
Improved Cut-Based Foreground Identification

Sharat Chandran Satwik Hebbar Vishal Mamania Abhineet Sawa
Computer Science & Engineering Department

Indian Institute of Technology, Bombay
India 400076

http://www.cse.iitb.ac.in/˜{sharat,satwik,vishalm,sawa}

Abstract

Automatic content based schemes, as opposed to those
with human endeavor, have become important as users at-
tempt to organize massive data presented in the form of mul-
timedia data such as images, and home or movie videos.
One important goal, be it in shot understanding, or scene
detection, or compression, is the ability to find foreground
pixels. This higher level task is best realized using a graph-
based description of the input image or video.

The normalized cut framework is appealing because it
looks at an image or an image sequence from a global per-
spective. Unfortunately due to quadratic storage and time
complexity, the algorithm appears to be infeasible to use on
medium and large datasets. In this paper, we show how to
make graph based schemes tractable and useful.

1 Introduction

An increasing amount of video is engulfing computer
disks with information. An estimated half a terabyte or
9,000 hours of motion pictures are produced around the
world every year. Furthermore, 3,000 television stations
broadcasting for twenty-four hours a day produce eight mil-
lion hours of video per year. Counting a few hours of am-
ateur video efforts produced by camcorder owners, several
gigabytes of video start residing on typical end user com-
puters. We quickly come to the conclusion that tools must
be provided to store, organize, and retrieve video data. One
central cognitive task is therefore the question: “What is the
foreground object in static or moving picture data?”

This task is difficult if only a single frame is given. When
it comes to meaningful extraction of semantic information
(“where is the actor in this frame?”) in a video, a very com-
mon strategy is to build a model of the background, and
“subtract” it from the frame under interest.

However, background segmentation techniques are prob-
lematic when camera motion is involved. The basic rea-
son for this arises from the fact that they are fundamentally
based on computing frame differences of some form. Con-

sider theflower gardensequence

where the interesting part is the prominent tree in the
foreground. The results of a simple thresholded frame dif-
ference are also shown below the sequence. It is evident that
almost everything seems to be moving; dynamically build-
ing a model of the background is difficult. A similar prob-
lem manifests itself in the video sequence below where the

camera is continuously moved at a rapid pace to keep the
driver of a car in the center of the frame. In other words,
both the camera and the scene are moving.

In fact, a number of factors such as camera noise, shad-
ows, reflections, and the like force an error prone trial-and-
check post-processing using, say, morphological methods to
eliminate false positives. Lost foreground, and thus a true
measure of the shape, is irrecoverable in post-processing.
Therefore while background subtraction is a very important
tool, andmustbe used where applicable, there are cases
where an alternative is required.

Graph based methods are attractive; graphs are highly
malleable but simple data structures and the approach takes

1



a global approach on deciding how to classify foreground
pixels.

One reason for the lack of universal popularity of graph
algorithms has been the enormous computational cost, both
in terms of space and time. Even after making some as-
sumptions on the sparsity of certain matrices, the core rou-
tine in the N-cut algorithm takesO(n1.5) time for a graph
with n nodes (usually theO(n) pixels). A segmentation
scheme requires repeated use of this core super-linear algo-
rithm, and therefore the time requirements can make certain
approaches intractable. The space complexity isO(n2) ,
which precludes working with videos more than a few min-
utes long.

1.1 Our Contributions

In this paper, we consider the problem of obtaining the
important “foreground” in either individual images, or a set
of frames in a video. In the second case, we suppose that
either enough frames are not available to build a model of
the background, or the scene is such that background sub-
traction methods might fail.

Our first naive attempt of using the N-cut algorithm to
obtain two clusters within a graph was computationally in-
feasible. One key idea reported in this paper is to make the
problem tractable by using a fast segmentation algorithm to
“feed” the N-cut algorithm with a smaller sized, but mean-
ingful data. This is not a simple “pre-processing” step such
as bottom-up region merging to reduce input size; we pro-
vide a ready-made matrix ofrelevantdata for the linear al-
gebra basis of the N-cut algorithm. In particular, for video
data withn pixels in a frame, and considering, say, 3 ad-
jacent frames, a naive N-cut algorithm would require9n2

matrix space; we usen matrix space andO(n log n) time.
We demonstrate our algorithm with qualitative and quanti-
tative experimental data.

The rest of this paper is organized as follows. After a
discussion of previous work in Section 2, we give details
of our approach in Section 3. Sample results are shown in
Section 4 and we end with some concluding remarks in the
last section.

2 Previous work
Several [5, 13] graph theoretic approaches to segmen-

tation have been proposed in the recent past. A general
clustering algorithm based on flows has been proposed in
[23]. Techniques using local information as in [5, 2], and
those using region-growing and clustering are typically fast.
Those which use global information, usually apply some
sort of graph cuts to identify (dis)similar regions. Nested
cuts [21], average cuts [15], and normalized cuts [19],
are various techniques aimed at partitioning an undirected
graph using a global cost function. In [22] another met-
ric called the cut ratio is used to perform efficient iterated
region-based segmentation. The approach in [17] is to per-

form hierarchical aggregation using an irregular pyramid of
an image.

As in the work of [19], we believe it is important that
segmentation algorithms take into account non-local prop-
erties of the image, because local properties fail to capture
perceptually important differences.There have been several
attempts made at utilizing global information without in-
curring heavy computational overheads. In [8], the features
of region and boundary based approaches are combined by
transforming region energy to boundary energy. The global
optimization problem is then solved as a minimum mean
weight cycle problem on a directed graph. In [9], an SVD
approximation method based on probabilistic sampling has
been proposed in an attempt to make normalized cuts com-
putationally tractable.

Clustering pixels in an image has also been used to con-
siderably reduce the complexity of certain techniques. Au-
thors in [11] use image segmentation to obtain “superpix-
els.” These superpixels guide their recognition algorithm in
the recovery of human body configurations. In [7], static
segmentation using the watershed algorithm is applied to
obtain small locally coherent segments and then apply the
dominant motion model to separate the background. In
[12], a method is presented which works with an overseg-
mented video frame and performs merging based on motion
similarity to separate moving objects. In[24] intra-frame
segmentation is performed to obtain contours of objects and
merge object regions using motion information to get a bi-
nary object image.

In [20], edges are tracked in image sequences to guide
the segmentation of frames based on colour and the label-
ing of the regions based on their motion model. A sim-
ple framework with two frames, to give two motions (fore-
ground and background) is presented and extended for more
motion layers. A comprehensive survey of various spatio-
temporal grouping techniques can be found in [10].In the
above techniques, the main goal is to produce several seg-
ments; we are primarily interested in only two segments.

Image sequences (as opposed to static images) provide a
different challenge. Because of ‘prior’ information, consid-
erable work has been focused on separating the background
from the foreground in image sequences. In [4], a non-
parametric background model has been developed which
adapts to high frequency variations in the background. A
Gaussian mixture model has been adopted in [6] for classi-
fying a pixel into a background, shadow or moving object
pixel. In [1], each pixel is represented as a group of clusters
which are then ordered according to the likelihood of them
modeling the background, based on the history information
of pixel values. A background registration technique is used
in [3] to construct a reliable background image from the ac-
cumulated frame difference information. Authors in [16]
adapt the permissible range of background image variations



using the co-occurrence of image variations between pairs
of neighboring image blocks. Authors in [14] have stressed
that different background models need to be applied for dif-
ferent scenes; they show how such models can be computed
using spatio-temporal image processing.

However, most of these methods depend on having infor-
mation from a dense set of past frames about the approx-
imate background model itself. Alternately, the methods
learn or have prior knowledge of the nature of the back-
ground in order to produce results. Our method works
without a background model and when only a sparse set
of frames is given. If only a single key frame (say in a shot)
is given, we can still get satisfactory results.

3 Our Approach

Clustering is one of the best known problems in com-
puter vision, and has been vigorously addressed for the last
30 years. Graph theory being a well studied branch of com-
puter science has been exploited for various segmentation
purposes. Specifically, vertices in the graph contain features
such as color, texture, and motion profiles. Edges might
correspond to how these vertices are associated with each
other; a strong link might suggest that these vertices are
similar. Graph-based methods may be classified into two
approaches.

In the top-
1.0

0.5

0.25

0.25

0.5

0.5

0.25 0.25 0.25

0.25

0.25

0.25

0.25

0.25
0.25 0.25 0.25

0.5
0.50.5

0.25

0.25

0.25

0.5

0.5

Figure 1. The normalized cut

method is expensive, but can

recover the intuitive foreground

suggested by unfilled circles.

down approach,
a minimal cut is
made to partition
the graph into
two. Significantly,
further segmen-
tation is achieved
recursively. In
the bottom-up
approach clusters
are created, pos-
sibly in parallel,
at several places
and each cluster is
represented by the
weight of the min-
imum spanning
tree. The cut be-
tween two clusters
is considered, but
this time to decide whether clusters should be accumulated
or not. The top-down approach is of particular interest
in the case of motion segmentation in videos where we
need the most prominently moving “foreground” separated
out from the background. Authors in [19] propose the
notion of normalizedcuts. This technique produces good
results in segmentation but is expensive. As an example,

consider Figure 1. Unfilled circles represent the foreground
and occupy a small but significant portion of the image.
Completely filled circles represent the background. A
large portion of the image is occupied by noisy data
and is shown using shaded circles. The normalized cut
method succeeds in creating an intuitive segmentation. A
bottom-up approach correctly produces three segments
but the higher level process is confused as to which of the(

3
2

)
areas should be combined to be declared as a possible

foreground. (Note that the method does not solve the
figure-ground problem.)

3.1 Our Idea

The central idea is to take advantage of a bottom-up al-
gorithm we have developed earlier (Algorithm P) [2] which
produces agood segmentation. Specifically, the speed of
Algorithm P and the top-down global nature of Algorithm
N-cut which produces the foreground data are combined. If
we somehow feed an input of size

√
n to Algorithm N-cut, it

will result in manageable space complexity ofO(n). It will
also result in one call running in timen0.75. As a result, the
net algorithm runs inO(n log n) time.

The delicate aspect of this pipelining procedure is to feed
the proper “super pixels” to Algorithm N-cut. For exam-
ple, the naive bottom-up strategy of grouping pixels in a
quadtree fashion can indeed produceO(

√
n) nodes; how-

ever it might, in all probability and irrecoverably, feed im-
proper pixels to Algorithm N-cut. On the other hand, the
data driven output segmentation in Algorithm P may result
in unpredictable number of segments. It may beO(

√
n)

which is acceptable, or it might beo(
√
n) which is also ac-

ceptable. If however, the output size isΩ(
√
n), we are in

trouble!
Further, we also need to input (to Algorithm N-cut) an

edge weight indicating the right measure of similarity be-
tween clusters. These two factors might spoil the running
time of the overall algorithm, and therefore require further
exploration of Algorithm P. The details of this have been
omitted here due to space limitations; however, the pseudo-
code for the algorithm is given in the appendix.

3.2 Video Processing

The efficiency of our approach becomes more appar-
ent when we depart from images and work with videos.
The first approach would be to build a 3-dimensional graph
just as we built the 2-dimensional graph for single images.
Edges are thus between pixels as before within a frame
(termedspatial edges) as well as between pixels in neigh-
boring frames (termedtemporal edges). The weights as-
signed to both temporal and spatial edges use motion pro-
files as discussed below.

The normalized cut on this graph results in two volumes
representing what is globally the region of interest based
on both intensity and motion profiles. An example of the



efficacy of this approach is reflected in Figure 4(a). The
poor light in any one image, and the uneven lighting in the
background in this sequence makes it impossible to detect
the figure; motion profile with a cut based approach saves
us. The projections on individual frames make it possible
to obtain the foreground in image sequences. However, if
there aren pixels in any frame, the storage for the input
matrix for a sequence of 3 frames is9n2 which makes the
approach intractable.

In our approach we first cluster pixels together to ob-
tain “superpixels.” Edge weights now denote a similarity
measure in terms of both spatial (intensity) and temporal
(motion profile) features. Having used motion information
to obtain “coherently moving” clusters, we avoid building a
3-dimensional graph and work with individual frames on a
frame-by-frame basis. As a result, we use onlyO(n) space
for the input matrix to the N-cut subroutine.

3.2.1 Motion Profiles

Generally speaking, the motion profile MPv of a pixel v
represents the probability that a pixel is moving. It encodes
both the direction and the amount of motion. A local calcu-
lation, it is represented as a matrix MPv[i, j], 0 ≤ i, j < N .
These motion profiles are similar to those introduced in
[18]. They differ, for example, in that our clustering al-
gorithm needs a dissimilarity metric for the weights on the
edge connecting two pixels in an image.

The motion profile is calculated using patch differences.
A patch corresponding to a pixelv is a square neighborhood
centered at the pixel and is denoted byPv[k, l], 0 ≤ i, j <
M , whereM is the patch-size. Now, the motion profile
of pixel vf , wheref denotes the frame to which the pixel
belongs, is given by :

MPvf [i, j] =
∑
k,l

∣∣∣Pvf [k, l]− Pvf+1
1

[k, l]
∣∣∣

wherev1 is the pixel obtained after a displacement of(i −
N−1

2 , j − N−1
2 ) pixels onv. The net weight of an edge is

a weighted combination of the intensity and motion profile
differences.

4 Sample Results
Two types of results are shown in this section. We first

show evidence that the qualitative performance of our algo-
rithm is acceptable. Later we show that the time taken by
our algorithm is substantially less. Our timing results are on
a Pentium IV 1.8 GHz Linux based computer with 512MB
RAM.

4.1 Qualitative Results on Images

First, we demonstrate that the results of our pruning
procedure are comparable to the results obtained by other
means, most notably, the original N-cut algorithm. Con-

sider the input query image (Figure 2(a)) used in sev-
eral [13, 19, 5] papers. Figure 2(b) shows the result of
Algorithm-P. It runs fast, but produces too many clusters.
Algorithm N-cut (Figure 2(d) reproduced from the origi-
nal paper) does a reasonable job of identifying one of the
players in the foreground. We were unable to produce this
segmentation in a reasonable amount of time (our computer
implementation ran out of memory also). Figure 2(e) shows
our result, and it is evident that, as part of the foreground,
we have managed to produce both the playersincluding the
forearms missing in Figure 2(d). Note that a second pass
on this segmented foreground can extract the two players
separately. Figure 2(f) (reproduced from [17]) overlays on
the input image the cut an irregular pyramid scheme would
produce. Figure 2(c) shows the result obtained by a trial-
and-check procedure using a popular tool applying fuzzy
c-means clustering for obtaining two components and then
using a region-growing process to get the two segments.

Figure 3 shows a set of images and the corresponding
foreground region determined by the algorithm. The results
demonstrate that the technique works well in many cases.
For instance, there are a number of humans in the fore-
ground in Figure 3(d). Figure 3(g) is a good example to
illustrate the fact that the background need not always be
uniform for our algorithm to perform handsomely. An im-
mensely cluttered background is presented to the algorithm
in Figure 3(h) and the results are still satisfactory. The range
of images presented shows that the algorithm works well for
both indoor and outdoor scenes. Figure 3(i) shows a result
where we see that the algorithm works well for synthetic
gradient images as well.

4.2 Qualitative Results on Videos

Figure 4 shows the results of our work for videos. We
have again attempted to demonstrate that our method works
for most of the typical scenarios.

Consider Figure 4(c) which shows a car moving across
at a high velocity. Standard background segmentation tech-
niques try to “learn” the background in the initial few
frames; such techniques are defeated if the motion is high
speed. Our approach uses motion information, along with
the pixel intensities to cluster pixels together. This implies
that, independent of whether there is camera motion, we
will be able to group coherently moving pixels together. A
higher level normalized cut on these clusters will then bring
out the region of interest in the video adequately. This can
be seen in our results where the car is identified as the fore-
ground.

As discussed earlier, standard background segmentation
techniques also are problematic when they are given videos
with camera motion involved. In theflower gardense-
quence shown in Figure 4(e), the interesting part is the
prominent tree in the foreground. The standard background



(a) Input image (b) Result from Algorithm-P (c) Semi-automatic segmentation results

(d) Result from [19] (e) Our result (f) Result from [17] at scale=11 (notice
the black cut between the two players).

Figure 2. Regions created using various algorithms. Figures are best seen in color.

subtraction schemes will be distracted as there would be no
way to differentiate between the motion of the tree and that
of the house or the flowers. In our case, the motion profile
scheme succeeds in eliminating certain parts of the frame
(the sky, for example) as they do not appear to be moving
at all. More important, the global nature of our scheme suc-
ceeds in differentiating the “faster motion” of the tree as
compared to the flowers and the house.

Another interesting sequence is themodelsequence (Fig-
ure 4(f)) where the camera is fixed on a car moving at a rapid
pace. Both the camera and the scene are moving. Here too
our method succeeds in getting the intuitive segmentation
of the foreground, which is made up of the model and her
car. Building a model of the background appears difficult.

Figure 4(b) shows our result for theHall Monitor se-
quence which has high but uneven indoor lighting. In Fig-
ure 4(a) a man, occupying a very small region of the frame,
is walking in front of a cluttered background with dim light-
ing. Our procedure identifies the man fairly clearly as the
foreground in both cases. In Figure 4(d) there are two
prominent motions in the foreground. We eliminate the
background and retain both moving objects. All these cases
show that even when only a few frames are available, fore-
ground can be identified.

4.3 Running Time

Figure 5. The time taken by our implementation of the

original N-cut algorithm.

The experimental comparison between our algorithm
and the normalized cut approach was performed on Fig-
ure 3(g) at different resolutions. Figure 5 shows the running
time of our implementation of the N-cut algorithm. The x
and y axes correspond to the number of pixels and the time



taken in seconds respectively. It can be observed that the
running time increases dramatically as the size of the image
increases.

Figure 6 shows the ratio of the running time of the orig-
inal N-cut algorithm to our proposed algorithm. The x and
y axes correspond to the number of pixels and the ratio of
the time taken in seconds respectively. It can be observed
that our algorithm is vastly superior when it comes to run-
ning time. (For large images or videos, after some point, the
original version ran out of memory and would not continue;
we could sustain ours.) The non-monotonic nature of the
graph can be explained as follows. The time taken by our
procedure depends directly on the number of clusters fed to
it. As we work with small images at different resolutions,
this number does not vary drastically from one resolution to
the other and may even decrease with an increase in reso-
lution. However, this is not true for the original procedure
which is fed more pixels with every increase in resolution.

Figure 6. The ratio of the time taken by the original al-

gorithm in [19] to ours. Any value more than 1 – all the

cases – shows that our algorithm is faster.

5 Final Remarks

Identifying portions of an input image or video that qual-
ify for the foreground (as opposed to whether it is the fig-
ure or the ground) is an important problem with various
approaches. Even in video sequences (where there is the
possibility of using past frames) identifying the foreground
using background subtraction is often infeasible. A general
framework is to represent the data as a graph and to parti-
tion the vertices into two components by finding a minimal
cut. Normalized cuts (N-cut) ensure that there is cohesion
within each component.

Our experiments indicated that the N-cut method pro-
duces classification of good quality, but can take an inordi-
nate amount of time or space. In this paper, we have devised

a region growing algorithm that can be integrated with the
N-cut algorithm. Our entire algorithm runs inO(n log n)
time. This attempt to reduce the computational complexity
is also seen in [17] where the goal is to produce a com-
plete segmentation ofimages. Our quantitative and quali-
tative results on videos indicate that the proposed method
is successful. Once the foreground has been obtained, any
suitable algorithm (such as the one in this paper) can be re-
cursively applied to obtain finer details where necessary.

Acknowledgments
We thank Nithya and other members of ViGIL for their com-

ments and suggestions.

References
[1] D. Butler, S. Sridharan, and J. V. Michael Bove. Real-time

adaptive background segmentation. InICASP, pages 341–
344, 2003.

[2] S. Chandran and K. K. Madheshia. A fast segmentation al-
gorithm revisited. InIndian Conference on Computer Vision,
Graphics, and Image Processing, pages 496–501, 2002.

[3] S.-Y. Chien, S.-Y. Ma, and L.-G. Chen. Efficient moving
object segmentation algorithm using background registration
technique. IEEE Transactions on CSVT, pages 577–586,
2002.

[4] A. Elgammal, D. Harwood, and L. Davis. Non-parametric
model for background subtraction. InECCV, pages 751–
767, 2000.

[5] P. Felzenszwalb and D. Huttenlocher. Image segmentation
using local variation. InCVPR, pages 98–104, 1998.

[6] N. Friedman and S. Russell. Image segmentation in video se-
quences: A probabilistic approach. InAnnual Conference on
Uncertainty in Artificial Intelligence, pages 175–181, 1997.

[7] Y. Huang, D. Paulus, and H. Niemann. Background-
foreground segmentation based on dominant motion estima-
tion and static segmentation.Journal of Computing and In-
formation Technology, pages 349–353, 2000.

[8] I. Jermyn and H. Ishikawa. Globally optimal regions and
boundaries. InICCV, pages 904–910, 1999.

[9] J. Keuchel and C. Schnorr. Efficient graph cuts for unsuper-
vised image segmentation using probabilistic sampling and
SVD-based approximation. In3rd International Workshop
on Statistical and Computational Theories of Vision, Nice
(France), 2003.

[10] R. Megret and D. DeMenthon. A survey of spatio-temporal
grouping techniques. Technical report, University of Mary-
land, 2002.

[11] G. Mori, X. Ren, A. Efros, and J. Malik. Recovering human
body configurations: Combining segmentation and recogni-
tion. CVPR, 2004.

[12] H. Nguyen, M. Worring, and A. Dev. Detection of mov-
ing objects in video using a robust motion similarity mea-
sure. IEEE Transactions on Image Processing, pages 137–
141, 2000.

[13] M. Pavan and M. Pelillo. A new graph-theoretic approach
to clustering and segmentation. InCVPR, pages 145–152,
2003.

[14] R. Pless, J. Larson, S. Siebers, and B. Westover. Evaluation
of local models of dynamic backgrounds. InCVPR, pages
73–78, 2003.

[15] S. Sarkar and P. Soundararajan. Supervised learning of large
perceptual organization: Graph spectral partitioning and
learning automata.IEEE Transactions on PAMI, 22:504–
525, 2000.



[16] M. Seki, T. Wada, H. Fujiwara, and K.Sumi. Background
subtraction based on co-occurrence of image variations. In
CVPR, pages II–65–II–72, 2003.

[17] E. Sharon, A. Brandt, and R. Basri. Fast multiscale image
segmentation. InCVPR, pages 70–77, 2000.

[18] J. Shi and J. Malik. Motion segmentation using normalized
cuts. ICCV, pages 1154–1160, 1998.

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on PAMI, 22(8):888–905, 2000.

[20] P. Smith, T. Drummond, and R. Cipolla. Layered motion
segmentation and depth ordering by tracking edges.IEEE
Transactions on PAMI, pages 479–494, 2004.

[21] O. Veksler. Image segmentation by nested cuts. InCVPR,
pages 339–344, 2000.

[22] S. Wang and J. M. Siskind. Image segmentation with ratio
cut. IEEE Transactions on PAMI, pages 675–690, 2003.

[23] Z. Wu and R. M. Leahy. An optimal graph theoretic approach
to data clustering: Theory and its application to image seg-
mentation. IEEE Transactions on PAMI, pages 1101–1113,
1993.

[24] J. Y. Zhou, E. P. Ong, and C. C. Ko. Video object segmenta-
tion and tracking for content-based video coding.IEEE In-
ternational Conference on Multimedia and Expo (III), pages
1555–1558, 2000.

procedureoverall()
initQ2()
initQ1()
i← 0
h← new(handle)
while Q2 6= φ do

s← findMin(Q2)
Q1.dec(s, 0)
grow(h, i)
i← i+1

end while

Procedures initQ1 and initQ2 initialize the queues to be used in
the algorithm.

procedure initQ2

for all v ∈ V do
x←minAdjacent(v)
Q2.insert(v,x)

end for

procedure initQ1

for all v ∈ V do
v.key←∞
Q1.insert(v, v.key)

end for

Procedure grow() creates the clusters by merging the neighbor-
ing nodes. It also creates the link between clusters which could
not be merged due to the internal variation criteria.

proceduregrow(h, i)
done← false
while not donedo

u← findMin(Q1)

if causeMerge(h, u)then
if isLinkingNode(u)then

h’ = handle pointing to u
Link handles h, h’

linkWeight← Int(h’)
edgeWeight

end if
h.add(u)
updateAdjacent(u)
Q1.remove(u)
Q2.remove(u)

else
u.setLinkingNode (true)
u.setHandlePointingIt (h)
done← true

end if
end while

Procedure causeMerge(h,u) determines whether to merge the
node u to cluster h or not and updateAdjacent(u) updates the
neighbor’s weights while growing the cluster.

procedurecauseMerge(h, u)
if u.key< (h.internalVariation +τ ) then

return true
else

return false
end if
procedureupdateAdjacent(u)
for all v ∈ adjacent(u)do

if (v ∈ Q1) ∧ (v.key<w(u,v)) then
v.key← w(u,v)
Q1.decreaseKey(v,v.key)

end if
end for

proceduremergeClusters()
sort(edgeList) {sorted list of edges ei’s looks like
(Cxe0Cx′)(Cye1Cy′) . . ., whereei ≥ ei+1}
i← 1
count← number of clusters
while (count≥ n)∧ (i ≤ no of edges)do

merge(Cx, Cx′ ) {ei joinsCx, Cx′}
i← i+1
count← count-1

end while



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Sample results for input images, best viewed in color. See text for details.

(a) (b) (c)

(d) (e) (f)

Figure 4. Sample results for video data. Only representative frames from the video are shown.


