

Abstract— The Goal Programming (GP) approach is used to

model problems of Pattern classification. It involves finding the
separating boundary lines between different classes to get
minimum misclassification. A theoretical overview of solving
the problem using GP is discussed and its different variants are
applied to various datasets to show the effectiveness of the
algorithm. The datasets considered for experimentation are
taken to be in 2 – dimensional Euclidean space for better
visualization of separating boundaries. Finally, the results are
compared with the K-Nearest Neighbor Classifier.

Index Terms—: Goal Programming, Pattern Classification, K-
Nearest Neighbor

I. INTRODUCTION

 Pattern Classification is a paradigm, which comes under
the domain of Pattern Recognition, which aims at classifying
patterns into predetermined categories/classes in a
multidimensional space. This classification is based on certain
attributes/features which are common to all objects. First, the
features are determined for each object and then certain
decision rules are formulated and based on these rules, the
classification of patterns into different classes is obtained.
Pattern recognition has found enormous number of
applications in varied number of fields. There are many
approaches to pattern classification. The algorithm for
classifying objects/pattern is usually called classifier. A few of
the widely used classifiers are the Bayesian Classifier, Neural
networks, Support Vector Machine and the K Nearest
Neighbor. The details of these are available in [1].

 In this paper, an attempt is made to model pattern
classification problem using Goal Programming technique (GP),
an extension to linear programming, deals with multiple
objectives. Unlike linear programming, the objectives can be
violated up to a certain extent, but the aim is to ensure
minimum deviation from them. For finding the solution to a
Goal Programming problem, it is usually converted to a linear
programming problem (LPP) [2].

 The next section deals with mathematical formulation for
Goal Programming. The proposed methodology is described

in Section 3 followed by implementation and results in Section
4.

II. MATHEMATICAL FORMULATION OF GOAL
PROGRAMMING

 In Goal Programming, there can be different types of goals
to be achieved. Let there be a linear objective function c1

Tx
whose goal is to remain less than equal to g1 (c1

Tx ≤ g1) .

Similarly there can be a case where a function c2
Tx must be

greater than or equal to g2 (c2
Tx ≥ g2). Such kinds of goals are

called one-sided goals. Also, there can be two sided goals
such as g3 ≤ c3

Tx ≤ g4. The aim here is to achieve minimum
deviation from goals under linear constraints if any.

 The Goal Programming problem can be converted into a
linear programming minimization problem as follows.

 Let us consider two objective functions c1

Tx and c2
Tx with

one-sided goals as g 1 and g2 respectively and a constraint (Αx
≥ b).
 c1

Tx ≤ g1 (1)

 c2
Tx ≥ g2 (2)

Constraint Αx ≥ b (3)

 Let there exists one x which satisfies (3).Also, x is such
that c1

Tx exceeds g1 by d1 and c2
Tx falls short of g2 by d2, where

d1 and d2 are absolute deviations from the goals.

 c1
Tx - d1 = g1 (4)

 c2
Tx + d2 = g2 (5)

 Now, the whole objective of goal programming is to
minimize the deviations from the objective targets. So, the
whole problem boils down to Linear Programming Problem,
where

Objective is Minimize D=α1d1+α2d2 (6)
 Subject to (3),(4) and (5). [3]

Pattern Classification Modeled by Goal
Programming

Dhruv Saksena Shruti Garg Suman Mitra
Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujarat

 Here, α1,α2 are the assigned weights given to the

deviations if one want to give unequal wieghtages to the two
given goals. Note that, when α1 is not equal to α2 it is called
as Preemptive Goal Programming. [2]

 If we generalize it for m number of goals then there will be
‘m’ number of equations each resulting in some amount of
deviation.

 In that case objective function will become D= ∑
=

=

mi

i 1

αidi ,

subject to constraints that result into these deviations. Based
upon the above given mathematical formulation an algorithm is
proposed to model Pattern Classification using Goal
Programming.

III. DESCRIPTION OF PROPOSED METHODOLOGY

 Let us consider a two class problem for which two

features (X,Y) of each class are given. Figure 1 shows the plot
of the data points. Our aim is to find a separating hyperplane (a
straight line in this case) as indicated by H in the figure that
divides the data points into two classes. The equation of H is

 y - mx - c = 0 (7)

where, m and c have their usual meanings.

 Any point (x1, y1) in class A when substituted in (7)
should give a positive value. The first goal then becomes

 y1 – mx1 -c > 0 (8)

 Similarly, for any point (x2, y2) in class B when substituted
in (7) should give negative value. Hence, second goal is

 y2 – mx2 -c < 0 (9)

 Fig.1 A hyper plane H separating two classes A and B.

But due to some misclassifications as indicated in Figure 1, (8),
(9) may not be satisfied. For a misclassified point (x1', y1') in
class A, the deviation from the goal would be

 |y1' – mx1' -c | / (1 + m2)1/2 = α (10)

For a misclassified point (x2', y2') in B, the deviation is

 |y2' - mx2' – c| / (1 + m2)1/2 = β (11)

Where α and β are the distances of the respective points from
the separating line.

 So, our aim is to minimize this overall deviation
(α +β) .Again if we have i=1,2,…p number of misclassifications
for class A and j=1,2,…q number of misclassifications for class
B, then the entire problem can be looked upon as

Minimize D = ∑
=

=

pi

i 1

αi +∑
=

=

qj

j 1

βj, (12)

subject to (10) and (11).

 The above optimization problem is solved to get the values
of m and c. Note that, the current optimization problem is no
longer a Linear Programming Problem as equations (10),(11) are
not linear in nature. We are proposing an approach, which is
almost like an exhaustive search to find the optimal values of m
and c, that give the separating boundary.

IV. DETERMINATION OF SEPERATING BOUNDARY

 The problem now is to find ‘m’ and ‘c’ (or the line y = mx

+ c) such that (12) is minimized. We assume ‘c’ is bounded in
[cmin, cmax], thus for each choice of c, we find the optimum ‘m’.
The search space for m is also restricted as shown in Figure 2.
Both classes A and B are bounded by rectangles. The
intersection of these two rectangles provides the bounded
search space for m as indicated in Figure 2. The choice of m is
then restricted within mmin and mmax where,

 * * * * H
 * A * * o o
 * * o o
 * * o o
 * * o B o o o

Y

X

 (ymax –c)/xmin mmin =

c <= ymin (ymin – c)/xmin

ymin <c <ymax

 (ymax –c)/xmax c >=ymax

 mmax = (ymax–c)/xmax ymin <c <ymax

c <= ymin (ymin –c)/xmax

(ymin –c)/xmin c >=ymax

 Fig.2(a) Enclosing two classes with rectangles. Rectangle DEFG is
the intersection of these rectangles and (b), (c), (d) show the search
space for m for a given choice of c.

 To find optimal c and m, the entire range of c = [cmin, cmax]
is searched with a step size (dist/2) where dist = min {d(x1, x2) |
x1,x2 are two data points} and d is the distance between x1 and
x2. Similar argument is given in [4]. Also the entire range of m is
searched with a step size 1/n where n is the number of hyper
planes that we check for a particular value of c. Though an
exhaustive search is carried out at present, but a Genetic
Algorithm based search similar to that given in [4] can also be
carried out.

 As there can be more than one combination of m and c for
which deviation D comes out to be minimum, there is a
possibility of getting more than one separating lines.

 We are mostly presenting the results for 2 dimensional
datasets using the present method. The results are also
compared with the K – Nearest Neighbor classifier.

V. IMPLEMENTATION AND RESULTS

 The algorithm was implemented on several datasets even

with more than two classes. Figure 3 shows the simulation
result of a 3 class artificial data. Each class can be identified by
a combination of signs [5] of the equation of the two lines H1
and H2 as shown in figure 3(a).

 Fig.3(a) Results obtained for a multi-class dataset where we have 3
classes.

 (a) (b)

 Fig. 4(a) An artificial dataset with two classes where one class is
within another class (b) Boundary lines separating inner class from
the outer class.

 The proposed method is implemented on a non-convex
dataset as shown in figure 4(a). In this case, we used
preemptive Goal Programming and assigned more weightage to
the inner class, as we wanted to separate it from the outer one.
For every value of c, we choose the value of m which shows
minimum deviation To get the final separating boundaries, we
sort the deviations obtained in increasing order. The first value
in this sorted sequence is selected to get the separating
boundary corresponding to that deviation. If the resulting line
does not classify the dataset completely, we consider the next
line corresponding to the next values of the deviations in the
sequence and find out the deviations as a result of the
combination of these lines. The process is repeated until the
combined deviation tends to stabilize. The final decision
boundaries are as shown in Figure 4(b). Similar approach was
used for the dataset shown in the Figure 5(a).

 (a) (b)

 (c)

 Fig.5 (a) An artificial dataset (b) Simulations using preemptive goal
programming (c) Boundary lines separating inner class from the outer
class.

H1

H2

The classification results obtained by the proposed method are
compared with the results obtained by K-Nearest Neighbor.
The results are presented in Table 1.

K – Nearest Neighbour Dataset Goal
Progra
mming

k =1

k=2

k=4

 k=8

Fig. 3(a)

 82.4%

66.67 %

66.67
%

66.67%

66.67
%

 Fig 4(a)

 95.75%

96.45%

96.45%

96.45%

93.61
%

Fig 5(a)

 93.75%

86.2%

88.3%

86.2%

87.25
%

Table 1. Results of different datasets using different algorithms

VI. CONCLUSION

 Goal Programming is used to model problems of pattern
classification and optimal separating boundaries can be
achieved using exhaustive search. The algorithm can also be
extended to Genetic Algorithm based search. This algorithm
when applied to different datasets, worked satisfactorily as
compared to the K-Nearest Neighbor classifier. Also, note that,
while in K-Nearest Neighbor approach, a prior availability of an
already classified dataset is required [1], there is no such
requirement in case of Goal Programming.

 REFERENCES
[1] Duda Richard O. , Hart Peter E. and Stork David G “ Pattern

Classification”, Second Edition, 2007, Page(s) 20 –27.
[2] Rardin Ronald L., "Optimization in operations Research", 2005 ,

Pearson Education ,Page(s) 389-408.
[3] H. Poor, An Introduction to Signal Detection and Estimation.

New York: Springer-Verlag, 1985, ch. 4.
[4] Nakayama Hirotaka and Asada Takeshi “Support Vector Machines

using
 multiple objective programming and goal programming”
Proceedings
 of the 9th International Conference on NIPS , Vol.2,2002.
[5] Bandhopadhyay S. , Murthy C.A., Pal S.K., “Pattern classification

with
 genetic algorithms”, Elsevier Science, Pattern Recognition Letters
 16, pp 801-808, 1995.
[6] Hiller Federick S. and Lieberman Gerald J. “Introduction to
 Mathematical Programming”, Second Edition, 1995, Page(s) 285 –
292

