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ABSTRACT
The fusion of hyperspectral images is an important area in
research and applications. Several fusion techniques have
been developed in the literature for visualization of hyper-
spectral data. The amount of computation needed for such
techniques is directly related to the volume of the data. Most
of these techniques involve a significant amount of compu-
tation due to high volume of the data, making the fusion
processes slow. We analyze the statistical characteristics
of this data in order to develop a technique for faster fu-
sion. The image bands in the hyperspectral data represent
the response of the scene collected over contiguous narrow
bands of wavelength. The adjacent bands being captured
over neighboring wavelength bands, these images exhibit a
very high degree of similarity. The fusion of these adjacent
image bands, thus adds a very little amount of additional
information. We exploit this redundancy in the data to pro-
vide a novel scheme for rapid visualization. We propose a
scheme for the selection of a subset of images from a hyper-
spectral image cube that can produce fusion results with a
very small amount of degradation in the quality compared to
the quality of the result using the same technique of fusion
applied over the entire data.

Keywords
Hyperspectral image fusion, image entropy, redundancy elim-
ination

1. INTRODUCTION
The research in the area of hyperspectral image processing

is of growing interest due to the distinct advantages offered
by the hyperspectral images in terms of providing abundant
information of the scene over a wide wavelength. The appli-
cations of hyperspectral image processing are being explored
in various areas like, remote sensing, geological surveying,
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surveillance, and medical imaging [1, 2, 3]. Since the hy-
perspectral data contain around 200-250 images of the same
scene acquired using narrowband sensors, visualization of
these images is a difficult problem. Therefore, a computa-
tionally efficient technique of visualization of this rich source
of information is one of the important steps in the processing
of hyperspectral data for a quick overview and effective in-
terpretation. However, due to a very large number of image
bands, visualization of this data poses a challenging problem
in image fusion in terms of computational costs and memory
requirements.

Several image fusion techniques have been proposed in
the literature for an efficient visualization of the hyperspec-
tral data. The multi resolution analysis (MRA) based hy-
perspectral image fusion techniques have been analyzed for
their performance in [4]. The principal component analysis
(PCA) has been used as a classical tool for the dimension-
ality reduction. The hyperspectral fusion techniques based
on the PCA are described in [5, 6]. However, due to a very
high amount of computation, these techniques tend to be
very slow in nature. Jacobson et al. [7] proposed a pixel
based fusion technique by assigning fixed weights to each of
the bands in the hyperspectral data, which are based on the
certain optimization criterion for some of the commonly used
color spaces. A bilateral filtering based technique for the
visualization of hyperspectral data has been recently pro-
posed [8], where a weight for each of the pixel in the data
is uniquely defined to preserve the minor features during fu-
sion. Some attempts for a quick visualization of the image
contents in the form of an RGB image include the methods
for selection of three image bands satisfying certain crite-
ria [7, 9]. However, these approaches select only three bands
for the display, and they do not involve any kind of image
fusion. For the data level image fusion, available techniques
evaluate the importance of a pixel within its spatial neigh-
borhood, and then assign appropriate weights to the pixels
while fusing them over various image bands. Since this step
requires a significant amount of computation, usually on a
per pixel basis, the time taken for the fusion is directly pro-
portional to the number of image bands. Some of the pixel
based techniques for the fusion of hyperspectral images are
described in [4, 7, 8]. An observer has to wait until the com-
pletion of calculation of weights for the entire set of image
bands, followed by the successive weighted addition to get
the final result of fusion. Therefore, the fusion techniques
tend to be slow due to the large number of image bands.

In this paper, we present a novel method for fast fusion of
hyperspectral images. We provide an information theoretic



strategy for choosing specific image bands of the hyperspec-
tral data cube. These selected bands can be fused using
any existing and suitable pixel based fusion technique. Our
contribution lies in providing a much faster scheme with a
minimal degradation in the fusion quality.

2. PROPOSED APPROACH
In case of hyperspectral imaging sensors, these images are

acquired over narrow but contiguous spectral bands typically
about 10 nm, in the visible and infrared spectra. There-
fore, the neighboring image bands in the hyperspectral data
exhibit a very high degree of spectral correlation. Hence,
when a fusion algorithm operates over two contiguous im-
age bands, a very little additional information is contributed.
Instead of processing the image bands in a sequential man-
ner for the entire hyperspectral data set, a fewer number of
image bands with higher amount of independent informa-
tion can be fused to form a resultant image without much
loss in the quality of the fused image. We propose a con-
ditional entropy based approach for the selection of image
bands which are mutually less correlated in order to facil-
itate a faster visualization. As the required quality of the
fusion can be achieved using only a subset of image data, the
proposed approach is essentially much faster and is memory
efficient.

2.1 Redundancy Elimination
An image band to be fused with another should possess a

significant amount of additional information for the fusion
process to be efficient. We propose an algorithm to select
the image bands based on conditional entropy. Initially the
first band is selected for fusion, which acts as the reference.
The conditional entropy of the successive image bands with
respect to the reference band is then evaluated. The next
band is selected when the corresponding conditional entropy
exceeds a pre-determined threshold, i.e. when the additional
information content in the given band is sufficiently high.
The threshold is set to an appropriate fraction of the en-
tropy of the band under consideration. The newly selected
image band acts as the reference for the selection of the next
image band to be fused. Thus, given a set of hyperspectral
images {Ij ; j = 1, 2, . . . , N}, and a reference image Ii, the
k-th image band selected for fusion is given by,

k = arg inf
j
{H(Ij |Ii) ≥ θ}, j = i, i + 1, i + 2, . . . (1)

where H(Ij |Ii) represents the entropy of the image Ij con-
ditioned on the previously selected image Ii. The threshold
θ is chosen as,

θ = α H(Ij), 0 < α < 1. (2)

This procedure can be continued until the entire dataset
is exhausted. Any pixel based fusion technique can then
operate over this selected subset of the hyperspectral data
to generate an appropriately fused image.

The proposed scheme exploits the statistical redundancy
in the hyperspectral data. Therefore, although a fewer num-
ber of images are selected, most of the information content
of the data is captured by the band selection process. The
resultant fused image, thus, contains most of the features
of the entire data. Further, since the method does not re-
quire all these bands to be read directly into the memory
simultaneously, the method is also memory efficient.

2.2 Bounds on Computational Savings
In the proposed scheme, a band is selected if the entropy

of the band conditioned on the reference band exceeds a
threshold. Therefore, the number of bands being selected,
and the corresponding average computational requirements
in the proposed method depend on the distribution of the
conditional information H(Ij |Ii) of the image bands. Here
we analyze savings in the computation on the basis of an
appropriately chosen probability model. Since the term en-
tropy involves an expectation operator, the corresponding
quantity is a deterministic variable. We remove the expec-
tation operator from H, and call it average information. For
a given realization of the image, H may now be treated as
a random variable.

Generally, the correlation between image bands decreases
exponentially as the spectral distance between the corre-
sponding bands increases, when we may use the following
theorem to compute savings in the proposed technique.

Theorem 1. If the average conditional information H(Ij |Ii)
follows an exponential function with respect to the spectral
distance with rate parameter λ, then the average saving in
the computation is given by S = λ

ln 1
1−α

.

Proof. Let the conditional information be written as,

H(Ij |Ii) = H(Ij)
“
1− e−λ(j−i)

”
, j = i, i+1, i+2, . . . (3)

To obtain the computational savings, we use the expressions
from Eq.(1)-(2) of the band selection process.

H(Ij |Ii) = H(Ij)(1− e−λ(j−i)) ≥ α H(Ij),

or, 1− e−λ(j−i) ≥ α

or, j − i ≥ 1

λ
ln

1

1− α
(4)

Thus, a band is selected if its spectral distance from the
reference band exceeds the RHS of the Eq.(4). Therefore,
the fractional savings (S) in computation is given by the
inverse of above relation as,

S =
1

j − i
=

λ

ln 1
1−α

. (5)

The value of λ is dependent on the statistics of the hyper-
spectral data. A higher value of λ implies highly decreasing
nature of the distribution of the conditional information.
Thus, the computational saving is directly proportional to
the rate parameter. Also, for very small values of α, there
is practically no saving in computation, while higher val-
ues of α lead to very high values of the denominator in the
expression, indicating a high amount of saving at the cost
of selecting a very few image bands, thus sacrificing in the
quality of the fusion results. The expression in Eq.(5) gives
the theoretical upper bound on the computational savings.
However, in practice, the computational savings are lesser
due to the processing overhead of the calculation of the con-
ditional information.

Now, we analyze the more interesting case of hyperspec-
tral data by modeling the conditional information by an ad-
ditional term that corresponds to the perturbation by an
additive noise having a uniform distribution.



Theorem 2. If the average conditional information H(Ij |Ii)
as defined in Theorem 1 includes a perturbation by a white
additive noise uniformly distributed in [0, β], then the prob-
ability of band selection is given by

min
n

1− H(Ij)

β
(α + e−λ(j−i) − 1), 1

o
.

Proof. As defined, H(Ij |Ii) is given by

H(Ij |Ii) = H(Ij)
`
1− e−λ(j−i)´ + z (6)

where z ∼ U [0, β], and typically β � H(Ij).

Substituting the band selection criteria, we get

H(Ij)
`
1− e−λ(j−i)´ + z ≥ α H(Ij)

or, H(Ij)
`
(1− α)− e−λ(j−i)´ + z ≥ 0

or, z ≥ H(Ij)
`
α + e−λ(j−i) − 1

´
. (7)

We denote υ = H(Ij)
`
α + e−λ(j−i) − 1

´
. Then, the proba-

bility of band selection is given by,

Prob.(band j is selected, given i is the reference band)

=
1

β

Z β

υ

dz = min
˘ 1

β
(β − υ), 1

¯
= min

n
1− H(Ij)

β
(α + e−λ(j−i) − 1), 1

o
. (8)

The following corollaries may be deduced from Theorem
2.

Corollary 1. In the limit β → 0, Theorem 1 becomes a
special case of Theorem 2.

Corollary 2. From Eq.(8), max(j − i) = 1
λ

ln 1
1−α

, is

same as that in Eq.(4). Hence, the maximum achievable
savings factor in this case is also the same, i.e. Smax =

λ

ln 1
1−α

. But Eq.(8) does not tell as how tight is the bound.

Corollary 3. If H(Ij) is high, it can tolerate a propor-
tionally larger perturbation β.

3. EXPERIMENTAL RESULTS
To test the effectiveness of the proposed scheme, we have

used two standard hyperspectral data sets provided by dif-
ferent sensors- the Hyperion and the AVIRIS. The data pro-
vided by the Hyperion consists of 242 image bands, while
the AVIRIS sensor provides data in 224 bands. The pre-
processing step removes bands having near-zero responses
which is due to the molecular absorption of water and car-
bon dioxide [10]. After preprocessing, the number of useful
bands reduces to nearly 200.

We have employed two different techniques of pixel based
image fusion for the evaluation of the proposed scheme. We
have tested the proposed scheme for a recent matte based
fusion approach which uses a bilateral filter (BF fusion) [8].
Multiresolution based methods have always been preferred
in the domain of image fusion [11]. An image fusion tech-
nique using discrete wavelet transform has also been used
for the testing purposes (DWT fusion). In this technique,
each of the constituent images is decomposed upto three hi-
erarchical levels using the Haar wavelet. The low frequency
components are averaged, while the high frequency com-
ponents are fused using a weighted summation where the

(a) (b)

(c) (d)

Figure 1: Results of fusion of the AVIRIS data applied over
a subset of bands selected using the proposed approach. α
was set to 0.50 and 29 bands were selected. (a),(c) show
the results of BF fusion, and DWT fusion respectively, over
selected bands. (b),(d) show the corresponding results of
fusion of the entire data.

neighborhood energy acts as the weight. Our test results
show that in both cases the fused images over the subsets
of both of the test data, selected using the proposed con-
ditional entropy based technique are comparable in quality
to the resultant images generated over the fusion of entire
dataset using the same algorithm.

Fig.(1a) shows the result of fusion for the AVIRIS data
using the Bilateral filtering based approach where only 29
selected image bands undergo the fusion. This figure may
be compared to Fig.(1b) which represents the fusion of the
entire hyperspectral data cube. It can be seen that Fig.(1a)
retains most of the image features, and provides a visually
comparable image quality. Similar results can be seen in
Fig.(1c) which represents the fusion over a selected subset
of 29 bands using the DWT-based technique. It may be
compared to the corresponding Fig.(1d) where the entire
dataset was used for fusion. These bands were selected using
the proposed approach where the value of α was set to 0.50.

We also provide the performance evaluation of the pro-
posed approach using some of the commonly used statistical
parameters suggested in [12]. In Fig.(2), the entropy of the
fused images as more and more bands are fused progres-
sively, for various values of α can be seen, where the graph
for α = 0 corresponds to the fusion of entire data. For the
fusion of selected 29 bands, corresponding to α = 0.50 , the
entropy of the resultant fused image rises very rapidly, as
compared to the fusion of entire dataset. Thus, using the
proposed approach, it is possible to achieve fusion results in
a very short time, with a little sacrifice in the image quality.
Thus as α is increased there is more reduction in the compu-
tation. Thus Fig.(2) is also representative of the savings in



Figure 2: Performance evaluation of the proposed scheme for
the number of bands required for effective fusion of Hyperion
data for different values of α using BF fusion, and entropy
as the criterion.

(a)

(b)

Figure 3: Performance evaluation of the proposed scheme
using statistical parameters for various values of α. (a) and
(b) show the variations in entropy and average gradient of
the fused images for different values of α.

computation. It may be noted here that we assume the time
to compute H(Ij |Ii) is negligible compared to the fusion pro-
cess, which is often true due to the common assumption of
spatial memorylessness of individual bands while computing
the entropy. Fig.(3a) shows the entropies of the fused im-
ages for different values of the threshold parameter α. It can
be seen that for both the test data, the performance drops
very slowly beyond a value of 0.30 for α signifying that an
opportunity does exist to speed up the fusion process. An
another performance measure based on the sharpness of the

image of size (X, Y ) can be defined as

ḡ =
1

X Y

X
x

X
y

q
Ix

2 + Iy
2. (9)

This quantity ḡ, is called Average gradient which evaluates
the quality of image by measuring its directional gradient in
both the direction. We can make a similar observation from
Fig.(3b) which shows the variation in the values of average
gradient for various values of the threshold parameter.

Figure 4: Plots of PSNR of the fused images for various
values of α for the Hyperion and the AVIRIS data using the
BF fusion technique. The resultant image from the fusion
of the entire dataset used as a reference in each case.

In order to examine the quality of the fusion applied over
a subset of images selected using the proposed scheme, we
have analyzed the quality of the resultant fused images for
various values of the threshold parameter α against the fused
image resulting from fusion of the entire dataset using the
same fusion method. This reference image is equivalent to
the fusion of a subset selected with α = 0. Fig.(4) provides
the nature of the PSNR values of the resultant fused images
using the Bilateral filtering based technique for various val-
ues of α where the fused image from the entire dataset using
the same technique acts as a reference. For the values of α
upto 0.15, all the image bands of the AVIRIS data were cho-
sen for the fusion producing exactly the same result as the
reference image, therefore the PSNR for these images does
not exist. The PSNR values decrease as α increases indicat-
ing fewer bands are being selected. It can be seen that the
resultant image with the fusion of 48 bands (α = 0.40) gives
visually almost similar results as the reference with PSNR
more than 40 dB. Thus, a proposed technique can produce
comparable results with only 1/4-th of the dataset being se-
lected for fusion purpose. A similar nature of PSNR plot
can be observed for the Hyperion data in Fig.(4), where a
bilateral filtering technique has been used for the fusion. A
resultant image obtained from the fusion of a subset of 69
bands chosen by selecting α to be 0.45 was found to provide
a PSNR of nearly 35 dB. The PSNR does not exist for the
values of α less than 0.20, as the proposed scheme selects all
the image bands in the hyperspectral dataset, and produces
the same final result of fusion as the reference image. Similar
plots were observed for other pixel based fusion techniques
also. A visual comparison of the fusion results of the pro-
posed approach can be carried out from Fig.(5) where the
resultant images obtained from the fusion of selected subsets
of the Hyperion data using BF fusion technique are shown.
The images in Fig.(5a)–(5d) are obtained from the subsets



(a) (b) (c) (d)

Figure 5: Results of BF fusion of the Hyperion data applied over a subset of bands selected using the proposed approach.
(a)-(d) show the results of fusion for α values 0.00, 0.35, 0.50 and 0.70, respectively.

of the Hyperion data of different cardinality by varying the
threshold parameter. Fig.(5a) represents the fusion of the
entire dataset, and thus it is considered as a reference for the
evaluation purpose. Fig.(5b) is a result of the fusion of 108
selected bands of the data which reduces the computations
nearly to the half of the original. Yet, the image does not
produce any visible artifacts and gives a PSNR value of 41
dB when compared against the aforementioned reference. A
result of the fusion of selected 55 bands was found to give
35 dB of PSNR [Fig.(5c)]. A set of 24 image bands was se-
lected by choosing α to be 0.70. The resultant fused image
is shown in Fig.(5d) which was found to give a PSNR of 30
dB for the fusion of approximately 1/10-th of the data.

To quantify the closeness of fused images obtained over
a subset to the resultant image from the fusion of entire
dataset, we have also provided the analysis in terms of the
Bhattacharyya distance. This distance metric measures the
overlap between probability distributions of two images. As
in the previous case, the resultant image from the fusion of
entire dataset is considered as a reference. Fig.(6) provides
the Bhattacharyya coefficient (BC) between the reference
image and the resultant images obtained from the fusion
of a subset of image bands for different values of α for the
Hyperion as well as the AVIRIS data using BF fusion tech-
nique. In both the cases, the Bhattacharyya coefficient (BC)
monotonically increases for increasing values of α which in-
dicate reduction in the cardinality of the subset chosen for
the fusion. The initial few values for BC are zero as the
entire set of hyperspectral images was selected for the very
small values of α.

The proposed scheme reduces a significant amount of com-
putation and time, however it has an overhead of the cal-
culation of the entropy of each image band. The proposed
technique is beneficial only when the computation of actual
fusion algorithm exceeds the computation of the entropy of
each of the image band. However, except trivial and simple
techniques like averaging, for most of the existing robust fu-
sion techniques the time needed for band selection is much
smaller than the time taken for the fusion of entire dataset.
Therefore, the subset selection scheme proves to be highly
effective for complex and computationally extensive tech-
niques of fusion. The total computation W , taken for the
pixel based fusion procedure as a function of threshold α, is

Figure 6: Plots of Bhattacharyya coefficient between the
resultant image from the fusion of entire data and the re-
sultant images from the fusion of subsets selected using the
proposed approach for various values of α for the Hyperion
and the AVIRIS data using the BF fusion technique.

of the form-

W (α) = γ B(α) + cE

where B(α) represents the number of bands selected for
a given threshold α, and cE is the amount of computation
for the evaluation of entropies of the image bands for the
band selection procedure. This second term is a constant
for a given dataset. The γ factor is a proportionality factor
to account for a given fusion technique.

The amount of computation required for the fusion is lin-
early proportional to the number of images to be fused (i.e.
B(α) here). Since the number of bands selected is inversely
proportional to threshold, we may re-write the expression
for computational time with an appropriately modified pro-
portionality factor as-

W (α) =
γ′

α
+ cE . (10)

For the quality based analysis of the proposed technique
against the computational requirements, we have presented
the plot of PSNR of fused images against the total time
taken by varying threshold values. In Fig.(7) these plots
for the Hyperion and the AVIRIS dataset are given for a
BF fusion technique. A monotonically increasing nature of



Figure 7: Plots of PSNR of the fused images against the
timing requirements for the Hyperion and the AVIRIS data
for the BF fusion technique. The resultant image from the
fusion of the entire dataset used as a reference in each case
for the evaluation of the PSNR.

these plots indicate the improvement in the quality of the
fusion result at the expense of computational requirements.

4. CONCLUSIONS
We have proposed a novel information theoretic approach

for the selection of specific image bands in the hyperspec-
tral data. These selected bands are mutually less correlated,
and thus they retain most of the information contents in
the data. The fusion of this subset of hyperspectral data,
therefore, is capable of representing most of the data fea-
tures without any significant degradation in the quality. As
only a fraction of the entire data is being fused, the pro-
posed approach is computationally much faster. We have
also provided a theoretical bound on how much computa-
tional savings can be achieved. An extensive performance
evaluation of the proposed technique in terms of the qual-
ity of the subsequent fusion results, and computational time
has also been presented.
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