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Abstract—Detection of camera motion is essential for auto-  The previous methods, in general, estimate the parameters
mated video analysis. Changes in camera pan and zoom are twoof the respective models using least-square principle.celen
important events to be identified. This paper proposes optial flow they may not perform well when large number of objects in

based techniques to identify these events. The scheme désgoan . .
change by finding the number of flow vectors that correspond the scene move. In this paper, a robust method based onloptica

to the dominant orientation. An orientation histogram has been flow is proposed to detect change of pan and zoom. Section
proposed to quantify the direction of the flow vectors. Zoomeut Il gives an overview of optical flow. The proposed scheme is

and zoom-in are identified using the convergence and divergee described in Ill. Performance of the scheme is evaluated in

of flow vectors respectively. A distance based method has bee gaction V. Finally, conclusions are drawn in section V.
presented to identify the presence and nature of zoom. Numaal

results presented for various data sets show that the propesl Il. OPTICAL FLOW
scheme is very robust. o ) .
If a camera or an object(s) in the scene moves, the resulting

. INTRODUCTION apparent motion in the image is callegtical flow Optical

Video surveillance systems are being deployed at maﬂ W dgscribe_s the speed gnd directio_n of motion of feature
critical locations to monitor unintended events. The allity pe |nt_s in th_e image. Assuming that a pixel at locatiany, t)
of low-cost cameras and computing power made these syste%tg' mtensﬂy[(x_, y,t) has movgd by, 51/ a_md@t between
affordable and feasible to be used. Analyzing the volumgno{"© frames, the image consfraint equation is given as
data acquired by surveillance cameras is becoming increas- I(z,y,t) = I(x + 6x,y + Sy, t + 6t) (1)
ingly important. Detection of camera motion is critical for
any automated video analysis system. Pan and zoom chaldgge movement is small enough, the Taylor series expansion
are two important camera operations to be identified. may be written as

Traditional motion detection algorithms cannot be applied oI oI oI
directly to this problem since these do not distinguish et /(% + 62,y + 6y, +6t) = I(z,y,t) + %55” + a_y5y + E&
the movement of a camera and an object(s) in the scene. (2)
The problem becomes more complicated when the camevhere the higher order terms are ignored. Equations (1) and
is installed on a vibrating platform. The movement of thé2) give
platform itself should be distinguished from that of the eam Ol oz  Oldy  OIdt _ 3)

A method for camera dysfunction detection has been pro- Jx ot Oy dt Ot dt
posed in [1]. This scheme detects pan change by usig@ich is commonly written as
block matchingwhich maximizes the normalized correlation
between a reference accumulator and the current accumulato LVy+L,V,+1;=0 (4)
The parameters of translation are identified and pan change | al al al P
assumed to have happened if they exceed a certain thresh‘é’derel”” =g Iy =5, I =G, Vo = 5, andV,, = 5.

. I5 is an equation in three unknowns and cannot be solved
In the context of scene change detection, several methods

that work either in thémage domairor the compressed do- ifectly. Another set of equations is required to find a sohut

main(e.g., MPEG) have been proposed. The method discusSel these are u§ually given by addmonal constraints. .
he computation of optical flow requires the corresponding

in [2] characterizes camera motion using the six-parameter L .
[2] 9 P %dature points in successive frames and several methods hav

affine model. Zoom-in and zoom-out are commonly detect% ; .

. . : een proposed for this purpose [5]. A common approach is
by testing for existence of &Bocus of Expansiomr a Focus L ) .

. to use the similarity between image patches surrounding the
of Contraction[3]. o : L
individual feature points. Two measures of similarity n&me
This work was performed when the author was employed withegovell sum of sqgared differenceand cross-co_rrelatlonare often

Technology Solutions Lab, India used for this purpose. One measure is the sum of squared
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(a) Frame of an image sequence [4] (b) Optical flow vectors (c) Orientation Histogram

Fig. 1. Random optical flow vectors generated due to wavessieaa

differences (SSD) between an image patch at location) Image sequence

at time t and the candidate locatiofis + dzx,y + dy) where !
that image patch could have moved after timeThe solution Optical flow (0x,0y)
to this problem is to find the displacement in image plane I

(6, 6y) which minimizes the SSD criterion:
SSD(oz,0y) = > (I(z,y,t) — I(z + 6z, y + by, t + 6t))*

z,y
®)
where the summation ranges over the image patch centered at
the feature point of interest. The other measure of sinylési
to maximize the cross-correlation between the patchesen th

Change detection by V(x"'-x'y*+(y*"-y)’ < &

raction of changed points > m %

frames expressed as Significant optical flow vectors =~ Camera stationary
Cor(ox, dy) = Z I(x,y,t) - I(z+ dx,y + dy,t + 6t) (6) Fig. 2. Flowchart of motion detection algorithm
z,y

However, optical flow is not uniquely determined by the local ) o )
information. The fact that optical flow along the directiofunction being the most preferred. A coarse-to-fine iteeati
of the brightness pattern cannot be determined is termé@fSion of this method is used for image registration. This
as aperture problem Hence, complete optical flow is pestmethod first computes the spatial derivatives at a coarde sca
determined at the corners. in scale-spacethen warps one of the images by the computed
Lucas and Kanade proposed a non-iterative method [gﬁfqmatio_n, and then calculates the iterative updatesi@t s
[7] to solve equation(3). It is a first order, local differaht Cessively finer scales.
method and assumes a locally constant flow. It is found to beA characteristic feature of Lucas-Kanade algorithm and tha
most reliable among optical flow techniques [8]. This methd¥f other local optical flow algorithms is that a very high
assumes that the flo@,, V) is constant in a small window density of flow vectors is not obtained. The flow information
of dimensionm x m (wherem > 1) which is centered at fades out quickly across motion boundaries and inner parts
pixel location (z, ). If the pixels are numbered sequentiallyf large homogenous patches show little motion. The primary

as1...n then the following equation is obtained: advantage is the robustness in the presence of noise.
Loy Iya —Iia lll. PROPOSEDSCHEME
I.o Iy2 Vv, —Iio _ o _ _ _
. . = . (7) In this work the direction (or orientation) of optical flow
' ' Y : vectors is used to distinguish the motion of a camera from
Iin  Iyn ~ltn that of an object(s) in the scene. The scheme assumes that

This results in more than two equations for two unknowntghe movements of natural objects such as trees, waves etc. ar
This is an over-determined system and may be solved usitagndom. This behavior may often be observed in the motion of
least squares method. By using this method, optical flow cargroup of humans and animals. However, the motion induced
be calculated using the derivatives of an image in all thréy the camera will be in a particular direction. This fact
dimensions (i.e., X, y, and t axes). is illustrated in Fig.1(b), Fig.3(b), and Fig.5(b) repreteg

A weighting function is generally employed to give morenatural, camera pan change, and camera zoom-in induced
importance to the center pixel of the window, with Gaussiamotions respectively.
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(a) Frame of an image sequence (b) Optical flow vectors (c) Orientation Histogram

Fig. 3. Dominant optical flow direction in the presence of ghange

A. Motion Detection Significant optical flow vectors

The scheme first determines the feature pojrfsy!) in a ) ) ' o "
frame at timet using Lucas-Kanade method [7]. The matchingCalculate orientation as tan™((y"-y’)/(x™"-x))
feature points(z!**, yit1) for these points in the frame at I

time ¢+ 1 are obtained using pyramidal-optical flow algorithm
[6]. Accuracy and robustness are two key components of any
feature tracker. Small integration window provides loaaths
pixel accuracy by avoidingmooth oubf the details contained
in the images. Large integration window handles large nmatio
and improves sensitivity of tracking. Therefore a tradeoff
exists between local accuracy and robustness when choosing Fig. 4. Flowchart of pan change detection algorithm
the integration window size. The pyramidal implementation
provides an optimal solution to that problem.

The feature points will remain stationary if there are netep where the optical flow field is classified as random or
moving objects in the scene and the camera was stationagymera-induced.
Any feature point identified on a moving object will get
displaced across two successive frames. The basic assumpl. Pan Change Detection
here IS that at Iea%% O.f the _feature_ poInts in any Scene rpe grientation of each optical flow vector is calculated as
would lie on stationary objects if there is no movement of the /=1 The ori . f th ical fi
camera and the number of the moving objects in the scerie (xgﬂxg)' € onentat_lons of the optical flow vectors
is less. The number of feature points that remain stationail! in general span the entire range 860°. The method
between two successive frames is computed. For this purpdd¥ides the range o860° into eight bins, each representing
the Euclidean distance between the matched feature psint§ jS€ctor of widthd5°. A histogram representing the number

Dominant orientation vectors >n %

yYes

Pan change occured Camera stationary

checked to be less than a certain tolerance value of flow vectors that fall within each of these eight sectors
is computed and is defined awientation histogram The
‘\/(ffﬁﬂ )2+ (i —yh?| < e (8) dominant orientation is obtained by finding the peak value

in the orientation histogram.

Each feature point that satisfies this condition is tagged toThe pan change of a camera will result in optical flow
be stationary. The threshotdalso handles any movement thatrectors that have the same orientation. However, devigtion
may have been induced due to the vibration of the cameray be reported from this behavior when there are moving
platform. An appropriate value af can be chosen dependingobjects in the scene i.e., not all of the optical flow vectors
on the application. The value af may be identified based point in the direction. The number of optical flow vectorsttha
on the frame rate of the camera and the processing powerrespond to the dominant orientation should contribote t
available. If the frame rate is lower, the feature pointsrdeff more thann% of the total number of vectors, if the motion
the flow vectors may be farther apart and a higheslue may was induced due to pan change. Any motion detected due to
be appropriate. This choice also holds when the computingpving objects would generally be random i.e., the vectors
power is less, in which case the input frames may have to bave random orientations and hence the orientation htogr
sampled at a higher rate (i.e., successive frames are seghardoes not have a predominant peak value. Fig.1(c) and F)g.3(c
by a largerdt). Fig.2 shows the steps involved in the motiorshow the orientation histograms for the optical flow vectars
detection algorithm. The scheme then proceeds to the n€ig.1(b) and Fig.3(b) respectively. The orientation hjstom
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(a) Frame of an image sequence [9] (b) Optical flow vectors

Fig. 5. Divergence of optical flow vectors in the presence aira-in

in Fig.3(c) has only one entry as there are no moving objects ~ Significant optical flow vectors

in the scene while that in Fig.1(c) contains multiple erstri !
corresponding to random movement of waves. From thes econ"ffgenzce (‘{llvergence 2) dezteCtlon by
figures, it is evident that the assumptions made are valig. Th VX )y ) VX))
flow chart of the pan change detection algorithm is given in I

Fig.4.

Convergent (divergent) vectors >

C. Zoom Change Detection

The optical flow field induced due to change of zoom of vYes
the camera will deviate from that due to random movement Zoom out (in) occured Camera stationary
of objects and camera pan change. Zoom-in of the camera
lens will result in a divergent field (Fig. 5) while a zoom-
out will produce a convergent field. The zoom change has to
be first detected and then classified. It should be noted here IV. PERFORMANCE EVALUATION
that convergence and divergence of the flow vectors would b
towards and away from the center of a frame respectivelys Thi.
property is utilized effectively to distinguish convergemd
divergent fields.

Let w and h denote the width and height of the camer
frame respectively. Then the x- and y- coordinates of théeren
of the frame(z., y.) are calculated as. = § andy. = g In
the case of a convergent (divergent) vector the featuret poi
(ziT1, yi1) in the frame at time+1 would be nearer (farther)
to (z.,y.) than the feature pointz!, y!) in the frame at time

Fig. 6. Flowchart of zoom change detection algorithm

eThe proposed scheme has been tested extensively using
video data collected from different locations. The aldoris
are implemented in C++ using OpenCV library [11]. The
yramidal implementation of Lucas and Kanade algorithm
%J'KLT) [12] is used for optical flow estimation. The data sets
used in the experiments include diverse indoor and outdoor
scenes where significant number of objects move. The events
detected by the method are tested manually. The compudhtion
performance of the method is evaluated using the time taken
t. This condition can be represented in mathematical termsfﬁe [ frame. The percentage of flow vectors that correspond to
€ event being identified are plotted as a function of frame
t+1 1 5 ; number (Fig.7). The percentages for zoom-out and zoom-in
\/ =) + (y; \/ i = @e)® + (Ui — Ye)*| are shown as positive and negative respectively.
(9) It should be noted here that the flow fields for pan and
if Euclidean distance is used. Each flow vector is tagged asom change are in general complementary, i.e., detecfion o
converging or diverging depending on this condition. Theman change will avoid the need to check for zoom change
the dominant nature of the flow field (i.e., either convergeandvice versa Hence, pan and zoom change steps need not
or divergent) is identified based on the number of vectobe performed in parallel but can be run one after the other.
that is converging and diverging. If the number of vectoidowever, pan change detection being critical of the two tven
corresponding to the dominant field excel® of the total (it depends on the application again), it is taken to be tise fir
number of vectors, then the camera zoom is detected step. The value of in equation(8) has been set to 1. Sub-pixel
have been changed. Fig.6 explains the zoom change detectiealues may be used when the input frame rate of the camera
algorithm. is high.




(a) First frame of data0005 sequence

(c) First frame of autodome sequence [10]

(g) First frame of datal sequence
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Fig. 7. Performance of the scheme for various data sets



The data sets used include pan and zoom change eventmdl generate a false alarm. Further, if the feature poirds ar
is expected that the system does not generate false alarmaviailable only in a certain portion of the scene, then thehoabt
the absence of these events. Figures 7(a), 7(c), 7(e), &nd May also raise a false alarm. However, these situationsare n
show the first frames of the sequences used. The resolutiorvefy common and the method is expected to perform well in
these sequences istits per pixelper color component and all the remaining cases.
the dimension is 352288. The respective percentage plots in
Figs. 7(b), 7(d), 7(f), and 7(h) show that the events arectete V. CONCLUSIONS
correctly. It should be noted here that the percentageswbelo Detection of camera motion is essential for automated
the minimum detection percentages n, and k (taken as analysis of video sequences. Two methods based on optical
70%) are set to 0%. Most of the percentages in Fig. 7(d) afgw are proposed to detect change in pan and zoom of
Fig. 7(h) are over 90% since the number of moving objecés camera. The assumption that significant number of flow
in these indoor scenes is less. Figure 7(f) is an outdoorescatgctors point in the same direction (orientation) has bessuu
where waves in the sea move; hence the percentages are fd@niglentify pan change. The convergence and divergence of
to be less. flow vectors has been utilized for zoom change detection.

The computational complexity of the scheme depends dhiese assumptions have been verified experimentally using
the number of feature points extracted and moving objectsfitany data sets. Further, the number of false alarms has been
the scene. If the camera is stationary and no moving objef#sind to be minimal. The complexity of the scheme is also
are present in the scene, then the scheme stops after 3hewn to be less.
motion detection step (section IlI-A). However, if motios i
detected, then the pan and/or zoom change detection steps
have to be performed and hence the complexity will increasé!! S Harasse, L.Bonnaud, A.Caplier, and M.Desvignesffated camera

. . . . ysfunctions detection,” ifProc. IEEE Southwest Symposium on Image

The complexity of KLT feature point extraction and tracking  Analysis and Interpretatianvol. 1, Lake Tahoe, Nevada, 2004, pp. 36 —
method increases with the number of feature points. The 4o0.
complexity is more when both the pan and zoom chang@] R. Wang and T. Huang, “Fast camera motion analysis in nguegain,”

. ) in Proc. International Conference on Image Processingl. 3, Kobe,
detection steps are performed for a frame (when motion has japan, 1999, pp. 691 — 694.
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The scheme assumes that good number of feature points
is available in each frame of the video sequence and may
not perform well otherwise. The assumption that movement
of natural objects such as waves and trees is random holds in
most of the cases. The movement of humans can at times be

well-directed e.g., a military parade in which case the méth



