critical parameters. In this paper, we
have presented a novel heuristic algorithm based on a mod-
ified version of k-means clustering and multistage cluster
analysis. The paper is organized as follows. The introduc-
tion is followed by the description of proposed methodology
in section 2. Experimental result is presented in section 3
and concluding remarks are placed in section 4.

2. PROPOSED METHODOLOGY

The characteristic of the scenes consisting of shots in re-
stricted environment like indoor and that consisting of shots
in open environment i.e., outdoor are entirely different. In
the first case, the contiguous shots forming the scene are
taken with a fixed physical settings and they share a visually
similar background. Very often such videos are captured by
switching between several stationery cameras with different
angles looking at the same background. Thus, there exists a
repetitive pattern. Mostly, the news video, talk shows, non-
action or dialog scenes shot in indoor falls into such category.
On the other hand, for the second category, the background
may not remain fixed during the total span of the scene.
Movement of the camera may also lead to the change in
the context continuously. Action scenes, videos captured in
outdoor with camera mounted on a trolley belong to such
category. Thus, it becomes a major challenge to handle the
diverging features of different types of scenes. The perfor-
mance of the graph based schemes suffers considerably in
case of the scenes with varying content.

In our effort to deal with scenes of various types, we pro-
pose a methodology based on clustering and analysis of clus-
ter sequence. Each shot is assigned a tag depending on
the cluster that it belongs to. Thus, the sequence of shots
is mapped onto a cluster sequence which is subsequently
analyzed to glue the consecutive elements in the sequence
to form the scenes. It is assumed that video data has al-
ready been segmented into shots and representative frames
(keyframes) for the shots are also identified. The major
steps namely, generation of cluster sequence and analysis of
the sequence will be detailed in the subsections 2.1 and 2.2
respectively.

2.1 Generation of Cluster Sequence

Scene is a collection of semantically related contiguous
shots. It is very difficult to represent the semantic content
and we normally rely on the visual descriptors. Based on
those descriptors shots are grouped into clusters. Thereby, a
cluster represents the semantically cohesive shots. Depend-
ing on the cluster to which a shot belongs, a tag is assigned.
Thus, the video data is represented by a sequence of clus-
ter tags. The major issues involved at this stage are the
representation of the shots and the clustering methodology.

2.1.1 Shot Representation

Shot representation is a crucial issue in the context of shot
grouping. Various schemes have been considered to repre-
sent the shots. In [17], beginning and ending frames of a shot
are taken as shot representative. Keyframes are also used
in [6, 4] to represent the shots. Once the representatives are
chosen, similarity between the representatives of the shots
is taken as the shot similarity. Even, the similarity between
two arbitrary frames of the shots has also been tried in [10].
Thus, comparing two shots heavily depends on their repre-
sentation and it is quite difficult to represent the shots with
a limited number of frames. On the other hand, comparing
every pair of frames in two shots is prohibitively expensive.

For representing a shot, keyframes appear as the best
choice as they denote most precise but general view of the
overall shot content. But, in the context of shot similarity
measurement, the keyframes alone may not reflect the com-
plete flavor of a shot, particularly if the shot is eventful one.
As aresult, the shots, quite similar in their content, can have
their keyframes with considerable spatial isolation in feature
space and it may declare them to be dissimilar. Such possi-
bility may be further enhanced by the bias/shortfall of the
keyframe detection algorithm. Thus, to exploit the repre-
sentation strength of the keyframes and also to reduce the
biased characteristics, if any, of the keyframes we have con-
sidered number of sampled frames in the shot along with the
keyframes as the representative of the shot.

As it is quite difficult to represent the semantic, we rely on
the visual content described in terms of low level features.
Each frame representing the shots are described by a feature
vector. In this work, we consider features based on inten-
sity histogram, wavelet decomposition, edge detection and
colour correlogram. First, second and third order moments
of each of the R, G and B histograms are considered as fea-
tures. Thus 9 features are obtained. To compute the wavelet
statistics also, we consider each of the R, G and B planes
independently. For each plane, the image is decomposed up
to three levels into one low pass and three high pass sub-
bands [14]. Mean and variance of the high-pass subbands
are taken as features. It may be noted that the informa-
tion of the low-pass subband has already been reflected in
the intensity histogram based features. Hence, to compute
the wavelet based features we have concentrated only on
the high-pass subbands. Thus, 18 wavelet based features
are obtained. In order to compute edge based features the
gradient image is first obtained. The pixels with gradient
value more than the average are taken as the strong edge
points. The image is divided into 16 grids and normalized
count of strong edge points in the grids are taken as the
features. To obtain the colour correlogram based features
each of R, G and B scales are divided into 4 bins. Thus
the colour values of the pixels are mapped onto 64 possi-
ble values. Then a 64 X 64 co-occurrence matrix is formed



and based on it contrast, homogeneity, energy and entropy
are computed as in [7]. Combining all the features a 47-
dimensional feature vector is obtained and a shot is finally
represented by a set of feature vectors corresponding to the
keyframe(s) and sampled frames.

2.1.2  Clustering Methodology

Once the representative frames (i.e. keyframes and sam-
pled frames) of all the shots in the video and the correspond-
ing feature vectors are obtained, a standard clustering tech-
niques , say, k-means algorithm is applied. In that case, role
played by a sampled frame and that of a keyframe becomes
equivalent. Thereby, the significance of the keyframe is ig-
nored. Moreover, the representative frames of a shot may
be distributed in multiple clusters in an arbitrary fashion
and linking the shot/subshot to a cluster may become dif-
ficult. To address these issues, we adopt a modified version
of k-means algorithm for shot clustering.

In our scheme, we incorporate the following modifications
in the conventional k-means algorithm. A discrimination is
made between the roles played by the keyframe elements and
other sampled frame elements. Keyframe elements play the
leading role and takes part in clustering process. Whereas,
the sampled frame elements follow the keyframe element of
the corresponding shot. in joining/leaving a cluster. Es-
sentially, this is same as k-means clustering of keyframe
elements only. But, instead of playing a completely pas-
sive role, the sampled frame elements takes part in com-
puting the cluster centre and thereby the proposed cluster-
ing scheme becomes a little different from the conventional
one. The concept is analogous to leader-followers movement.
Leader decide which party/team to form or join or leave and
the followers follow him and join or leave the same party or
team accordingly. But once they join, the followers play
equal role as the leader to change or shift the centre of grav-
ity of that party or team.

Keyframes are more inclined toward the major activity
in a shot. When a shot is semantically continued to an-
other similar shot, a shift in activity may occur which may
be reflected by the significant differences in the correspond-
ing keyframes. Thus, clustering based on only keyframe
elements may put them in different clusters. Here comes
the importance of the role of sampled frame elements. As
these elements take part in computation of cluster centre, a
smoothing effect is imposed by shifting the cluster centre to
minimize the strong bias of the keyframe elements. Thereby,
it increases the probability of inclusion of similar shots in the
same cluster in spite of their inherent spatial variation.

The major advantage of adopting clustering is that it has
enabled us to judge the shot similarity without going for the
critical task of threshold selection. On the other hand, the
major problem of the scheme is to determine the optimal
value of k, i.e., the number of clusters. To address it, we
rely on cluster validity analysis.

2.1.3  Determination of Optimal Number of Clusters

The optimal number of clusters for a given video data is
determined by Davies-Bouldin index [5] based cluster va-
lidity analysis. The index is computed based on similarity
measure between the clusters which are based on the disper-
sion measure of a cluster (s;) and the cluster dissimilarity
measure (d;;). The similarity measure between i-th and j-th

clusters (R;;) is defined as

Si +8;
Rij = %
where,
di; = d(vs, vj)
and

S; = L Z d(wvv’i)

lled] 2=

where, ¢; denotes the i-th cluster and ||¢;|| is the number
of elements in the cluster. wv; represents the centre of the
i-th cluster. d(v;,v;) stands for the distance between v;
and v;. We have considered Euclidean distance. Once the
clusters are formed, for validity analysis, we consider only
the keyframes as the elements in the clusters and ignored the
presence of sampled frames. Finally, Davies-Bouldin index
is computed as

1 &
where, n. is the number of clusters and

Ri =maz{Ri;},j=1...nc,i#j

The index measures the average of similarity between each
cluster and its most similar one. As it has been discussed
n [11], lower the value of the index, better is the cluster
configuration denoting compact and well separated clusters.

In order to determine the optimal number of clusters, we
repeatedly execute the clustering process by varying k from
a min to a max value. The case for which the index is mini-
mum, is taken as the optimal number of clusters. The value
of max is taken as %, where, T is the duration of the video
and ts. is the minimum scene duration. In our experiment,
min is taken as 2 and ts. is taken as 45 seconds. It may
be noted that the assumptions are non-critical. In case of
a large video, in order to reduce the number of iterations,
optimal number may be decided based on the local minima
of the index.

2.2 Analysis of Cluster Sequence

The shots in a scene are semantically and temporally co-
hesive. Suppose clustering by some means takes care of the
semantic aspect and ideally all the shots sharing a common
semantic should belong to the same cluster. But they may
not be part of same scene unless there is a temporal cohesion
between them. The basic purpose of analysis phase is to glue
the semantically cohesive shots by incorporating the tempo-
ral constraint. Moreover, measuring semantic cohesion in
terms of visual descriptor and clustering has limitations. It
may so happen that semantically similar shots are placed
into different clusters. On the other hand, a scene consist-
ing of alternating sequence or having considerable variations
may have shots with different cluster tags. Thus, the anal-
ysis of cluster sequence becomes a very crucial step to cope
up with the variety of situations.

The sequence under analysis is the collection of elements
where the elements are the cluster tags corresponding to the
shots in the video. The elements are arranged in accordance
to the chronological order of appearance of the shots in the
video. So the shots in a video is represented as a sequence of
ordered pairs ((sn,tn)|n = 1,2,...) where s, is the cluster
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Figure 1: Formation of stable state — (a) by merging
consecutive same cluster tags C;, or (b) by merging
same transitions between C; and Cj, i # j
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Figure 2: Formation of quasi-stable state

tag of the n-th shot, i.e., sp € {C1,Co,...,Ci,...,Cj,...}
and t,, is the timespan (number of frames) of the shot. We
introduce the concept of stable state and quasi-stable state.
A stable state (SS) is formed by merging either the subse-
quence of same elements as shown in Fig. 1(a) or the sub-
sequence of same transition between a pair of elements as
shown in Fig. 1(b). C;, C;j etc. in Fig. 1 denote the cluster
tags.

As shown in Fig. 2, a quasi-stable state (QS) is formed
by merging the subsequence bounded by same cluster tag
C; with one or more intermediate elements other than C;
and total duration corresponding to the intermediate subse-
quence is not more than ts., the minimum scene duration.
The major steps of the analysis phase are as follows.

e Identification of stable states.

e Merging non-adjacent but similar stable states.
e Identification of quasi-stable states.

e Merging quasi-stable states with stable states.
e Generation of candidate scene boundary.

e Generation of final scene boundary.

The details of the steps are described in the following sub-
sections.

2.2.1 Identification of stable states

Identification of stable states consists of two steps: (a)
merging subsequence of shots with same cluster tags and

(b) merging subsequence representing the frequently occur-
ring cluster transition. We consider the transitions between
a pair of elements in the sequence and further assume that
the transitions are symmetric 4.e. transitions C; — C; and
C; — C; are equivalent. The algorithm for steady state
identification is as follows.

e Merge the subsequence of shots with same cluster ho-
mogeneous tags to form stable state. Timespan ¢ is
updated accordingly.

e Initialize all the elements of occurrence matrix, M by
ZEro.

e remaining_cluster = C;, the set of all cluster tags in
the sequence.

e For each transition C; — C; or C; — C; in the se-
quence

— increment M[i][j] such that i >=j
e For each element M[i][j] in M

— if (M[i][j] > min_count) and (i,j) € remain-
ing_set) then

* Form stable state by merging the subsequence
of C; — C transitions and its equivalent one.

* Remove C; and C; from the remaining_set.

x Assign a new tag to the merged subsequences
and compute their timespan.

Thus, the sequence of cluster tags is converted into the se-
quence of elements where elements are either a cluster tag or
a stable state. Scenes consisting of shots with similar visual
content or with alternating sequence will have a tendency
to converge in the stable states. It may be noted that once
the transitions involving C; and C; are merged, merging
any other transitions involving them is restricted. Thereby,
the transitive effect is avoided at this stage. The potential
transitions for merging are chosen by looking into the global
pattern. Allowing transitivity may lead to uncontrolled lo-
calized growth of steady state at this early stage and may
jeopardize the analysis at the very beginning. In our exper-
iment min_count is taken as 2.

2.2.2 Merging non-adjacent but similar stable states

Due to the shortcomings of visual descriptor and/or clus-
tering process, similar shots in a scene may bear different
cluster tag. Even within an uniform scene, one or more
shots can have variation putting them into different clusters.
Moreover, the switching latency for an alternating sequence
may also be quite high. In such cases, the homogeneity of
cluster tag in the sequence breaks. Thus, a scene, instead of
converging to a single stable state, it may get splitted into
number of such states. To overcome the problem, we try to
merge the similar states within a timespan of ts. as shown
in Fig. 3.

e SS; and SS;y1 are two consecutive stable states with
cluster tag C; and Cj11 respectively.

e ('S be the intermediate subsequence between SS; and
SSit1-

e t be the total timespan between SS; and SS;41.
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Figure 3: Merging of stable state

e if (t < tsc and C; == Cj41) then Merge SS;, C'S and
SSit1.

e Repeat the above steps for all consecutive stable state
pairs.

2.2.3 Identification of quasi-stable states

In the previous two steps similar cluster tags and transi-
tions formed by alternate cluster tags are merged into stable
states. So in the first case the periodicity of the tags is one
and in the second case it is two. According to the defini-
tion of quasi-stable state, this periodicity of a certain tag
in a subsequence may be more than two and also uneven.
So a quasi-stable state may be identified as a subsequence
where a cluster tag occur within a distance not more than
tsc. More formally, suppose cluster tag for n-th shot, s, is
C; and that for s,4, is also C;, we mark s, to Sp4+r as a
quasi-stable state if the time interval between them is not
more than ts.. An example of quasi-stable state is shown in
Fig. 2. Remaining shots or cluster tags in the sequence are
treated as isolated tags or shots.

2.2.4 Merging quasi-stable states with stable states

At this stage, the sequence may be thought of as the col-
lection of stable states, quasi-stable states and isolated clus-
ters. As in many cases, the quasi-stable states may arise out
of the variation within a scene, we try to link such quasi-
stable states with neighboring stable state(s). The steps are
as follows.

e For each quasi-stable state Q.S;
— Within time interval ¢s., look for PS and F'S, the

preceding and following stable states.

- CSp = null, CSy = null, CQ = set of cluster
tags in QS;

— if (PS exists) then
* CS), = set of cluster tags in PS
* IS, = intermediate sequence between PS and
QS:
— if (F'S exists) then
* CSy = set of cluster tags in F'S

* ISy = intermediate sequence between Q.S;
and F'S

— N, = CQN TSl Ny = [CQNCSy]
— if (N, == Ny and N, > 0) then
* merge PS, ISy, QSi, ISy and F'S.
— else
% if (N, > Ny) then merge PS, IS, and QS;.

* else if (Ngp > 0) then merge QS;, ISy and
FS.

It may be noted that a quasi-stable state may be linked
either with the preceding or following stable state or both
or none. At the time of linking, intermediate subsequence is
also merged along with.

2.2.5 Generation of candidate scene boundary

The sequence now consists of the elements mostly denot-
ing the stable states and the quasi-stable states which could
not be merged with neighboring stable states. There may
also exist few isolated tags which did not qualify earlier to
become the part of stable/quasi-stable states. As the states
have grown further through merging, there is a possibility
for accommodating such isolated clusters into the states.
Moreover, such elements, of their own also do not qualify to
define a scene. Hence, we opt for merging them with the
neighboring states. Steps for assigning the isolated cluster
tags to adjacent stable states are as follows.

e For each isolated element C;

— Let S, (Sf) be the preceding (following) state
within time interval ts..

— Let Cp, (Cy) be the set of cluster tags present in
Sp (Sf).
— if (C; ¢ Cp and C; ¢ Cy) then
* if (|Cp| > |Cy|) then merge C; and interme-

diate subsequence with S, else merge C; and
intermediate subsequence with Sy.

— if (C; € Cp and C; ¢ Cy) then

+* merge C; and intermediate subsequence with
Sp.

— if (C; ¢ Cp and C; € Cf) then

+x merge C; and intermediate subsequence with
Ss.

— if (C; € Cp and C; € Cf) then

* if (Sp and SF, both are quasi-stable states)
then merge Sp, C; and Sy along with inter-
mediate subsequences.

* if (either S, or Sr (not both) is quasi-stable
state) then merge C; with the quasi-stable
state along with intermediate subsequence.

* if (Sp and Sg, both are stable states) then

- if (|Cp| > |C¥]|) then merge C; and inter-
mediate subsequence with S}, else merge
C; and intermediate subsequence with Sy.

Once the isolated tags are linked with the states, the se-
quence consists of only stable and quasi-stable states. The
stable states and the quasi-stable states are primarily taken
as the candidate scenes.

2.2.6 Generation of final scene boundary

In the final stage of analysis, it is checked whether the
candidate scenes are of considerable duration or not. The
duration of each candidate scene is verified against ts. and
a candidate scene with smaller duration is merged with pre-
ceding/following candidate scene or both. Let S. be the
candidate scene, S, and Sy are the preceding and following
the candidate scene respectively. C., C}, and Cy are the set
of cluster tags in Sc, S, and Sy respectively. Based on these
notations the merging algorithm is stated as follows.



Table 1: Performance of the proposed scheme

Data | Time Scene Detection % Pre- | % Re-
(min.) | correct | miss | false | cision call

moviel 25 19 2 3 86.36 90.29
movie2 37 11 1 3 78.57 91.66

movie3 15 09 0 1 90.00 | 100.00
overall 39 3 7 84.78 92.86

e For each candidate scene S,

— t = time duration of S.
— if (¢ < tsc) then
# if (|Ce ) Cp| > |Ce () Cy|) then merge Sc with

Sp.

* 1f (|Ce () Cp| < |Ce () Cfl) then merge S. with
Sy.

x if (|C.NCp| == |C.Cyl|) then merge Sp ,
Sc and Sy.

Thus, the sequence becomes a collection of states with con-
siderable duration. Each state (stable or quasi-stable) rep-
resents a scene.

It may be noted that the proposed methodology relies on
the parameter ts. denoting minimum scene duration. But,
it does not demand a precise value of it. Too high value
for ts. is prohibitive as it may restrict optimal number of
clusters to a low value. Moreover, the linking of states and
other elements may span over a long duration leading to
merging of scene. On the other hand, a low value is less
detrimental. First of all, in determining the optimal num-
ber of clusters, it will have no impact other than increasing
the number of iteration. During analysis, low value of ts.
restricts the span of linking activity within a shorter period.
Thus, in the worst case, it may lead to initial over segmen-
tation which may be taken care of in the later stages. So the
effect is less pronounced as the growth of states reduces the
interval between them. Thus, a moderate approximation for
tsc which is neither too high and nor too low is good enough
for the scheme to work. Moreover, such approximation is
not too critical.

3. EXPERIMENTAL RESULTS AND DISCUS-

SION

In order to carry out the experiment, we have worked with
part of three movie videos namely Matriz Revolution, Mis-
sion Impossible and Catch Me If You Can. These are being
referred to as moviel, movie2 and movie3 respectively in Ta-
ble 1. The video data is first segmented into shots following
the scheme presented in [15] and for each shot keyframe(s)
are detected based on the methodology in [16]. Moviel con-
sists of 43,400 frames and is segmented into 425 shots. For
movie2 number of frames and shots are 57,285 and 539 re-
spectively. Movie3 has 28,671 frames with 151 shots. To
verify the performance of the proposed methodology, video
data is manually groundtruthed for scenes and scene bound-
aries.

Here the performance of scene detection algorithm is mea-
sured in terms of precision and recall which are computed as

Figure 4: Keyframes of a detected scene in moviel

Figure 5: (a) and (b) are the keyframes of the shots
in two consecutive scenes in movie2



Figure 6: (a) and (b) are the keyframes of the shots
in two consecutive scenes in movie3

ﬁ and CJer respectively, where ¢, f and m denote num-
ber of correctly detected scenes, number of falsely detected
scenes and number of scenes that could not be detected (miss
in detection) respectively. Table 1 presents the result of
the experiment described above and shows that the perfor-
mance of the proposed scheme is good enough in detecting
the scenes. High recall indicates that the chance of miss-
ing a scene is quite low. But, it appears that the scheme is
prone to over segmentation leading to relatively low preci-
sion. In order to avoid it, the merging policy described in
section 2.2.6 has to be improved in future. It has been ob-
served that for a fast video (as in case of moviel), the shots
and the scenes are of small duration and it is reverse for
a slow movie/video. The long scenes with significant vari-
ations in the content (as in case of movie2) in some cases
may get splitted. Each such segment may qualify to stand
as a scene on their own and thereby could not be merged.
Instead of duration based merging, a localized scene dynam-
ics has to be incorporated to surmount this problem. For a
few detected scenes, the keyframes of the shots have been
shown in Fig. 4, 5 and 6. The figures show that proposed
methodology is capable of detecting scenes with alternating
shots and the scenes with variation in the contents.

4. CONCLUSION

We have presented a methodology for segmenting video
data into scenes. It is capable of handling scenes of various
types. The shots are classified into clusters, where the opti-
mal number of clusters is determined using cluster validity
analysis. The video data is then mapped onto a sequence of
cluster tags. The concept of stable and quasi-stable and
a subsequent linking procedure is introduced to generate
the scene boundaries. The multistage analysis procedure
is found to withstand the limitations imposed by the visual
descriptors in representing the semantic content and the lim-
itation of the clustering process including the number of clus-
ters. Thus, the scheme can successfully handle wide variety
of scenes. Though the methodology relies on a parameter
denoting the minimum scene duration, the procedure does
not demand precise value of it and the analysis procedure
has its inherent strength to cope up with the impreciseness
of the parameter. Thus, it is free from the dependency on
any critical parameter.
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