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Abstract—The pattern recognition (PR) process uses a large
number of labelled patterns and compute intensive algorithms.
Several components of a PR process are compute and data
intensive. Some algorithms compute the parameters required
for classification directly for each test pattern using a large
training set. Most algorithms have a training step, the results
of which are used by a computationally cheap classification step.
In this paper, we present high-performance pattern recognition
algorithms using a commodity Graphics Processing Unit (GPU).
Our algorithms exploit the high-performance SIMD architecture
of GPU. We specifically study the Parzen windows scheme for
density estimation and the Artificial Neural Network (ANN)
scheme for training and classification in this paper. We present
fast implementations of these on a NVIDIA 8800 GTX GPU. Our
implementation of Parzen windows can simultaneously estimate
probability values for 1K test patterns in about 14ms based on
an input data set of 16K patterns. Our ANN can run an epoch of
batch-training on the NIST data set with 56K 484-dimensional
patterns and 10 output categories in less than 200 milliseconds.
The speedup is more than 300 times for Parzen windows and 100

times for ANN over the CPU implementations using a commodity
GPU that costs about $400.

I. INTRODUCTION

Pattern recognition is concerned with the design of systems
that detect trends and classify patterns. Important application
areas are optical character recognition, speech recognition,
fingerprint identification, DNA sequence identification, and
many more.

Most pattern recognition systems have two components:
training and classification [5]. The system is trained using
a large number of labelled patterns using relevant features.
The training could be iterative as with ANN, Support Vec-
tor Machines (SVM), etc., and proceeds till the error on a
small set of testing patterns is sufficiently low. The trained
system can be used for classification of unknown patterns
using a computationally low process. The training process is
compute intensive and time consuming especially when large
number of training patterns are involved. The classification
accuracy often depends on the effort spent on training and
most applications settle for a suitable tradeoff. Using new
training data to improve the performance is uncommon due
to the large computational effort. There are other types of
pattern recognition techniques that use the whole training set to
directly evaluate parameters for classification of each unknown
pattern. These incur heavy computational cost for classifying
each pattern as computation involves all the input patterns.

Parzen windows, k-Nearest Neighbour, etc., are examples of
the same.

The rapid increase in the performance of graphics hardware
have made GPU a strong candidate for performing many com-
pute intensive tasks. GPUs now include fully programmable
processing units that follow a stream programming model
and support vectorized floating-point operations. High level
languages have emerged to support the new programmability.
NVIDIA’s 8-series GPU with CUDA Computing environ-
ment provides the standard C like language interface to the
programmable processors, which eliminates the overhead of
learning an inadequate API [13]. GPUs provide tremendous
memory bandwidth and computational horsepower. For exam-
ple, the NVIDIA GeForce 8800 GTX can achieve a sustained
memory bandwidth of 86.4 GB/s and a theoretical maximum
of 346 GFLOPS [13].

Several GPU algorithms have been developed for sorting
[7], geometric computations, matrix multiplication, FFT [11]
and graph algorithms. Larsen and McAllister [10] initially
proposed an approach for computing matrix products using
simple blending and texture mapping functionalities on GPUs.
Hall et al. [8] and Moravanszky [12] described improved
algorithms that performs implicit blocking. Fatahalian et al. [6]
proposed another approach based on blocking for computing
matrix products using fragment shaders. NVIDIA’s CUBLAS
library [14] which comes with the CUDA software pack is
an implementation of simple BLAS (Basic Linear Algebra
Subprograms) on GPU, that allows optimized matrix and
vector operations. Davis [4] presented simulation of ANN on
GPUs using Brook [2]. Reiter et al. [16] described HMM
search implementation to compute the Viterbi probability for
biological protein sequences. Cao et al. [3] presented algo-
rithm for scalable clustering on GPUs. However, little work
has been done to exploit the computational capability of GPUs
for highly compute intensive aspects of pattern recognition,
such as ANN training and Parzen-windows. GPU applications
on these can be useful, for instance, retraining the network
with new training patterns added on the fly.

The Parzen-window approach is a method of estimating
non-parametric density from observed patterns. In the clas-
sifiers based on Parzen-windows, the densities are estimated
for each category and the test pattern is classified by the cate-
gory corresponding to the maximum posterior. We describe
a parallel implementation of Parzen-windows using CUDA
API that can be used to classify large number of test patterns



in parallel. We can estimate the probability densities for a
test pattern in 14µs using 16K input patterns. This makes
Parzen-window based classifiers practical. The training of the
ANN changes its parameters based on the signals that flow
through it. It is an iterative process, where each iteration has
high computational complexity. We describe the batch learning
of network as a set of matrix operations, which are well
suited to the GPUs, because of highly parallel computational
requirements and regular data access pattern. We implemented
the backpropagation ANN training algorithm using fragment
shaders and CUBLAS library. Our ANN batch-training can
run an epoch on a data set with 56K 484-dimensional training
patterns in less than 200ms.

II. PRELIMINARIES

We review the concepts related to the GPU and the PR
algorithms we address in this section.

A. GPU Architecture
GPUs have a parallel architecture with massively paral-

lel processors. The graphics pipeline is well suited to the
rendering process because it allows the GPU to function as
a stream processor. Recent GPUs with Shader Model 4 [1]
allow users to write vertex, fragment and geometry shader
programs as shown in Figure 1. The programmable parts of
the graphics pipeline operates on a large number of vertices
and fragments spawning a thread for each, to keep the par-
allel processors occupied. The General-Purpose computation
on Graphics Processing Units (GPGPU) uses GPU for non-
graphics computations by posing it as a graphics rendering
problem. Most GPGPU algorithms use programmable frag-
ment processors, as it the most parallelizable component of
the pipeline, which maps each input pixel to an output pixel
of the framebuffer. Since, GPU memory layout is optimized
for graphics rendering, an optimal data structure may not
be available for GPGPU solutions. Creating efficient data
structures using the GPU memory model is a challenging
problem in itself. Memory size and operations (gather and
scatter) of the GPU are other restricting factors.

Fig. 1. The graphics pipeline with the programmable stages shown shaded

NVIDIA’s GeForce 8-series GPUs with the CUDA pro-
gramming model provides an adequate API for non-graphics
applications. The CPU sees a CUDA device as a multi-core co-
processor. CUDA design does not have memory restrictions of
GPGPU. It increases the programming flexibility by providing
both scatter and gather memory operations i.e. ability to read
and write at any location in memory.

At the hardware level, NVIDIA’s 8-series GPU is a set of
SIMD multiprocessors with eight processors each. Each mul-
tiprocessor contains a parallel data cache or shared memory,
which is shared by all its processors as shown in Figure 2.

Fig. 2. A set of SIMD multiprocessors with on-chip shared memory

It also has a read-only constant cache and texture cache that
is shared by all the processors. A set of local 32-bit registers
is available per processor. The multiprocessors communicate
through the global or device memory. At the software level,
the CUDA model is a collection of threads running in parallel.
A thread block is a batch of SIMD-parallel threads that runs on
a multiprocessor at a given time and can communicate through
shared memory and can be synchronized. The computations
are organized as a grid of thread blocks as shown in Figure 3.
Each thread executes a single instruction set called the kernel.
Thus, the CUDA model allows programmers to better exploit
the parallel power of the GPU for general-purpose computing.

Fig. 3. CUDA programming model
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B. Parzen Windows
Parzen-window method [15] approximates the unknown

density function p(x) from the N patterns x1, x2,. . . , xN from
a category. The N th density estimate for p(x)is given as:

pN(x) =
1

NhN

N
∑

i=1

ϕ

(x− xi

hN

)

, (1)

where ϕ(x) is a kernel density function and hN is the window
width. pN (x) converges to original p(x), if hN → 0 when
N →∞.

Parzen-window method can be implemented in a parallel
fashion for computing the probability estimate based on N

normalized d-dimensional patterns, randomly sampled from
c classes, since the probability estimate for each class is
independent as given by Equation 1. For this two tables are
required. The first table has N d-dimensional entries of the
input patterns. This table is used to compute the N kernel
density functions for a given test pattern. Gaussian kernel
density function is given by e(xt

ix−1)/σ2 , where σ determines
the width of the effective Gaussian window. Another table has
N c-dimensional entries which give the information about the
category of the input patterns. The probability that x belongs
to a category is computed by summing the kernel density
function for all the input patterns belonging to that category.

The parallel implementation of Parzen-window can be
achieved by a series of matrix operations. Given the input
patterns, we form a N × d matrix T1 for the first table, where
each row contains an input pattern. A N × c matrix T2 is
formed for the second table, where each row has 1 in the
column corresponding to its category while others are 0. For
classifying m unknown patterns we form a m × d matrix K

and the classification process is expressed as:

I = g(K * T T
1 ), (2)

C = I * T2, (3)

where, g(A) denotes that e(aij−1)/σ2 is computed for every
element of the matrix A. Each element Cij of C denotes the
probability estimate of ith unknown pattern belonging to the
jth category.

C. ANN: Training and Classification
Neural Networks have two primary modes of operation:

feedforward and training. Figure 4 shows a simple three-
layer ANN. During the feedforward operation, a d-dimensional
input pattern x is presented to the input layer; each input unit
then emits its corresponding component xi. Each of the nH

hidden units computes its net activation, netj , as the inner
product of the input layers signals with weights wji at the
hidden unit. The hidden unit then emits intermediate vector
yj as in Equation 4. Each of the c output units functions
in the same manner as the hidden units do, computing netk

as the inner product of the hidden unit signals and weights
at the output unit, as in Equation 5. The final signals zk

Fig. 4. d-nH -c three-layer ANN

emitted by the network, are used as discriminant functions
for classification.

yj = f(netj) = f(
d

∑

i=1

xiwji) = f(wt
jx) 1 ≤ j ≤ nH , (4)

zk = f(netk) = f(

nH
∑

j=1

yjwkj) = f(wt
ky) 1 ≤ k ≤ c, (5)

where f(.) is the non-linear activation function like sigmoid.
Backpropagation is a general method for supervised training

of multilayer neural networks based on a gradient descent
procedure. During network training, the output signals are
compared with a target vector t, and any difference (training
error) is used in training the weights throughout the network.
This process is repeated until the error falls below a threshold.
The weights are changed in the direction that will reduce the
error. The hidden-to-output and the input-to-hidden weights
are updated using a learning rate η as:

∆wkj = η(tk − zk)f ′(netk)yj (6)

∆wji = η

[

c
∑

k=1

wkj(tk − zk)f ′(netk)

]

f ′(netj)xi. (7)

In the on-line version of backpropagation, the weights are
updated after presenting each input pattern while in the batch
training, all the training patterns are presented first and their
corresponding weight updates summed; only then are the
actual weight vectors are updated. Batch training has better
convergence properties.

The batch training of ANN can be reformulated as a series
of matrix operations which are inherently parallel. For N d-
dimensional input patterns, each belonging to one of the c

categories, we form a N × d input matrix X by stacking the
input vectors rowwise and similarly a N×c target matrix T is
formed by stacking the c-dimensional target vectors. A nH×d

input-to-hidden weight matrix WJI and a c × nH hidden-to-
output weight matrix WKJ are initialized with random values,
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where nH are the number of hidden units. Hence, Equations
4-7 as matrix operations become:

Y = f(netJ) = f(X * W T
JI ), (8)

Z = f(netK) = f(Y * W T
KJ ), (9)

∆WJI = η [{((T − Z) . f ′(netK)) * WKJ} . f ′(netJ)]
T * X,

(10)

∆WKJ = η [(T − Z) . f ′(netK)]
T * Y, (11)

where (.) means element-element multiplication and f(M)
means sigmoid of every element of the matrix M .

III. IMPLEMENTATION ON THE GPU

In this section, we present the implementations details of
the above algorithms.

A. Parzen Windows on GPU

The density estimation algorithm for m unknown patterns
using Parzen-windows is given in Algorithm 1. We use the
same notations as described in Section II-B.

Algorithm 1 Parzen-windows using matrix-math
M ← K * T T

1 }CUMAT
I ← g(M) }Kernel
C ← I * T2 }CUMAT

CUMAT refers to the cublasSgemm() function for matrix
multiplication, provided by the CUBLAS library [14].
Similarly, Kernel refers to the kernel function, which is
executed on the GPU. We divide the m × N matrix I into
m
16 ×

N
16 thread blocks, with 16 × 16 threads per block.

The hardware map thread blocks to parallel multiprocessors
on the GPU. The Kernel function is executed for every thread.

Kernel:
C[i, j] = e(C[i,j]−1)/σ2

B. Backpropagation on GPU

The backpropagation training algorithm using matrix op-
erations is given in Algorithm 2. We will follow the same
notation for matrices as discussed in Section II-C. The network
parameters, initial synaptic weights, number of hidden units,
sigmoid function and learning rate are set according to the
techniques for improving backpropagation by Haykin [9].

Algorithm 2 ANN training Using CUDA Using Shaders
for i = 0 to epochs do

netJ ← X * W T
JI }CUMAT

Y ← f(netJ) }Kernel 1

}

Shader 1

netK ← Y * W T
KJ }CUMAT

Z ← f(netK) }Kernel 1

}

Shader 1

δK ← η(T − Z) . f ′(netK) }Kernel 2 } Shader 2
∆WKJ ← δT

K * Y }CUMAT
}

Shader 3
I ← δK * WKJ }CUMAT } Shader 4
δJ ← ηI . f ′(netJ) }Kernel 3 } Shader 5
∆WJI ← δT

J * X }CUMAT
}

Shader 3
WJI ←WJI + ∆WJI }CUADD } Shader 6
WKJ ← WKJ + ∆WKJ }CUADD } Shader 6

end for

1) Using fragment shaders: This algorithm implements
each epoch as a multipass method ( N

4×s passes) requiring
multiple renderings to the framebuffer. The input is stored
into N

4×s 4-channel textures, s being the maximum allowable
texture size. Our implementation packs 4 consecutive elements
from a matrix column into a texel for input, target and other
intermediate matrices. The 4 elements of a texel p can be
accessed simultaneously in order as p.xyzw. The elements
can also be accessed in arbitrary order (e.g. p.yxwz) and an
element can be referenced multiple times (e.g. p.xxxx). For
example: r.xyzw = p.xxyy, assigns the x element of p to the
x and y element of texel r and similarly for other elements.
Single channel textures are used for the weight matrices. This
packing of data allows efficient shaders.

The matrix multiplication of any P×Q and Q×R matrix is
a multipass algorithm, requiring Q

b passes, where b is a scalar
representing the block size that gives optimal performance [4].
Each pass accepts i, j, and k arguments via interpolated texture
coordinates, multiplies b elements and accumulates the partial
result of C[i, j] using GL BLEND, till all the Q elements are
multiplied. After each pass, k is incremented by b.

Shader 1:
for m = 0 . . . b− 1 do

C[i, j].xyzw = A[i, m + k].xyzw ∗ B[j, m + k].xxxx+
C[i, j].xyzw

if last pass
C[i, j].xyzw = f(C[i, j].xyzw)

Shader 2:
C[i, j].xyzw = η(A[i, j].xyzw −B[i, j].xyzw) ∗

f ′(D[i, j].xyzw)

Shader 3:
for m = 0 . . . b− 1 do

C[i, j].r = dot(A[m + k, i].xyzw ∗ B[m + k, j].xyzw)+
C[i, j].xyzw

Shader 4:
for m = 0 . . . b− 1 do

C[i, j].xyzw = A[i, m + k].xyzw ∗ B[m + k, j].xxxx+
C[i, j].xyzw
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Shader 5:
C[i, j].xyzw = ηA[i, j].xyzw ∗ f ′(B[i, j].xyzw)

Shader 6:
C[i, j].x = A[i, j].x + B[i, j].x

2) Using CUDA API: In the Algorithm 2, matrix-matrix
multiplications are done by using cublasSgemm() function
referred to as CUMAT and the weight matrix is updated
using cublasSaxpy() function referred to as CUADD. We
write kernel functions for element-element multiplication and
for computing the sigmoid, f(.) of the netj and netk. We
used 256 threads per block.

Kernel 1:
C[i, j] = f(A[i, j])

Kernel 2:
C[i, j] = η(A[i, j]−B[i, j]) ∗ f ′(D[i, j])

Kernel 3:
C[i, j] = η(A[i, j]) ∗ f ′(B[i, j])

IV. RESULTS

We tested our algorithms on 3 GHz Pentium IV CPU
and a NVIDIA GeForce 8800 GTX graphics processor. To
generate fragment programs, we use NVIDIA’s Cg compiler.
We benchmarked our GPU algorithms for ANN training and
the optimized CPU based ANN implementation provided by
FANN (Fast Artificial Neural Network) and MATLAB.

N t1 (ms) t1/N (ms) t2 (ms) t2/N (ms)
CUDA CUDA MATLAB MATLAB

1 0.319 0.319 10.0 10.00
16 0.434 0.027 70.0 4.37

128 1.870 0.014 520.7 4.06
256 3.647 0.014 1039.4 4.06
512 7.207 0.014 2083.0 4.06
1K 14.736 0.014 4166.0 4.06
2K 28.980 0.014 8360.1 4.08
4K 57.810 0.014 19450.0 4.74

TABLE I
PARZEN-WINDOW RESULTS FOR N PATTERNS

We used two datasets for our experiments. A dataset from
http://archive.ics.uci.edu/beta/datasets/Letter+Recognition,
consisting of 16K 16-dimensional feature vectors, where each
input belongs to one of the 26 capital letters in the English
alphabet is used to estimate the probability density for each
of the 26 categories for the test patterns. We compute the
density estimate for m test patterns in parallel. Table I shows
the performance results of estimating densities for different
number of test patterns. We observe that the time taken
for estimating the probability densities for a test pattern
decreases if the probabilities are estimated for a large number

of test patterns in parallel. On an average our implementation
achieves 325 times speedup over an implementation on
MATLAB. For 64 or more test patterns the time taken for a
pattern on CUDA is 14.1 µs.

We used another dataset from http://www.nist.gov, consist-
ing of 22 × 22 binary images of handwritten numbers from
0-9. For this data, we trained a 3-layer ANN with 484 (all the
image coordinates), 128 and 10 units at the input, hidden and
output layers respectively. The ANN is trained with 8K to 56K
input images. As shown in Table II and Figure 5, the CUDA
implementation achieves 90-110 times speedup over MATLAB
and 120-140 times speedup over FANN implementations.
ANN training with 56K patterns for an epoch on CUDA
requires 190ms as compared to 28.27s for FANN. The shader
implementation achieves 40-50 times speedup over MATLAB
and 55-70 times speedup over FANN implementations. For
this large dataset, MATLAB gives memory problems when
trained for more than 32K patterns.

N t1 (s) t2 (s) t3 (s) t4 (s)
CUDA Shader MATLAB FANN

8K 1.41 3.23 128.78 141.83
16K 2.84 6.24 278.74 344.71
24K 4.30 8.80 423.02 524.16
32K 5.66 11.59 600.61 789.19
40K 6.96 14.37 - 961.67
48K 9.03 17.14 - 1179.26
56K 9.77 20.00 - 1413.66

TABLE II
ANN RESULTS FOR N PATTERNS FOR 50 EPOCHS

Fig. 5. Results for training ANN for 50 epochs

We tested the trained network with 2K unknown patterns.
Training with 32K input patterns for 200 epochs takes 3472s

and gives 84% accuracy on FANN, while GPU takes 23s

and gives 82% accuracy. When trained for 1000 epochs GPU
takes 113s and gives 89% accuracy. Table III shows the

5



classification time for different number of test patterns. We
observe that for more than 1K test patterns, the average
classification time for a pattern is 1.45µs.

N t1 (ms) t1/N (ms) t2 (ms) t2/N (ms)
CUDA CUDA FANN FANN

128 0.83 6.48e-03 16.59 0.129
512 0.89 1.71e-03 68.27 0.133
1K 1.57 1.54e-03 134.37 0.131
2K 3.06 1.49e-03 266.60 0.129
8K 11.86 1.44e-03 1076.51 0.131

16K 24.04 1.46e-03 2139.71 0.130
32K 48.08 1.46e-03 4283.02 0.130
56K 83.49 1.45e-03 7574.14 0.132

TABLE III
CLASSIFICATION TIME FOR N PATTERNS ON ANN

V. CONCLUSIONS

In this paper, we presented the implementation of two
data intensive pattern recognition operations on commodity
GPUs. The algorithms exploit the high computing power of
the GPUs and provide fast performance of the algorithms.
Our implementation can compute the conditional or posterior
probabilities in about 14 microseconds when done in parallel
using the Parzen window method. This brings the Parzen win-
dow algorithms into the realm of real-time pattern recognition
techniques. Similarly, the GPU ANN can perform an epoch of
batch training with 56K samples in about 200 milliseconds.
This makes frequent retraining possible during an application.
The computational ease of such algorithms on an inexpensive
hardware makes it possible to acquire labelled samples live
and use them to adjust the behaviour of the system.
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