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ABSTRACT
A novel technique for vectorization of engineering drawings
is presented. The novelty of the algorithm lies in exploiting
certain digital-geometric properties of straightness to vector-
ize inclined line segments and curve segments after vectoriz-
ing the horizontal and the vertical pieces using the conven-
tional morphological opening. The primitives, hence vector-
ized, are classified into (i) horizontal, (ii) vertical, (iii) inclined
line segments, and (iv) curved segments. Such a classifica-
tion expedites the reconstruction of an engineering draw-
ing from the vector format. Experimental results on several
benchmark datasets have been given to demonstrate its ef-
ficiency and elegance.

Keywords
Vectorization, Engineering drawings, Morphological open-
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1. INTRODUCTION
Systems that can convert images of engineering drawing

into vector format are in high demand today. A vector-
ized representation has multifaceted advantages like reduced
memory requirement, ease of maintenance, and a hierarchi-
cal representation of their structure and content. Such a
representation can readily be used for editing, browsing, in-
dexing, and filing of document images [17, 18, 19]. Exclu-
sive systems have been designed, therefore, over the last few
decades, e.g., image and diagram extraction [6, 10], logo
detection [2, 13], etc. Techniques for graphics recognition
have also been proposed, which mostly perform line or curve
recognition in one or two stages without any higher level pro-
cessing [7, 14, 16]. An overview of these, along with their
performance evaluation, may be seen in [18].

The focus of our work is vectorization of drawings after
segmenting out the text from the document image. The
first step of vectorization is to process the raster image in
order to extract a set of lines, arcs, etc. Existing approaches
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(a)A portion of an input document image containing text
annotations embedded in the graphics.

(b)Text annotations (shown in black) segmented out
from the graphic part (shown in gray).

Figure 1: Illustration of our procedure of text-
graphics segmentation on a sample engineering
drawing consisting of embedded text in a graphic
component.

for detection of lines, arcs, etc. are mostly based on Hough
Transform, which consumes a large amount of CPU time [5].
Other methods include skeleton-based approach [4], statis-
tical and structural analysis [20, 21], predicate logic [9], etc.

In our work, we have used tools from mathematical mor-
phology to detect orthogonal (vertical and horizonal) line
segments present in a graphic assemblage. Such morpholog-
ical operators are endowed with high-speed output while ex-
tracting orthogonal segments with desired level of accuracy.
After this, a novel digital-geometric technique is used to iden-
tify all the long-and-slanted line segments in the raster image
as well as the arcs and arbitrary curve segments as sequences
of short-and-continuous (piecewise) straight segments. Note
that, our approach is different from “dominant point de-
tection”; “dominant points” signify only high-curvature or
terminal points, whereas our approach yields multiple vec-
tors for a long curve although it may consist of only low-



(a)A portion of an input document im-
age I containing text annotations
embedded in the graphics.

(b)Text annotations (shown in gray)
segmented out from the graphics
part (shown in black) to obtain Ig.

(c)The image Ie containing the edge
map obtained by Canny edge detec-
tion algorithm.

Figure 2: An illustration of the preprocessing in our algorithm on a sample engineering drawing present in
a document image.

curvature points (e.g., an arc of a digital circle with large
radius). To reduce the error incurred by skeletonization, we
have used Canny edge detection algorithm [1]. Thus, for
each thick segment of a graphic piece, we have a pair of
(orthogonal or inclined) straight or curved edges (as piece-
wise straight segments, owing to their discreteness), which,
in turn, facilitates the reconstruction of an original graphics
from its vector form.

A brief outline of this paper is as follows. Section 2 de-
scribes the preprocessing, which results in the text-graphics
segmentation followed by extraction of the graphics bound-
aries. After this, the proposed algorithm is presented in two
parts: Section 3 is on morphological opening used to detect
orthogonally straight pieces and Section 4 contains a brief
discussion on digital straightness and how it is employed to
vectorize straight and non-straight edges of arbitrary orien-
tations and shapes. Section 5 points out the technicalities
of reconstruction from the vector format, adopted in our al-
gorithm. Section 6 shows some experimental results and the
corresponding reconstruction errors. Finally, we conclude in
Section 7 with the salient features of the algorithm and its
future prospects.

2. PREPROCESSING
The input to our algorithm is a gray-scale document im-

age, denoted by I. By applying the texture-based tech-
nique given in [3], our algorithm first removes all half tones
from the input image. Next, it is converted to a binary
image Ib by the well-known technique proposed in [12], so
that the text annotations embedded in the drawing are seg-
mented out successfully from the binary image using the
technique of [11].

Graphics segmentation using connected component anal-
ysis yields good results provided the lines and arcs consti-
tuting each graphical component are properly connected.

However, graphics consisting of dotted (or dashed or dot-
dashed) or short line segments are difficult to detect as the
size of an individual component is similar to a text char-
acter. Hence, the individual connected component does not
signify a meaningful graphics entity; whereas, a sequence (or
group) of such components, taken together in an appropri-
ate way, represents a substantive graphics component. Thus,
the lesser part of the problem is detecting individual graphic
elements, and the greater part lies in analyzing them for suc-
cessful vectorization targeted to achieve the minimal output
complexity.

In order to perform the text-graphics segmentation from
a binarized document image, Ib, we have used the procedure
of [11]. A typical result of text segmentation from a graph-
ics containing embedded text components is shown in Fig. 1.
After removal of text annotations embedded in the drawing,
the binary image is converted into a “pseudo gray-scale im-
age”, namely Ig, by convolving the image Ib with a Gaussian
filter of size 3×3. As mentioned earlier, the Canny edge de-
tection algorithm is now applied on this pseudo gray-scale
image for detection of edges of the graphic objects present
in the image. Hence, we obtain the edge map Ie (a binary
image) from Ig. A result after this preprocessing is shown
in Fig. 2.

3. STAGE I: MORPHOLOGY-BASED
The edge-mapped binary image Ie contains horizontal and

vertical straight line segments apart from circular arcs and
arbitrary curve segments, as mentioned earlier. In Stage I,
we detect only the horizontal and the vertical line segments
from Ie, using morphological opening, which works as fol-
lows:

1. Morphological opening operation with structuring el-
ement 1 × 4 is applied on Ie (The size 1 × 4 of the



(a)Horizontal line segments. (b)Vertical line segments.

Figure 3: Horizontal and vertical line segments obtained by morphological open operation on the edge map
shown in Fig. 2(c).

Figure 4: Illustration of our procedure of detecting
inclined straight pieces on a part of the engineering
drawing in Stage II (Fig. 3).

structuring element ensures that line segments having
length less than 4 will not be recognized or vectorized.)

2. The length of each horizontal line segment is calcu-
lated; if the length of a segment is less than τhv (= 8
in our experiments), then the concerned line segment
is discarded. The resultant image thus consists of hor-
izontally straight segments each of length at least τhv,
and is denoted by Ih. An output of this step is shown
in Fig. 3(a).

It is evident that in the digital domain, each arbitrary arc
may be considered to be piecewise straight, wherefore we
may get some locally straight parts of an arc (which is ac-
tually not straight as a whole) as a horizontal line segment
(Fig. 3(a)). This is really very difficult to predict using mor-
phological tools, which is, however, taken care of in Stage II,
where the notion of digital straightness can successfully de-
termine long straight pieces of arbitrary orientation, thereby
recognizing the rest as arbitrary curves. In order to detect
vertical line segments, a similar procedure is repeated. Here
the size of the structuring element is 4 × 1. The identified



Figure 5: Vectorization of curved segments. Further
results and the input image are shown in Fig. 7.

vertical line segments are shown in Fig. 3(b) and stored in
the image Iv.

After identifying the horizonal and the vertical line seg-
ments, the image Ih ∪ Iv is subtracted from Ie to get the
resultant image I ′hv = Ier (Ih ∪ Iv). The image I ′hv consists
of only inclined straight lines and arbitrary curve segments.
We have identified the inclined line segments and as well as
the curved segments from the image I ′hv, as explained next.

4. STAGE II: DIGITAL-GEOMETRIC
A (digital) curve C ∈ I ′hv is a sequence of pixels in 8N-

connectivity; i.e., (i, j) ∈ C and (i′, j′) ∈ C are neighbors
of each other, provided max(|i − i′|, |j − j′|) = 1, and the
chain codes constituting C are from {0, 1, 2, . . . , 7} [8]. If
each point in C has exactly two neighbors in C, then C is a
closed curve; otherwise, C is an open curve having two pixels
with one neighbor each, and the remaining pixels with two
neighbors each. For a self-intersecting curve C, we split C
into open or closed curve segments, as the case may be.

In order to determine whether a segment C is straight or
not, there have been several studies since 1960’s [8]. In [15],
it has been shown that C is the digitization of a straight line
segment if and only if it has the chord property.1

In this work, to detect a straight edge, some regularity
properties of digital straightness have been used [15], which

1C has the chord property if, for (p, q) ∈ C × C, p 6= q, for
any (x, y) on the chord pq (real line segment joining p and
q), ∃(i, j) ∈ C such that max {|i− x|, |j − y|} < 1.

τw

τw
vi

vj+1

eip

eL
ip

eR
ip

ej

vi+1

vj

filled

Case 1: There exists one horizontal edge ej within the
vertical distance τw from ei and no edge on the other side
of ei. Hence, ei and ej form two parallel edges (possibly
partial) of a thick line segment.
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Case 2: There exist two edges within the vertical dis-
tance τw from ei; the edge ej lies left and the edge ek lies
right of ei. Hence, there arises an undecidability regard-
ing the paired edge of ei.

Figure 6: Cases considered in our algorithm of re-
construction.

can be derived from the chord property. A curve C is digi-
tally straight if and only if its chain codes have at most two
values in {0, 1, 2, . . . , 7}, differing by ±1(mod 8), and for one
of these, the run-length must be 1 (Property R1). Also, if s
and n be the respective singular code and non-singular code
in C, then the runs of n can have only two lengths, which are
consecutive integers (Property R2). Properties R1 and R2
provide a sense of uniform direction related with straight-
ness, since we have to “step along a digital line” mostly in
a particular direction (out of eight possible) and occasion-
ally in another (differing by 450, since it’s the digital plane).
However, the uniformity of the occasional change in direc-
tion is captured in Property R3, which is more stringent
on digital straightness: One of the run lengths (i.e., of s)
can occur only once at a time. Finally, the recursive way of
defining uniformity of run-lengths of n is provided by Prop-
erty R4: For the run length that occurs in runs, these runs
can themselves have only two lengths, which are consecutive
integers, and so on.

4.1 Detecting Digitally Straight Pieces
It is evident that in the image I ′hv obtained in Stage I,

there may exist digital curve segments, which appear to
be straight, but are not “exactly digitally straight” due the
stricter digital-geometric properties of straightness, i.e., R3
and R4. Hence, in our algorithm, in order to detect approxi-
mately straight pieces, we have resorted to R1 and have done
certain modifications for R2. We have dropped R3 and R4,



(a) Instance of an image Ie (after pre-
processing).

(b)End-points (count = 178) of all the
vectors.

(c)Reconstructed unfilled edges using
the end-points.

Figure 7: Vector format and its edge-wise reconstruction for a text-segmented engineering drawing ‘e01’. See
Fig. 8 for complete results.

since they impose very tight restrictions to be accepted as
digitally straight. Such a strategy has been made to suc-
cessfully extract the (approximately) straight segments of
arbitrary orientation, and some of its major advantages are
as follows:

• avoiding tight enforcing of digital straightness, espe-
cially for the curves which are possibly straight in the
original drawing, but after digitization and subsequent
processing, contains digital aberrations;

• reducing the number of output vectors;

• reducing the run-time of detecting the straight pieces;

• usage of integer operations only.2

Each digital curve segment C ∈ I ′hv is characterized by
the following sets of parameters:

1. orientations parameters given by n (non-singular ele-
ment), s (singular element), l (length of leftmost run
of n), and r (length of rightmost run of n), which
play decisive roles on the orientation of the concerned
curve, C. An example: For a curve segment having
chain code 04105105104104105, we have n = 0, s = 1,
l = 4, and r = 5.

2. run-length interval parameters given by p and q, where
[p, q] is the range of possible lengths (excepting l and r)

2No floating point operations are required; only integer op-
erations for addition, shift, and comparison are necessary.
Even multiplications and divisions have been avoided, e.g.,
to compute b(p + 3)/4c, 3 is added with p, followed by two
successive right shifts.

of n in C that determines the level of approximation,
subject to the following two conditions:

(C1) q − p ≤ d = b(p + 1)/2c.
(C2) (l − p), (r − p) ≤ e = b(p + 1)/2c.

It may be noted that, in our approach of detecting ap-
proximately straight pieces of arbitrary orientations, we have
strictly adhered to Property R1, since it is strongly related
with the overall straightness of a digital curve segment. How-
ever, for R2, we consider that the run lengths of n can vary to
an extent depending on the minimum run length of n. The
reason for modifying R2 to the Condition C1 is that, in order
to properly extract the approximately straight segments, we
have permitted an allowance of approximation (d), which is
realized by C1. Given a value of p, the amount d by which q
is in excess of p indicates the deviation of the approximately
straight piece from the actual/real line, since ideally (for
an exactly straight piece) q can exceed from p by at most
unity. Clearly, the error incurred is decided by d; lower the
run length p of n, lower would be this allowance of approx-
imation. So, we keep the provision for adaptively changing
this allowance so that elongation of a detected straight piece
is made as much as possible until it loses its overall approx-
imate straightness.

Another parameter incorporated in C2 is e, which, when
coupled with C1, ensures that the extracted straight piece is
not badly approximated due to some unexpected values of
l and r. It may be noted that the properties R1–R4 do not
give any idea about the possible values of l and r (depending
on n) [8]. However, we have imposed some bounds on the
possible values of l and r, in order to ensure a reasonable
amount of straightness at either end of an extracted straight
piece. The values of d and e considered in these conditions
are chosen in a way so that they are computable with inte-



(a) Input image of an engineering draw-
ing after text segmentation.

(b)Output image after reconstruction
from the vector format (Fig. 7c).

(c) Errors of reconstruction (red: posi-
tive error, blue: negative error).

Figure 8: Final output after reconstruction from the vector format (Fig. 7).

ger operations only. Someone may also consider some other
values, such as d = b(p + 3)/4c and e = b(p + 1)/2c, or so,
provided it does not produce any undesirable result.

5. RECONSTRUCTION
An engineering drawing is made up of straight and curved

segments of varying thickness. We consider that the max-
imum thickness over all segments is τw, which serves as a
search parameter in our algorithm. In our experiments, we
have taken τw = 12. A thick segment S consists of two
parallel sequences of edges — each edge being of one pixel
width — in Ih or Iv or I ′hv. If, w.l.o.g., S is a horizontal
segment, then its constituent horizontal edge pairs are all
detected in Stage I. The set of all such horizontal edges is
present in Ih, which is obtained from Ie (Sec. 3). We tra-
verse the edges of Ih one by one, and find its nearest edge
in Ih. Let ei(vi, vi+1) be the horizontal edge of Ih, which
is currently under traversal. We compute the slope si of
ei from its two end-points3. While traversing ei from vi to
vi+1, we consider the orthogonal digital straight line of slope
− 1

si
passing through each point p ∈ ei. We traverse from

p along each of the two directions, namely eL
ip and eR

ip, di-
rected leftwards and rightwards w.r.t. ei (Fig. 6). In each
direction, we traverse for a distance of at most τw, to search
for a pixel of some other horizontal edge contained in Ih.
While doing so, there may arise the following cases:

Case 1.
We reach a point from p′ along eL

ip, which is one of the
(end-) points, namely vj , of some other edge ej ∈ Ih. (In
case p = vi, we may get some point other than an end-point
of ej .) If no other edge is found to lie on the other side

3si = 0 for each ei ∈ Ih, and 1/si = 0 for each ei ∈ Iv;
however, we need si while considering ei ∈ I ′hv.

of ei and within a vertical distance of τw from ei, then it
implies that ej is the pairing edge of ei (Fig. 6). We com-
pute the midpoint m of p and q and apply the flood filling
algorithm in Ie with the right-neighbor point of m as the
seed, to fill all the pixels lying inside the overlapped portion
of the paired edges (shown in dark gray in Fig. 6). While
filling, we mark all the edge points of ei and ej — which lie
in the 4-neighborhood of a filled pixel — as ‘visited’, and
do not consider these edge points for subsequent steps of
reconstruction.

Case 2.
There exist two (or more) edges within the vertical dis-

tance τw from ei; the edge ej lies left and the edge ek lies
right of ei (Fig. 6). This gives rise to an undecidability for
pairing the edge of ei; either ej or ek has to be be paired
with ei but the decision is kept pending and possibly solved
while ej or ek is traversed. Hence, we traverse the next edge
ei+1 with no reconstruction based on ei.

Case 3.
There is no edge in Ih parallel to ei; so we traverse the

next edge, ei+1.

Similar treatments are done for edges of Iv and I ′hv also,
which finally produces the reconstructed output image J
that closely matches the original image, I.

6. EXPERIMENTAL RESULTS
We have implemented the algorithm in C on an Intel

Core 2 Duo CPU E4500 2.20GHz machine (Mandriva Linux
2008). We have tested the algorithm on several benchmark
datasets containing gray-scale images of engineering draw-
ings, one being http://www.iupr.org/arcseg2007. We have
already shown some results in the previous sections. Fig-



(a) Input image (gray-scale, consists of 25351 object pix-
els after binarization in preprocessing: Sec. 2) of an-
other engineering drawing.

(b)End-points (count = 659) of the vectors.

(c)Vectors reconstructed. (d) Final image after reconstruction (error= 13.86%).

Figure 9: Results on another engineering drawing ‘g01’ (input source: http://www.iupr.org/arcseg2007).

ure 7c shows how we get the edges for aiding the reconstruc-
tion from the vector format shown in Fig. 7b. In Fig. 8,
we have given the result of final reconstruction using the
intermediate edge map of Fig. 7b. To show the efficiency
and accuracy of our algorithm, the error image is shown in
Fig. 8c. The error of reconstruction in the reconstructed
output image J is of the following types:

Positive error.
A point p(i, j) corresponds to a positive error if and only

if J [i][j] = 0 (i.e., background point) and I[i][j] = 1 (i.e., ob-
ject point). Hence, total positive error in the output image
J is given by |{(i, j) : I[i][j] = 1 ∧ J [i][j] = 0}|.

Negative error.
p(i, j) corresponds to a negative error if and only if J [i][j] =

1 and I[i][j] = 0. Hence, total positive error in J is given by
|{(i, j) : I[i][j] = 0 ∧ J [i][j] = 1}|.

In Fig. 8c, total error is 2856 points. The input image
(Fig. 8a) consists of 19837 object points. Hence, the in-
curred error is 2856/19837 = 14.40%. Another set of exper-
imental results is given in Fig. 9. It also shows how straight
edges are successfully vectorized by our algorithm, irrespec-
tive of the lengths of the edges (notice the inclined edges).
The curved segments, which are mostly circular arcs, require
shorter vectors owing to the changing curvature, as evident
from our experimental results. Table 1 presents a summary
of results including CPU time for the images of Fig. 8, Fig. 9,
and a few other images.

7. CONCLUSION
We conclude this paper by reiterating the plus points of

our approach. First and foremost, it is fully automatic with
no manual intervention or parameter entry. The strength
of morphological open operation in detecting horizontal and



Table 1: Experimental results for some images.
image size N M % error CPU time (secs.)

×row +ve −ve SI SII total

e01 394×610 19837 178 5.98 8.42 0.51 0.83 1.34
e02 480×624 21659 492 902 327 3.37 9.30 5.42
g01 988×784 25351 659 6.03 7.83 0.38 1.40 1.78
g02 740×634 1312 3.88 341 106 3.85 12.38 2.17

SI, SII: Stages I, II; N, M = #object points,
#vector points.

vertical line segments and the effectiveness of digital-geometric
properties of straightness in obtaining the inclined straight
edges as well as curved segments (as a sequence of piecewise
straight segments) have been used in tandem to vectorize
an engineering drawing after necessary preprocessing. As
found by our experimental results, the reconstructed output
is accurate up to 83%-88%. The level of accuracy obvi-
ously depends on several factors, such as amount of noise in
the original gray-scale image, jaggedness of the curves and
line segments, and the ratio of straight lines and curve seg-
ments. Further scope related with this work lies in designing
a precision-based algorithm, which would take the maximal
error of vectorization as input and hence report a vector for-
mat of lesser size as desired. Such a reduced vector format
may be useful for fast cataloguing, browsing, and retrieval
purposes of engineering drawings present in a large database
of digital documents.
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