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ABSTRACT
This paper deals about embedding capacity computation
for reversible watermarking schemes. The paper proposes a
unique way of computing embedding capacity directly from
the data set without actually embedding the watermark in
the image. This computation is done based on the statis-
tical parameters of the data set. We also demonstrate how
to compute the capacity under distortion constraints. We
also show how to enhance the capacity by using a multi-
pass embedding scheme without substantially affecting the
PSNR.
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1. INTRODUCTION
As against robust watermarking [2] which talks about at-

tacks and techniques to resist this attacks, we have another
scheme called reversible watermarking. Here an exact recov-
erability of the watermark is of prime concern. Reversible
watermarking finds application in few cases wherein along
with the watermark, the cover image is also to be retrieved
after watermark retrieval. There had been many techniques
of reversible data hiding proposed in literature. The con-
cept of hiding a bit of information in the LSB plane is quite
known since long [2] as it maintains the perceptual quality
of image even after watermarking. As far as inserting a bit
in a pair of pixels is concerned, it was initially proposed by
Tian [8] and then later on generalized by Alattar [1]. There
had been many papers in this regard [5, 10, 11], but most
of them someway or other have used a data compression
algorithm or they suffer from the low embedding capacity

∗On Duty leave and under financial assistance from Sinhgad
Academy of Engineering Pune, India

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

issue [8, 11].
Tian [8] initally proposed the difference expansion scheme

which applies the 1-D Haar wavelet transform to the image
and embeds the watermark into high-frequency coefficients
by difference expansion. Alattar [1] extended Tian’s scheme
and applied the difference expansion (DE) of a generalized
integer transform to pixels for reversible embedding. Kam-
stra and Heijmans [10] improved Tian’s method by sorting
the least-significant bits (LSB’s) of pixel pairs to improve the
coding efficiency of the lossless compression. Thodi et al. [5]
introduced histogram shifting technique to Tian’s scheme.
Coltuc et al. [4] used a reversible contrast mapping (RCM)
to embed watermark.

Embeding capacity is an important issue for reversible
watermarking as one can hide more data with less compu-
tations and with a reasonably good perceptual quality. It
is therefore that, reversible watermarking is also called re-
versible data hiding technique. In this paper, we extend the
work proposed by Coltuc et al. [4] and propose a new tech-
nique of calculating embedding capacity for an image using
the pair-wise co-occurance matrix (see section 3 for defina-
tion) which is computationally very efficient. The pair-wise
co-occurance matrix is computed for different displacements,
and the one which gives the maximum embedding capacity
is chosen. This concept is significant as one can know the
embedding capacity of a given image in advance before actu-
ally embedding it, based on which the dataset (given cover
image) may be selected or rejected as the case may be. The
paper also talks about the PSNR-bpp relationship and how
to select the optimum value of control distortion factor for
a specified PSNR. Although Li et al. [9] talks about image
independent embedding capacity which involves a Hamming
code based algorithm, but it is restricted to a very low em-
bedding capacity (under 0.02 bpp).

2. REVERSIBLE WATERMARKING
We discuss the basics of reversible watermarking in this

section. The difference expansion technique as mentioned
by Tian [8] embeds a bit (either 0 or 1) in the difference
h. A combination of average l and difference h for a pair of
pixels (x,y) is given as:

l = b(x + y)/2c (1)

h = (x − y) (2)

where b x c is called as the floor function. Inverse trans-



form yields the value of this pixels x and y as:

x = l + b(h + 1)/2c (3)

y = l − h/2. (4)

The difference h is expanded to create a new LSB to embed
a watermark bit w, and the watermark difference hw is:

hw = 2h + w. (5)

The following equation is to be satisfied for overflow and
underflow conditions to be avioded:

|hw| ∈ D(l) = [0, min(2(2n − 1 − l), 2l + 1)] (6)

where n indicates the bits used for representation of a pixel
value. Tian’s scheme can achieve high capacity, however, it
is difficult to implement capacity control due to the need
to embed a compressed location map along with the pay-
load. This decreases the embedding capacity further more.
This problem is generalized by Coltuc et al [3] for the gen-
eral case, and dealt specifically in another paper based on
reversible contrast mapping for a pair of pixels in [4]. The
RCM method is briefly described here:

For a pixel pair (x, y), the forward mapping transforms
them into another pair (x′, y′)

x′ = (n + 1)x − ny, y′ = −nx + (n + 1)y (7)

while the inverse transform (x, y) = T−1(x′, y′) can be ob-
tained as:

x =
(n + 1)x′ + ny′

2n + 1
, y =

nx′ − (n + 1)y′

2n + 1
. (8)

Specifically dealing with the case n = 1, above equations
become [4]

x′ = 2x − y, y′ = 2y − x (9)

while the inverse transform is defined as:

x = d2

3
x′ +

1

3
y′e, y′ = d1

3
x′ − 2

3
y′e (10)

where d x e is called as the ceil function. Since |x
′
− y

′
| =

3|x− y|, the contrast increases after the mapping and hence
the PSNR decreases.

Because of eqn 8, the original pixel values can be recov-
ered from the transformed one, even if their LSB’s are lost
or altered (Except for the case where LSB’s of both original
pixel pairs are odd, where few adjustments are done). Tak-
ing the advantage of this condition, one can embed a bit of
information in LSB’s of transformed pairs.

To avoid ambiguity and to prevent overflow and under-
flow, the grayscale values of transformed pixel pairs are re-
stricted within a subdomain Sr defined as

Sr = {(x′, y′) | x′ ∈ [0, L), y′ ∈ [0, L)} (11)

Where L is the number of graylevels. It can be seen from
above constraint that the transform forms a domain of rhom-
bus shape and can give a maximum embedding capacity
of 0.5 bpp. This assumes that all pairs (x′, y′) fall within
the rhombus, giving us to embed one bit for a pair of pix-
els (x, y). As this is the constraint for RCM based technique
mentioned by Coltuc et al. [4], similar constriants are there
for all techniques based on difference expansion as mentioned
by Tian [8], Alattar [1] and Sachnev et al. [12]. Although
the embedding capacity offered in some recent publications

1: Illustration of computation of embedding capacity from
pair-wise co-occurance matrices for Lena image for displace-
ments (0,1) and (1,2).

are more than 0.5 bpp and they go close to 1bpp in single
iteration [7, 12, 6], still they pose a similar constraint for
the data set as elligible for data embedding. This effectively
means that they would form a geometric subdomain which
would restrict the capacity.

3. PROPOSED SCHEME
We work on the similar mathematical relationship as the

one mentioned in the Coltuc’s paper [4], but in the above
technique, one has to go to the actual data (image) and
work out on each and every portion of image with different
constraints as mentioned above, and finally we get the em-
bedding capacity of the image. We here propose a scheme
wherein the embedding capacity of the data set (image) can
be calculated by the statistical parameters computed from
the image.

1. Co-occurance Matrix: The concept is to calculate the
pair-wise co-occurance matrix (this is slightly different
from the conventional defination of co-occurance ma-
trix where a particular pixel is considered in two dif-
ferent pairs for a given displacement while computing
the entries in the matrix. In the current description,
a pixel is considered only once for a given displace-
ment i.e, none of the pixel pairs are overlapping in
our defination) of the given data for different displace-
ment between the pixel pair (as per given transform
eqaution). Normally the displacement between pixel
to pixel (pixel pair) is considered as (1, 0), but for few
highly textured images, better embedding capacity is
observed for different distances along different direc-
tions.
Implementation is done for all pairs of pixels and for
a given displacement we could obtain a co-occurance
matrix of rhombus type (domain S ∈ [0, L] x [0, L])),
that satisfies the constraint eqn 11. The same concept
can be extended to generalized transform as mentioned
in Alattar [1]. The co-occurance matrix for such type
of m-tuple data would be a co-occurance tensor for
(m − 1) displacements with respect to the first pixel.
Although all subsequent analysis carry forward, we ex-
plain for only m=2.

2. Embedding and Decoding Algorithm: As far as the con-
cept is concerned, it can be applied to any arbitary
dataset and one can use any technique for data em-
bedding as mentioned previously. The implementation



1: Embedding capacity calculated from co-occurance ma-
trix for Lena image for different displacements.

Displacement Embedding Capacity(bits) bpp
(0,1) 29,568 0.4512
(0,2) 26,100 0.3982
(0,3) 23,272 0.3551
(1,1) 28,452 0.4341
(1,2) 24,782 0.3781
(1,3) 21,896 0.3341
(2,1) 31,372 0.4787
(2,2) 29,234 0.4460
(2,3) 27,018 0.4122
(3,1) 29,288 0.4469
(3,2) 26,046 0.3974
(3,3) 23,478 0.3582

for RCM based watermarking proposed by Coltuc [4]
is used in our study. The embedding and decoding al-
gorithms follow equations 9 and 10, with a constraint
of equation 11.

3. Embedding Capacity: Considering equations 9,10 and
11, we plot the co-occurance matrix of an image for dif-
ferent displacements and then adding up all the points
in the rhombic region gives us the overall embedding
capacity (the final embedding capacity will be obtained
by substracting the payload from the total embedding
capacity). Thus the embedding capacity is the cardi-
nality of the set of points in the co-occurance matrix
within the constraint region. This is illustrated in Fig
1. The payload includes the LSB’s of pair of pixels
which violate constraint equation 11.
Let A be the total number of pairs, and let E be the
total pairs with embedded information (i.e E is the
total embedding capacity for the image). Besides the
payload, the LSB of the first pixel of the other A − E
pairs is to be stored, that is only 2E − A bits is the
final space for watermark to be embedded. The final
embedding capacity for the image is calculated as:

C =
2E − A

2A
bpp. (12)

To ensure that there is space for embedding, it is to
be noted that a practical embedding capacity will ex-
ist only till the time, the total embedding capacity
E > A/2.

For the co-occurance matrices of different direction
and distances, we consider the one which provides the
maximum embeding capacity. The particular displace-
ment which corresponds to the maximum embedding
capacity is chosen to select the pixel pair (x, y). Con-
sidering above combinations, we proceed towards ac-
tual watermarking as per steps mentioned in embed-
ding and decoding part. Table:1 shows the embedding
capacity for Lena image for various choices of displace-
ment for pixel pairing. For this particular image, the
highest embedding capacity is obtained for displace-
ment (2,1) which is chosen for watermarking purposes.
For a different image, the corresponding pairing will be
different.

2: Embedding capacity for displacements (0,1) and (1,2) as
computable from the co-occurance matrices for Lena image
for a control distortion factor δ = 50.

3: An autoregressive model for the image.

4. Incorporation of control distortion constraint: For low
data embedding applications, one can go for control
distortion mechanism which improves the perceptual
quality of image, as only those pixel pairs will be trans-
formed which satisfy condition below [4]

|x − y| < δ, (13)

where δ is the threshold which reduces the embedding
capacity of the image. This constriant allows only
those pixel pairs which, in the co-occurance matrix, lie
within the δ units of off-diagonal elements. This, along
with constraint given in eqn 11 defines the embedding
capacity as shown in Fig 2. From the cardinality of the
set, the capacity can again be computed in the same
way.

5. Control distortion under image parameterization: Till
now we have been calculating the embedding capac-
ity using a non-parametric method. This required the
construction of co-occurance matrices. If a model for
the image is given, it may be possible to compute the
capacity directly from the model parameters θ.

For an autoregressive model illustrated in Fig 3, the
output data vector will be x. The embedding capacity
could then be computed from the probabilty:

P{[|xi − xi+d| < δ | θ]
\

[(0 ≤ xi, xi+d < L)]} (14)

where d is the chosen displacement.

6. Multiple Embedding: To increase the capacity of the
image further, we suggest that one can go for multi-
ple itreations of the watermarking at the cost of PSNR.
This need not be done for the same displacement again.
The best thing is to find the embedding capacity of
the watermarked image using the same concept of co-
occurance matrix and then based on the highest em-
bedding capacity in the first pass for a particular dis-
placement, one can watermark it again subsequently



4: A few sample images of varying textural contents for
watermark embedding purposes.

using this embedded image as the input. This contin-
ues.

Theorem 1. For a multipass embedding scheme, the car-
dinality of the set S = {(x, y) | [{|x − y| < δ}

T
{0 ≤ x, y <

L}]} always decreases after every pass of embedding.

Proof. Since pixel pairs (x, y) which do not satisfy |x−
y| < δ are not used for embedding, these pixel values do not
change and hence none of the pairs in the dark region in Fig
2 can come inside the shaded region. On the contrary, the
pairs within the shaded region due to change in LSB and
the transformation(eqn 9) while embedding may come out
of the range |x − y| < δ. Hence the proof.

The iterative scheme of embedding stops when there is prac-
tically no further space for embedding watermark bits. Thus,
although the over all embedding capacity increases, the ca-
pacity per individual iteration reduces. Thus multiple em-
bedding could be done till the time no space is left for em-
bedding. i.e. E > A/2 condition is no more satisfied.
Normally the embedding gets over by 5-6 iterations but, for
highly textured images, the embedding capacity may get
over earlier. Also the embedding capacity gets exhausted
much earlier as we decrease the value of δ. This suggests
that for high PSNR applications, the embedding capacity is
very limited.

4. EXPERIMENTAL RESULTS
The presented concept was experimented on several com-

monly known images. We present results only for 3 standard
images, as shown in Fig 4, for brevity. We study the fol-
lowing characteristics while embedding the watermark: how
does the cover image appear after embedding, how does the
PSNR change as the distortion δ and the number of passes
increase, and how does the PSNR change as the amount of
embedding is increased. In Fig 5 we display the results of
embedding a watermark in Lena image under no control dis-
tortion condition for four different passes. Any distortion is
barely visible in Fig 5(a) after the first level of embedding
when the embedding load is 0.4787 bpp. After the second
pass, the load goes upto 0.8957 bpp, but the distortion is

5: Watermarked copies of Lena image after multiple em-
bedding a)single, b)twice, c)thrice, d) four times, without
control distortion.

still tolerable. After the third pass, the embedding load be-
comes 1.2392 bpp but the distortion becomes quite notice-
able. After the fourth pass when the load becomes 1.4602
bpp, there is a significant distortion. Hence it may not be
advisable to attempt to embed any more bits into the im-
age (although some embedding capacity is still available in
further iterations). It may be noted that as the embedded
load increases, the cover image becomes more susceptable by
attacks in terms of detectability of existance of watermark.
We do not investigate this issue in this paper.

In Fig 6(a) we present the effect of varying the control
distortion parameter δ during embedding. As δ is small, the
cardinality of the set of points satisfying the embeddability
criterion is quite small and hence the corresponding bpp is
small. As δ increases, the capacity increases initially slowly
and then rapidly to saturate toward a value close to 0.5 as
suggested in eqn 12. This plot also shows that the capacity
also depends on the textural contents of the cover image.
For a predominantly low pass image ’Pepper’, the capacity
is higher than that of a slighty more busy picture ’Lena’. For
the very busy picture ’Baboon’, the capacity is even lower.
In Fig 6(b) we show the corresponding effect on the PSNR
of the embedded cover image. Quite naturally, as the em-
bedded load increases, the PSNR decreases and the PSNR
gets more affected if the original cover image has very high
frequency contents.

For Multiple iterations, the embedding capacity goes on
reducing for further iterations as some of the pixel pairs
which were in the area before watermarking (i.e satisfying
the constriant) has now come out of the area (i.e. they do
not satisfy the constraints now). This can be seen from Fig
7(a). This plot experimently verifies the statement in the-
orem 1. But the over-all (final) embedding capacity of the
image increases as we add the embedding capacities of indi-
vidual iterations. This can been in Fig 7(b). It can be clearly
observed for this figure that as δ increases, once can run
multiple passes to embed more watermak bits. For smaller
choice of δ (and thus more stringent condition on output
PSNR), one may not be able to continue that many itera-
tions as the cardinalty of the admissibilty set approaches to



6: Results of single pass embedding. a) capacity for different
values of δ and b) corresponding PSNR-bpp relationship.

7: Results of multipass embedding for Lena image for vari-
ous values of control distortion parameter δ. a)Incremental
gain in capacity per iteration, and (b) cumulative gain as
iterations proceed.



8: Results of multi-pass embedding displaying bpp-PSNR
relation for Lena image for various values of δ

zero very quickly. For example, when δ = 5 only, all options
to embed watermark get exhausted in the first pass itself.
But how does this affect the PSNR value ?. This is plotted
in Fig 8 as a function of embedded load (in bpp) for various
values of δ and the corresponding multiple passes. This is
an impotant plot as it summarizes all earlier plots for the
cover image Lena.

One can easily make out that the maximum embedding
capacity for lena image in a single iteration is 0.478 bpp with
a PSNR of around 29dB. The same embedding capacity can
be obtained with a higher PSNR using multiple embedding
and a better choice of δ. This can be seen from figure 8,
where one can get a bpp of around 0.5 bpp with a reasonably
good PSNR of 34 dB. The value of δ chosen for this is 10.
One can thus decide a wise bpp-PSNR combination with a
better choice of control distortion factor δ to obtain it. This
plot also shows that a single pass embedding scheme is not
PSNR-efficient. One should rather use multiple passes to
embed with an appropriate δ value. Needless to say that the
embedding capacity is also dependent on the textural details
of the cover image. In Fig 9 we show this dependance for
the three different images Peppers, Lena and Baboon, each
with increasing textural details. Fig 9(a) shows that as δ
increases, the capacity increases in all cases, but the increase
is more for the less busy images. Similarly Fig 9(b) shows
that there is an equivalent penalty in PSNR as δ increases.
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6. CONCLUSIONS
A novel technique of calculating the embedding capacity

from the given data without having to do actual watermark-
ing has been suggested in this paper. The proposed concept
is equally applicable and with slight modification extend-
able to other difference expansion based schemes also [5, 8,

9: Comparision of results for different cover images. a)
capacity utilization, and b) PSNR values for different values
of control distortion factor δ.



12]. The results so obtained exactly match the results of
actual embedding capacity after watermaking. An exper-
imental analysis shows that the multipass embedding not
only improves the embedding capacity (bpp value) but also
improves the PSNR for appropriate selection of control dis-
tortion parameter δ.
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