
Robust Camera Pan and Zoom Change Detection
Using Optical Flow

Vishnu V. Makkapati
Philips Research Asia - Bangalore

Philips Innovation Campus, Philips Electronics India Ltd.
Manyata Tech Park, Nagavara, Bangalore - 560 045, India

Email: vishnu.makkapati@philips.com

Abstract—Detection of camera motion is essential for auto-
mated video analysis. Changes in camera pan and zoom are two
important events to be identified. This paper proposes optical flow
based techniques to identify these events. The scheme detects pan
change by finding the number of flow vectors that correspond
to the dominant orientation. An orientation histogram has been
proposed to quantify the direction of the flow vectors. Zoom-out
and zoom-in are identified using the convergence and divergence
of flow vectors respectively. A distance based method has been
presented to identify the presence and nature of zoom. Numerical
results presented for various data sets show that the proposed
scheme is very robust.

I. I NTRODUCTION

Video surveillance systems are being deployed at many
critical locations to monitor unintended events. The availability
of low-cost cameras and computing power made these systems
affordable and feasible to be used. Analyzing the voluminous
data acquired by surveillance cameras is becoming increas-
ingly important. Detection of camera motion is critical for
any automated video analysis system. Pan and zoom change
are two important camera operations to be identified.

Traditional motion detection algorithms cannot be applied
directly to this problem since these do not distinguish between
the movement of a camera and an object(s) in the scene.
The problem becomes more complicated when the camera
is installed on a vibrating platform. The movement of the
platform itself should be distinguished from that of the camera.

A method for camera dysfunction detection has been pro-
posed in [1]. This scheme detects pan change by using
block matchingwhich maximizes the normalized correlation
between a reference accumulator and the current accumulator.
The parameters of translation are identified and pan change is
assumed to have happened if they exceed a certain threshold.

In the context of scene change detection, several methods
that work either in theimage domainor the compressed do-
main(e.g., MPEG) have been proposed. The method discussed
in [2] characterizes camera motion using the six-parameter
affine model. Zoom-in and zoom-out are commonly detected
by testing for existence of aFocus of Expansionor a Focus
of Contraction[3].

This work was performed when the author was employed with Honeywell
Technology Solutions Lab, India

The previous methods, in general, estimate the parameters
of the respective models using least-square principle. Hence
they may not perform well when large number of objects in
the scene move. In this paper, a robust method based on optical
flow is proposed to detect change of pan and zoom. Section
II gives an overview of optical flow. The proposed scheme is
described in III. Performance of the scheme is evaluated in
section IV. Finally, conclusions are drawn in section V.

II. OPTICAL FLOW

If a camera or an object(s) in the scene moves, the resulting
apparent motion in the image is calledoptical flow. Optical
flow describes the speed and direction of motion of feature
points in the image. Assuming that a pixel at location(x, y, t)
with intensityI(x, y, t) has moved byδx, δy, andδt between
two frames, the image constraint equation is given as

I(x, y, t) = I(x + δx, y + δy, t + δt) (1)

If the movement is small enough, the Taylor series expansion
may be written as

I(x+ δx, y + δy, t + δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt

(2)
where the higher order terms are ignored. Equations (1) and
(2) give

∂I

∂x

δx

δt
+

∂I

∂y

δy

δt
+

∂I

∂t

δt

δt
= 0 (3)

which is commonly written as

IxVx + IyVy + It = 0 (4)

whereIx = ∂I
∂x

, Iy = ∂I
∂y

, It = ∂I
∂t

, Vx = δx
δt

, andVy = δy
δt

.
This is an equation in three unknowns and cannot be solved
directly. Another set of equations is required to find a solution
and these are usually given by additional constraints.

The computation of optical flow requires the corresponding
feature points in successive frames and several methods have
been proposed for this purpose [5]. A common approach is
to use the similarity between image patches surrounding the
individual feature points. Two measures of similarity namely
sum of squared differencesand cross-correlationare often
used for this purpose. One measure is the sum of squared



(a) Frame of an image sequence [4] (b) Optical flow vectors (c) Orientation Histogram

Fig. 1. Random optical flow vectors generated due to waves in asea

differences (SSD) between an image patch at location(x, y)
at time t and the candidate locations(x + δx, y + δy) where
that image patch could have moved after timeδt. The solution
to this problem is to find the displacement in image plane
(δx, δy) which minimizes the SSD criterion:

SSD(δx, δy) =
∑

x,y

(I(x, y, t) − I(x + δx, y + δy, t + δt))
2

(5)
where the summation ranges over the image patch centered at
the feature point of interest. The other measure of similarity is
to maximize the cross-correlation between the patches in the
frames expressed as

Cor(δx, δy) =
∑

x,y

I(x, y, t) · I(x + δx, y + δy, t + δt) (6)

However, optical flow is not uniquely determined by the local
information. The fact that optical flow along the direction
of the brightness pattern cannot be determined is termed
as aperture problem. Hence, complete optical flow is best
determined at the corners.

Lucas and Kanade proposed a non-iterative method [6],
[7] to solve equation(3). It is a first order, local differential
method and assumes a locally constant flow. It is found to be
most reliable among optical flow techniques [8]. This method
assumes that the flow(Vx, Vy) is constant in a small window
of dimensionm × m (where m > 1) which is centered at
pixel location(x, y). If the pixels are numbered sequentially
as1 . . . n then the following equation is obtained:











Ix,1 Iy,1

Ix,2 Iy,2

...
...

Ix,n Iy,n











[

Vx

Vy

]

=











−It,1

−It,2

...
−It,n











(7)

This results in more than two equations for two unknowns.
This is an over-determined system and may be solved using
least squares method. By using this method, optical flow can
be calculated using the derivatives of an image in all three
dimensions (i.e., x, y, and t axes).

A weighting function is generally employed to give more
importance to the center pixel of the window, with Gaussian

Fig. 2. Flowchart of motion detection algorithm

function being the most preferred. A coarse-to-fine iterative
version of this method is used for image registration. This
method first computes the spatial derivatives at a coarse scale
in scale-space, then warps one of the images by the computed
deformation, and then calculates the iterative updates at suc-
cessively finer scales.

A characteristic feature of Lucas-Kanade algorithm and that
of other local optical flow algorithms is that a very high
density of flow vectors is not obtained. The flow information
fades out quickly across motion boundaries and inner parts
of large homogenous patches show little motion. The primary
advantage is the robustness in the presence of noise.

III. PROPOSEDSCHEME

In this work the direction (or orientation) of optical flow
vectors is used to distinguish the motion of a camera from
that of an object(s) in the scene. The scheme assumes that
the movements of natural objects such as trees, waves etc. are
random. This behavior may often be observed in the motion of
a group of humans and animals. However, the motion induced
by the camera will be in a particular direction. This fact
is illustrated in Fig.1(b), Fig.3(b), and Fig.5(b) representing
natural, camera pan change, and camera zoom-in induced
motions respectively.



(a) Frame of an image sequence (b) Optical flow vectors (c) Orientation Histogram

Fig. 3. Dominant optical flow direction in the presence of panchange

A. Motion Detection

The scheme first determines the feature points(xt
i, y

t
i) in a

frame at timet using Lucas-Kanade method [7]. The matching
feature points(xt+1

i , yt+1

i ) for these points in the frame at
time t+1 are obtained using pyramidal-optical flow algorithm
[6]. Accuracy and robustness are two key components of any
feature tracker. Small integration window provides local sub-
pixel accuracy by avoidingsmooth outof the details contained
in the images. Large integration window handles large motions
and improves sensitivity of tracking. Therefore a tradeoff
exists between local accuracy and robustness when choosing
the integration window size. The pyramidal implementation
provides an optimal solution to that problem.

The feature points will remain stationary if there are no
moving objects in the scene and the camera was stationary.
Any feature point identified on a moving object will get
displaced across two successive frames. The basic assumption
here is that at leastm% of the feature points in any scene
would lie on stationary objects if there is no movement of the
camera and the number of the moving objects in the scene
is less. The number of feature points that remain stationary
between two successive frames is computed. For this purpose,
the Euclidean distance between the matched feature points is
checked to be less than a certain tolerance valueǫ.

∣

∣

∣

∣

√

(xt+1

i − xt
i)

2 + (yt+1

i − yt
i)

2

∣

∣

∣

∣

≤ ǫ (8)

Each feature point that satisfies this condition is tagged to
be stationary. The thresholdǫ also handles any movement that
may have been induced due to the vibration of the camera
platform. An appropriate value ofǫ can be chosen depending
on the application. The value ofǫ may be identified based
on the frame rate of the camera and the processing power
available. If the frame rate is lower, the feature points defining
the flow vectors may be farther apart and a higherǫ value may
be appropriate. This choice also holds when the computing
power is less, in which case the input frames may have to be
sampled at a higher rate (i.e., successive frames are separated
by a largerδt). Fig.2 shows the steps involved in the motion
detection algorithm. The scheme then proceeds to the next

Fig. 4. Flowchart of pan change detection algorithm

step where the optical flow field is classified as random or
camera-induced.

B. Pan Change Detection

The orientation of each optical flow vector is calculated as

tan−1

(

y
t+1

i
−yt

i

xt+1

i
−xt

i

)

. The orientations of the optical flow vectors
will in general span the entire range of360o. The method
divides the range of360o into eight bins, each representing
a sector of width45o. A histogram representing the number
of flow vectors that fall within each of these eight sectors
is computed and is defined asorientation histogram. The
dominant orientation is obtained by finding the peak value
in the orientation histogram.

The pan change of a camera will result in optical flow
vectors that have the same orientation. However, deviations
may be reported from this behavior when there are moving
objects in the scene i.e., not all of the optical flow vectors
point in the direction. The number of optical flow vectors that
correspond to the dominant orientation should contribute to
more thann% of the total number of vectors, if the motion
was induced due to pan change. Any motion detected due to
moving objects would generally be random i.e., the vectors
have random orientations and hence the orientation histogram
does not have a predominant peak value. Fig.1(c) and Fig.3(c)
show the orientation histograms for the optical flow vectorsin
Fig.1(b) and Fig.3(b) respectively. The orientation histogram



(a) Frame of an image sequence [9] (b) Optical flow vectors

Fig. 5. Divergence of optical flow vectors in the presence of zoom-in

in Fig.3(c) has only one entry as there are no moving objects
in the scene while that in Fig.1(c) contains multiple entries
corresponding to random movement of waves. From these
figures, it is evident that the assumptions made are valid. The
flow chart of the pan change detection algorithm is given in
Fig.4.

C. Zoom Change Detection

The optical flow field induced due to change of zoom of
the camera will deviate from that due to random movement
of objects and camera pan change. Zoom-in of the camera
lens will result in a divergent field (Fig. 5) while a zoom-
out will produce a convergent field. The zoom change has to
be first detected and then classified. It should be noted here
that convergence and divergence of the flow vectors would be
towards and away from the center of a frame respectively. This
property is utilized effectively to distinguish convergent and
divergent fields.

Let w and h denote the width and height of the camera
frame respectively. Then the x- and y- coordinates of the center
of the frame(xc, yc) are calculated asxc = w

2
andyc = h

2
. In

the case of a convergent (divergent) vector, the feature point
(xt+1

i , yt+1

i ) in the frame at timet+1 would be nearer (farther)
to (xc, yc) than the feature point(xt

i, y
t
i) in the frame at time

t. This condition can be represented in mathematical terms as
∣

∣

∣

∣

√

(xt+1

i − xc)2 + (yt+1

i − yc)2
∣

∣

∣

∣

≤

∣

∣

∣

∣

√

(xt
i − xc)2 + (yt

i − yc)2
∣

∣

∣

∣

(9)
if Euclidean distance is used. Each flow vector is tagged as
converging or diverging depending on this condition. Then
the dominant nature of the flow field (i.e., either convergent
or divergent) is identified based on the number of vectors
that is converging and diverging. If the number of vectors
corresponding to the dominant field exceedk% of the total
number of vectors, then the camera zoom is detected to
have been changed. Fig.6 explains the zoom change detection
algorithm.

Fig. 6. Flowchart of zoom change detection algorithm

IV. PERFORMANCEEVALUATION

The proposed scheme has been tested extensively using
video data collected from different locations. The algorithms
are implemented in C++ using OpenCV library [11]. The
pyramidal implementation of Lucas and Kanade algorithm
(KLT) [12] is used for optical flow estimation. The data sets
used in the experiments include diverse indoor and outdoor
scenes where significant number of objects move. The events
detected by the method are tested manually. The computational
performance of the method is evaluated using the time taken
per frame. The percentage of flow vectors that correspond to
the event being identified are plotted as a function of frame
number (Fig.7). The percentages for zoom-out and zoom-in
are shown as positive and negative respectively.

It should be noted here that the flow fields for pan and
zoom change are in general complementary, i.e., detection of
pan change will avoid the need to check for zoom change
and vice versa. Hence, pan and zoom change steps need not
be performed in parallel but can be run one after the other.
However, pan change detection being critical of the two events
(it depends on the application again), it is taken to be the first
step. The value ofǫ in equation(8) has been set to 1. Sub-pixel
ǫ values may be used when the input frame rate of the camera
is high.



(a) First frame of data0005 sequence

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 100 200 300 400 500 600

pe
rc

en
ta

ge

frame

Pan
Zoom

(b) Percentage of flow vectors

(c) First frame of autodome sequence [10]

-100

-50

0

50

100

0 50 100 150 200 250

pe
rc

en
ta

ge

frame

Pan
Zoom

(d) Percentage of flow vectors

(e) First frame of PETS sequence [4]

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

pe
rc

en
ta

ge

frame

Pan
Zoom

(f) Percentage of flow vectors

(g) First frame of data1 sequence

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 100 200 300 400 500 600

pe
rc

en
ta

ge

frame

Pan
Zoom

(h) Percentage of flow vectors

Fig. 7. Performance of the scheme for various data sets



The data sets used include pan and zoom change events. It
is expected that the system does not generate false alarms in
the absence of these events. Figures 7(a), 7(c), 7(e), and 7(g)
show the first frames of the sequences used. The resolution of
these sequences is 8bits per pixelper color component and
the dimension is 352×288. The respective percentage plots in
Figs. 7(b), 7(d), 7(f), and 7(h) show that the events are detected
correctly. It should be noted here that the percentages below
the minimum detection percentagesm, n, and k (taken as
70%) are set to 0%. Most of the percentages in Fig. 7(d) and
Fig. 7(h) are over 90% since the number of moving objects
in these indoor scenes is less. Figure 7(f) is an outdoor scene
where waves in the sea move; hence the percentages are found
to be less.

The computational complexity of the scheme depends on
the number of feature points extracted and moving objects in
the scene. If the camera is stationary and no moving objects
are present in the scene, then the scheme stops after the
motion detection step (section III-A). However, if motion is
detected, then the pan and/or zoom change detection steps
have to be performed and hence the complexity will increase.
The complexity of KLT feature point extraction and tracking
method increases with the number of feature points. The
complexity is more when both the pan and zoom change
detection steps are performed for a frame (when motion has
been detected but pan was found to be constant).

TABLE I
COMPUTATIONAL COMPLEXITY

Data set No. of Frames Average time per
frame (secs)

data0005 591 0.157159
autodome 202 0.335089

PETS 1001 0.293973
data1 533 0.130749

Table I shows the complexity of the method for various
data sets used. These results were reported on a Dell Optiplex
GX 240 computer with Intel Pentium 4 processor (1.6 GHZ)
and 512 MB RAM. The results suggest that each frame can
be processed in a fraction of a second. The time taken per
frame is high for autodome and PETS sequences since motion
is detected because of the moving objects but the pan change
detection step alone was not conclusive for most of the frames;
hence zoom change detection step was also performed. It is
less for data0005 and data1 sequences as the high input frame
rate permitted the method to stop after motion detection step
and the zoom change detection step was not required for most
of the frames. The complexity of the scheme can be reduced
by substituting the computationally intensive KLT algorithm
with other low complex methods.

The scheme assumes that good number of feature points
is available in each frame of the video sequence and may
not perform well otherwise. The assumption that movement
of natural objects such as waves and trees is random holds in
most of the cases. The movement of humans can at times be
well-directed e.g., a military parade in which case the method

may generate a false alarm. Further, if the feature points are
available only in a certain portion of the scene, then the method
may also raise a false alarm. However, these situations are not
very common and the method is expected to perform well in
all the remaining cases.

V. CONCLUSIONS

Detection of camera motion is essential for automated
analysis of video sequences. Two methods based on optical
flow are proposed to detect change in pan and zoom of
a camera. The assumption that significant number of flow
vectors point in the same direction (orientation) has been used
to identify pan change. The convergence and divergence of
flow vectors has been utilized for zoom change detection.
These assumptions have been verified experimentally using
many data sets. Further, the number of false alarms has been
found to be minimal. The complexity of the scheme is also
shown to be less.

REFERENCES

[1] S.Harasse, L.Bonnaud, A.Caplier, and M.Desvignes, “Automated camera
dysfunctions detection,” inProc. IEEE Southwest Symposium on Image
Analysis and Interpretation, vol. 1, Lake Tahoe, Nevada, 2004, pp. 36 –
40.

[2] R. Wang and T. Huang, “Fast camera motion analysis in mpegdomain,”
in Proc. International Conference on Image Processing, vol. 3, Kobe,
Japan, 1999, pp. 691 – 694.

[3] V. Kobla, D. Doermann, and A. Rosenfeld, “Compressed domain video
segmentation,” Center for Automation Research, University of Mary-
land, College Park, Tech. Rep. CS-TR-3688, 1996.

[4] T. Boult, “Coastal surveillance datasets, vision and
security lab, u. colorodo at colorado springs,” 2005,
www.vast.uccs.edu/∼tboult/PETS2005.

[5] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Computing Surveys, vol. 27, no. 3, pp. 433 – 466, September 1995.

[6] C. Tomasi and T. Kanade, “Shape and motion from image streams: a
factorization method - part 3 detection and tracking of point features,”
Computer Science Department, Carnegie Mellon University,Pittsburgh,
PA, Tech. Rep. CMU-CS-91-132, April 1991.

[7] J. Shi and C. Tomasi, “Good features to track,” inProc. IEEE Conference
on Computer Vision and Pattern Recognition, Seattle, WA, June 1994,
pp. 593 – 600.

[8] J. Barron, D. Fleet, and S. Beauchemin, “Performance of optical flow
techniques,”International Journal of Computer Vision, vol. 12, no. 1,
pp. 43 – 77, 1994.

[9] “Optical flow image sequences,” ftp://ftp.csd.uwo.ca/pub/vision.
[10] “Autodome autotrack mpeg video,”

http://www.autodome.com/DemoVideos/Autotrack.mpg.
[11] “Intel open source computer vision library,”

http://www.intel.com/research/mrl/research/opencv/.
[12] J.-Y. Bouguet, “Pyramidal implementation of the lucaskanade feature

tracker description of the algorithm,” Microprocessor Research Labs,
Intel Corporation, Santa Clara, CA, Tech. Rep., 2000.


