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ABSTRACT
A novel algorithm for vectorization of line-shaped objects
present in a gray-scale image is proposed. The algorithm
derives the straight edges of maximal length from the ob-
ject boundary using the notion of Farey sequence, and sub-
sequently vectorizes them by an efficient technique of geo-
metric refinement. The method would be computationally
attractive when vectorization of a large database of gray-
scale images is in question. Experimental results on several
datasets including road maps demonstrate the usefulness,
efficiency, and elegance of the proposed algorithm.
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1. INTRODUCTION
Automated machine recognition of objects and patterns is

an active area of research. Understanding of such objects as
a collection of vectors or a collection of polygons/poly-chains
is of great interest in recent times, which may be seen in
several works on line vectorization. For example, [9] presents
a method of separating the input binary image into layers of
homogeneous thickness, followed by skeletonizing each layer,
and then segmenting the skeleton by random sampling. The
method in [23] is based on partitioning a shape into triangles
and merging of skeletons extracted from each triangle. A
road vectorization technique has been proposed in [3] using
a thinning procedure to get the master layer. Some works
are there to extract the skeleton via block decomposition
[5]. An object-oriented vectorization based on progressive
simplification is proposed in [21].

Polygonal approximation is also a convenient representa-
tion of the planar object boundary. It is used as interme-
diate steps in various applications like multiresolution mod-
eling [13, 20], image and video retrieval [14], shape coding

∗
The work is carried out under APA project sponsored by DST (GoI),

Ref. NRDMS/11/1586/2009.
†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

Figure 1: Vectorization by the proposed method.
Top-left: Input. Top-right: Straight edges (in black).
Bottom-left: Straight edges (red endpoints) after
merging, and seed points (green). Bottom-
right:Vectors (blue) after refinement.

[16], etc. There exists several algorithms for polygonal/poly-
chain approximation of digital curves [2, 4, 18, 22]. However,
to apply these algorithms for approximating (objects in)
a gray-scale image, at first the edge map needs to be ex-
tracted, and then thinned, for obtaining strictly one-pixel-
thick curves. We have to use edge detection operators (e.g.,
Prewitt/Sobel operator) or edge extraction algorithm [10]
to get the edge map first. The entire procedure is, there-
fore, not only susceptible to the pitfalls of the adopted edge
extraction algorithm and subsequent thinning, but also af-
fected by inter-stage dependence and high runtime.

In our approach, we perform polygonization/polygonal
approximation of objects having“nearly uniform thick lines”
in a gray-scale digital image, which is subsequently used for
an efficient vectorization. The proposed algorithm is divided
into the following two stages:
Stage 1: Finds the digitally straight edges defining the
boundary of an object, and then merges the almost collinear
edges to derive a tighter description of the object (Sec. 2).



An edge is detected as a sequence of piecewise linear com-
ponents. We extract the straight edges by inspecting the
corresponding edge points one by one until there is a break
in the chain because of the digital-straightness properties
[12]. The ordered set of endpoints of the straight edges pro-
vides the polygonal shape of the object. The notion of Farey
sequence and the resultant Farey indices [7], which capture
the slope of a line segment, have been used with the digital-
geometric properties of straightness to get the final result
of polygonal approximation. Merging of extracted straight
edges has been implemented using differences of indices of
slope fractions in the Augmented Farey Table (F), and the
collinearity of two or more straight edges is decided using
addition/subtraction operations in the integer domain only.
Stage 2: From the final set of straight edges achieved in
Stage 1, the seed points (the points using which the vec-
tors will be drawn) are generated, which are minimized us-
ing a novel concept of geometric refinement, by maintaining
proper association among the seed points (Sec. 3). A snap-
shot of our algorithm is given in Fig. 1.

2. DETECTION OF STRAIGHT EDGES
To detect the straight edges of maximal lengths, we have

used an algorithm based on chain-code properties and expo-
nential averaging of edge strengths (Prewitt responses) [6],
as proposed in [17]. To decide the maximal straightness of
an edge, certain regularity properties of digital straightness
have been used, which can be derived from the chord prop-
erty [11]. A curve C is digitally straight if and only if its
chain codes have at most two values in {0, 1, 2, . . . , 7}, dif-
fering by ±1(mod 8), and for one of these, the run-length
must be 1 (Property R1). Also, if s and n be the respec-
tive singular code and non-singular code in a digital curve
C, then the runs of n can have only two lengths, which are
consecutive integers (Property R2).

To obtain the start point of a straight edge, each point
p of the image is visited (in row-major order). If the Pre-
witt response at p exceeds the threshold value, T (= 100 in
our experiments), and the response is a local maximum in
the 8-neighborhood (8N) of p, then p is the start point, ps.
The next point on the edge commencing from ps is obtained
from the responses in 8N of ps. The direction ds from ps is
the chain code from ps to its neighbor having the maximum
response. In case of multiple maxima (which indicates mul-
tiple edges incident at ps), we consider each of them, one by
one, for finding the straight edges from ps.

To get the (straight-)edge point next to any current point
p, we need not apply the convolution at each neighbor (in
8N) of p with the Prewitt operator (in order to get their
responses, and the maximum/maxima, thereof). Instead,
in our algorithm, checking the Prewitt responses at three
neighbors corresponding to three directions suffices: d, (d +
1)(mod 8), and (d + 7)(mod 8), where d is the chain code of
p. For, from Property R1, no other neighbor can be the next
point on the current edge. We have used effective method
of exponential averaging that estimates the edge strength
at an edge point using its own response and the weighted
contribution of responses at the previous edge points. In
order to compute the exponential average of the responses in
and around a point p, we consider the responses—which have
been already computed and stored—at the points preceding
p up the straight edge.

Table 1: AFT F4.
Denominator

-4 -3 -2 -1 0 1 2 3 4

N 4 19 18 16 14 13 12 10 8 7
u 3 20 19 17 15 13 11 9 7 6
m 2 22 21 19 16 13 10 7 5 4
e 1 24 23 22 19 13 7 4 3 2
r 0 25 25 25 25 – 1 1 1 1
a -1 26 27 28 31 37 43 46 47 48
t -2 28 29 31 34 37 40 43 45 46
o -3 30 31 33 35 37 39 41 43 44
r -4 31 32 34 36 37 38 40 42 43

2.1 Farey Sequence to Obtain Longer Edges
The Farey sequence Fi of order i is the sequence of com-

pletely reduced (i.e., simple/irreducible), proper, and posi-
tive fractions that have denominators less than or equal to i,
and are arranged in increasing order of their values. There
are several studies and related works related with Farey se-
quences and their indices, some of which may be seen in [7,
8, 15, 19]. As shown in this work, a Farey sequence can
be of interesting and practical use to decide whether three
(or more) points are collinear or not. It involves only addi-
tion, comparison and memory access, but no multiplication.
Thus it helps in reducing the running time for the linearity-
checking function compared to the existing procedures.

For example, for three given points p1(i1, j1), p2(i2, j2),
and p3(i3, j3 in succession, the metric ∆(p1, p2, p3)/ max(|i1−
i3|, |j1 − j3|) is used to decide the deviation of p2 from
p1p3. However, computation of the triangle area given by
∆(p1, p2, p3) involves multiplication, and is therefore compu-
tationally expensive. Such multiplications are avoided by us
using Farey sequences. When we have multiple images to be
processed one after another, we can compute a Farey table
of an appropriate size and use it for computational optimiza-
tion. As a result, the total time of polygonal approximation
for all images in large database would be significantly re-
duced.
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Interestingly, each Fi can be computed from Fi−1. If p
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2
and 2

3
from F4.



2.1.1 Augmented Farey Table
The original Farey sequence Fi of order i consists of all

the simple, proper, positive fractions with denominators less
than or equal to i. Compound fractions (that can be reduced
to simple fractions of Fi), improper fractions (with numer-
ators less than or equal to i), and negative fractions do not
find any place in Fi. With simple operations, we obtain an
augmented Farey sequence F i from the Farey sequence Fi

in order to include the above fractions as well. The aug-
mented sequence F i aids the linearity checking procedure
while merging the end points of straight edges, which are
almost collinear. For each member a

b
of Fi, we prepare a

sub-list containing the equivalent compound fractions with
denominators less than or equal to i. Corresponding to each
a
b
, a new fraction a+a′

b+b′ is computed, where a′
b′ is already

a member of the sub-list corresponding to a
b
, and b′ is the

highest denominator in the sub-list corresponding to a
b
, such

that (b + b′) ≤ i. This new fraction is kept in the sub-list of

F i linked to a
b
. The first member a′

b′ = a+a
b+b

of such a sub-list
is obtained by adding the numerator a of a

b
with itself and

the denominator b of it with itself, provided b′ ≤ i.
Since F i is derived as stated above, it contains all pos-

itive fractions (simple and compound) with denominators
less than or equal to i. Now we take mirror reflection of this
list about 1

1
, such that in the reflected part each member

is the reciprocal of its counterpart. The compound frac-
tion in the sub-lists linked to the simple fractions are also
treated in the same way, i.e., numerators become denomi-
nators, and vice versa. This reflected part is appended to
the original list. Next, we again take a reflection of this en-
larged list, with the signs of all denominators in the reflected
part changed to −ve. Thus, finally we get all the fractions
with +ve numerator and +ve/−ve denominator. Taking
their positions in the list we build the augmented Farey ta-
ble, namely Fi, corresponding to F i, as shown in Table 1.
For example, when compound fractions are included in F4,
it gets augmented to
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With +ve numerator and −ve denominator, we get

F 4 =
4

−1
,

3

−1
,

2

−1

„
4

−2

«
,

3

−2
,

4

−3
,

1

−1

„
2

−2
,

3

−3
,

4

−4

«
,

3

−4
,

2

−3
,

1

−2

„
2

−4

«
,

1

−3
,

1

−4
,

0

−1

„
0

−2
,

0

−3
,

0

−4

«
,

0

1

„
0

2
,
0

3
,
0

4

«
,
1

4
,
1

3
,
1

2

„
2

4

«
,
2

3
,
3

4
,
1

1

„
2

2
,
3

3
,
4

4

«
,
4

3
,

3

2
,
2

1

„
4

2

«
,
3

1
,
4

1
,
1

0

„
2

0
,
3

0
,
4

0

«
.

For other two types of fractions, i.e., fractions with −ve
numerator and +ve denominator, and fractions with −ve
numerator and −ve denominator, we have to take reflection
of the above list F 4 and then change the signs of numer-
ators and denominators accordingly. Thus, F 4 becomes a

x y stat f id valid
pointer

to next

Figure 2: Data structure S for storing seed points.

complete list of all possible fractions. For each fraction in
F 4, we obtain its index by accessing the table F (Table 1).

2.2 Merging of Straight Edges using F
Extraction of straight edges from a gray-scale image gen-

erates an ordered set E (endpoints of straight edges), as
explained earlier. Now, in order to reduce the number of
straight edges defining the boundary of the object, vertices
are taken out from E, and if they are“almost collinear”, then
they are combined together to form a longer straight edge.
If 〈ei, ei+1, . . . , ej〉 be a maximal (ordered) subset of straight
edges that are almost collinear, then these j− i+1 edges are
combined to a single edge. The process is repeated for all
such maximal subsets in succession to obtain a reduced set of
(almost) straight edges corresponding to the object bound-
ary. There are several techniques available in the literature
to replace the almost-collinear pieces by a single piece [1,
11]. We have used a novel technique using differences of
indices corresponding to line slopes—which are equivalent
to fractions—in the augmented Farey table, F . Each F-
index is obtained by a single probe in F and the decision
on linearity of three points is taken in the integer domain
using addition/subtraction operation only. For a straight
edge with end points p := (xp, yp) and q := (xq, yq), we do

access the index of the fraction
yp−yq

xp−xq
, which is the slope

of the line segment pq, in F . If two line segments L1 and
L2 are having their respective F-indices as f1 and f2, then
L1 and L2 are merged if the difference of f1 and f2 is less
than a threshold φ, which is a differential Farey index and
a parameter of our algorithm.

3. VECTORIZATION
After preparing the set of straight edges, E, as discussed in

Sec. 2, we get straight edges of appreciably larger length. We
sort these edges in E in ascending order of their F-indices
(Farey indices in F). So we can distinctly identify many
clusters in E, where each cluster contains the edges of identi-
cal or nearly identical slopes apropos their F-indices. These
straight edges having identical or nearly identical slopes/F-
indices are used in pairs to generate some seed points, which
are of interest to us for the purpose of vectorization. The
process of extracting the seed points has been discussed in
detail in Sec. 3.1. We store each seed point in a list S of seed
points and then apply a minimization process on the list to
reduce the number of seed points. Finally, depending on the
association among the seed points in the reduced set, we
draw the corresponding vectors. All about the data struc-
ture for storing seed points and the minimization process
have been discussed in Sec. 3.1 and Sec. 3.2.

3.1 Computing and Storing Seed Points
Every pair of straight edges obtained from E, which are

nearly parallel as verified from their F-indices, is considered
by us to generate seed points. Two straight edges are said to
be nearly parallel only if their F-indices differ by at most φ.
We consider τmin and τmax as the respective minimum and
maximum thicknesses over all thick edges in the input image.



Case Before refinement After refinement Changes in the data structure S

Case 1 si
sj

si+1

sj+1

d(vi, vj) < τ
si

sj+1 si+1.valid ← False;
sj .valid ← False;
si.f ← F [y∆ ][x∆ ]a;
sj+1.f ← si.f ;
sj+1.id ← si.id.

a y∆ = sj+1.y − si.y,
x∆ = sj+1.x− si.x.

Case 2 si+1

sj

si

sj+1

d(si, sj) < τ
si+1

sj+1 si.valid ← False;
sj .valid ← False;
si+1.f ← F [y∆ ][x∆ ]b;
sj+1.id ← si+1.id.

b y∆ = sj+1.y − si+1.y,
x∆ = sj+1.x− si+1.x.

Case 3

si

si+1

sj

sj+1

d(si, s
′

i) < τ

s′

i si

si+1

sj

sj+1

(si.x, si.y) ← (s′i.x, s′i.y);
si.stat ← 1 (closed).

Case 4

si+1

sjsi

sj+1

d(si, sj) < τ si+1

si = sj

sj+1

si.x ← 1
2
(si.x + sj .x);

si.y ← 1
2
(si.y + sj .y);

si.stat ← 1;
sj .(x, y, stat) ← si.(x, y, stat);
si.f ← F [y∆ ][x∆ ]c;
sj .f ← F [y′∆ ][x′∆ ]c.

c y∆ = si+1.y − si.y,
x∆ = si+1.x− si.x,
y′∆ = sj+1.y − sj .y,
x′∆ = sj+1.x− sj .x.

Figure 3: Four cases and their geometric refinements based on Farey indices.

Hence, for two opposite and parallel straight edges, namely
ei ∈ E and ej ∈ E, extracted from a common thick edge
of the input image, we always have τmin ≤ d(ei, ej) ≤ τmax,
where d(ei, ej) signifies the orthogonal distance between the
straight edges ei and ej .

For two edges ei := (pi, pi+1) and ej := (pj , pj+1), where
pi = (xi, yi), etc., two seed points are generated as s(xs, ys)
and s′(x′s, y

′
s), where xs = (xi + xj)/2, ys = (yi + yj)/2,

x′s = (x(i+1)+xj+1)/2 and y′s = (yi+1 + yj+1)/2, provided
the following conditions are satisfied.

(i) F-indices of ei and ej differ by at most φ;

(ii) τmin ≤ d(ei, ej) ≤ τmax;

(iii) the projection of ei onto ej is non-empty.

The seed vector generated corresponding to the seeds s and
s′ is then given by ss′.

We store the seed points one by one in a list S whose
structure is shown in Fig. 2. For each seed vector, two seed
points are stored. Attributes stored in S corresponding to
a seed point s, which was formed from two edge points,
namely pi and pj , are as follows: (1) x and y coordinates

of s. (2) status of s; if the two mother points (i.e., pi and
pj) corresponding to s are the end points of two straight
edges ei and ej of E, then its status is stat = 1 (closed);
otherwise, stat = 0 (open). (3)F-index of s, given by f ,
which is the F-index of the seed vector ss′. (4) id of the
seed vector ss′; note that, s′ has also the same id, and each
seed vector gets a unique id. (5) boolean flag valid that
says whether s is finally selected; if valid = True, then s
is there in the final solution. Initially, for all seeds, valid =
True; and during the refinement some of them have valid
set as False. If valid = False for some seed, then it is not
considered further for vectorization.

3.2 Geometric Refinement
The parameter τ = τmin is used by us to analyze the

seed points during geometric refinement. This is required
to minimize the number of seed points. A minimal number
of seed points, in turn, leads to an efficient vectorization in
terms of a minimal set of seed vectors.

The algorithm starts with seed points in S, some of which
are open and some are closed. Initially no vectors are drawn.
A demonstration on a typical figure has been given in Sec. 3.3.



Table 2: Results of vectorization for some images.

Image #Corners
#Seed
points
(initial)

#vectors
(final)

CPU
time
(seconds)

‘A’ 10 9 3 0.0504
‘F’ 11 7 3 0.0557
‘M’ 12 7 4 0.0552
‘E’ 12 8 4 0.0555
‘curve’ 33 21 4 0.1099
‘bars’ 24 20 3 0.1085
‘road map’ 145 108 23 0.2849

In the process, finally the vector sisj connecting two seed
points si and sj is drawn only if si.valid = sj .valid = True
and si.stat = sj .stat = 1 and si.id = sj .id. In the process
of refinement of seed points, four different cases arise, which
are as follows (illustrated in Fig. 3).
Case 1 (Parallel and overlapping): If two seed vec-
tors, namely vi := sisi+1 and vj := sjsj+1, are approxi-
mately parallel—verified from their respective F-indices—as
explained earlier, and they are close enough having overlap-
ping projections, then they are replaced by an appropriate
single vector. Formally speaking, if |si.f − sj .f | ≤ φ and
d(vi, vj) < τ and evi ∩ vj 6= ∅ (evi denotes the projection
of vi on vj), then we first apply a lexicographic sorting on
{si, si+1, sj , sj+1} using their x- and y-coordinates; only the
lexicographically smallest and the lexicographically largest
points are accepted, and the other two points are rejected.
Accordingly, necessary modifications of the attributes of the
four seed points defining the seed vectors vi and vj are made
in their respective nodes of S, as shown in Fig. 3.
Case 2 (Parallel and non-overlapping): If a seed point
si lies close to another seed point sj , such that si.stat =
sj .stat = 0 and si.valid = sj .valid = True and si.id 6= sj .id
and |si.f − sj .f | ≤ φ, then we set the condition C1 = True;
otherwise, C1 = False. If C1 = True, then we read the F-
index fij of the vector sisj ; and if |si.f − fij | ≤ φ, then we
set another condition C2 = True; otherwise, C2 = False.
If both C1 and C2 are True, then we invalidate/reject si

and sj , and modify the attributes corresponding to the new
seed vector si+1sj+1, as shown in Fig. 3.
Case 3 (Non-parallel and distant seeds): For a seed
point si, if there is no other seed point in its τ -neighborhood,
then we search for its nearest seed vector (in the set of seed
vectors formed so far), namely vj := sjsj+1, and produce
the vector vi+1 := si+1si to meet vj at s′i. If s′i lies between
sj and sj+1, then we read the F-index f ′i of the vector v′i :=
s′isi+1; if |si.f − f ′i | ≤ φ, then we translate si to s′i and
declare the status of si to be closed. Related attributes of
si and si+1 in S are updated accordingly (Fig. 3).
Case 4 (Non-parallel and close seeds): For a pair of seed
points si and sj , one lying within τ -neighborhood of another,
if status of both the points are open, and both the points are
valid, and if si.id 6= sj .id, then we first determine C1 and
C2, as discussed in Case 2. If C2 = False, which signifies
that the corresponding seed vectors are not parallel, then we
make si and sj to be coincident with the point defined by
the mean values of their coordinates, and hence their other
attributes are also modified accordingly (Fig. 3).

3.3 Demonstration
Figure 4 demonstrates how the seed points are generated

for the image ‘E’. As explained in Sec. 3.1, straight edges
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Figure 4: Demo of our algorithm on the image ‘E’.

Figure 5: Experimental results for images ‘A’, ‘F’,
and ‘M’. Top row: Corners and seed points (φ =
3000). Bottom row: Vectors.

taken in pairs from E to generate these seed points. For ex-
ample, (36, 133) is generated by taking the respective means
of x- and y-coordinates of the seeds (27, 134) and (46, 132),
which are the endpoints of two straight edges in E. Another
two endpoints of the same pair of edges generate another
seed point, which is (36, 65). Other seed seeds are also gen-
erated in a similar way.

When a seed is generated, its attributes (f, stat, valid, id),
are stored in S (Sec. 3.1). A seed encircled by a yellow
circle in Fig. 4 is open(= 0) and that by a red circle is
closed(= 1). Note that, both (36, 65) and (144, 63) will be
generated twice, with different f and id values. For exam-
ple, (65, 65)(144, 63) is one vector and (36, 65)(114, 64) is
another. Because of Case 1, the seeds (65, 65) and (114, 64)
get valid = False. But the seeds (36, 65) and (144, 63) re-
main open with vaild = True. In the next phase, si =
(36, 65) and sj = (36, 65) are from two different vectors,

(36, 65)(144, 63) and (36, 65)(36, 133). By Case 4, both the
seeds si and sj merge to the same seed (36, 65), which be-



comes closed. For similar reasons, (144, 63) becomes closed
as it is incident to two seed vectors. Now we have some vec-
tors with both of its defining seeds as closed. On considering
these vectors, we get the final solution of vectorization.

4. EXPERIMENTS AND RESULTS
We have implemented the algorithm in C in Linux Fedora

Release 7, Kernel version 2.6.21.1.3194.fc7, Dual Intel Xeon
Processor 2.8 GHz, 800 MHz FSB. To extract the straight
edges using Prewitt responses, we have taken the thresh-
old T = 100. Some of our experimental results have been
given in Figs. 6 and 7, and the summary in Table 2, which
demonstrate the strength and robustness of our algorithm.

To reduce the number of edges by merging the “almost
collinear” edges, we have tested for various φ (Sec. 2). Ta-
ble 1 shows the AFT, F4, of Order 4 where 48 possible slopes
exist. As the order i of Fi goes high, the number of slopes in-
creases appreciably. For example, for i = 100, total number
of fractions in F100 is 24352. These 24352 slopes/fractions
divide the space of 360o into 24352 divisions. Theoretically,
all the divisions will not be of equal degree. But as the
number of divisions is quite large, we have assumed that
the angular difference of two consecutive slopes remains al-
most same if the difference of F-indices corresponding to
their slopes (i.e., |f1− f2|) remains unchanged. For i = 200,
there exist 95876 slope vectors, which makes each division
= 0.003679o. Hence, φ = 1000, 2000, and 4000, for i = 200,
yield tolerances of 3.679o, 7.356o, and 14.716o, respectively.
Evidently, for a change in i, the significance of φ changes.
In our implementation we have taken i = 200 and φ = 3000.

5. CONCLUSION AND FUTURE WORK
Vectorization gives a topological description of an image

and hence used in many application areas of computer vi-
sion (Sec. 1). In our work, we have first detected the straight
edges defining the boundary of the object, and then we have
applied a merging procedure based on a novel idea of aug-
mented Farey sequence, so that we get a description of the
underlying objects based on their corners and incident edges.
Endpoints of the polygonal boundary, thus obtained, con-
tribute information about positions of the seed points. As
the distance between the seed-generating points plays an im-
portant role, the proposed geometric refinement yields the
desired vectorization.

As a future work, we would like to extend this to ob-
tain the topological description of a complex structural data
(e.g., road maps) using some efficient geometric data struc-
ture, such as the doubly connected edge list. Since it ab-
stracts a planar graph, along with their topological inter-
relations, the resultant output of vectorization would be a
promising area of research in related applications.
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(a) Input image. (b) Seed points
and seed seed vectors. (c)–
(g) Intermediate results. (h) Final
vectors. In this example all re-
ductions follow Case 2. In the
intermediate stages, vectors are
drawn to show the changes in seed
points, and how their associativ-
ity changes. A vector is finally
drawn only when both its end-
points are closed. (Closed seeds
are encircled in red and open
seeds in yellow.)

(a)

Figure 6: Step-by-step results for the test image ‘bars’.



(a) (b)

(c)

Figure 7: Road map vectorization: (a) Input gray-scale image. (b)Corners (red), straight edges (blue), and
initial set of seed points (green). (c) Final seed points (green) and vectors (blue).


