
A Fast Segmentation Algorithm Revisited

Sharat Chandran Kamlesh K. Madheshiya
Computer Science and Engg. Dept. Computer Science and Engg. Dept.

IIT, Powai IT BHU
Mumbai, INDIA 400076 Varanasi, INDIA 221005

sharat@iitb.ac.in kamleshitbhu@rediffmail.com

Abstract

Image and, more recently, video segmentation form an im-
portant part of image understanding. Several algorithms
presuppose that this step is efficiently and correctly com-
pleted by an oracle.

A recent bottom up image segmentation algorithm incor-
porates both local and global information in an image and
runs fast in practice. This algorithm is loosely based on
Kruskal’s algorithm on minimum spanning trees. We build
on this work and use the classical Prim’s algorithm which is
a theoretically superior algorithm. Our experimental result
indicates that the quality of our segmentation does not suf-
fer, yet the speed does improve. We also prove our algorithm
is good in the same sense as the original work.

1. Introduction
Image segmentation is one of the best known problems in
computer vision, and has been vigorously addressed for the
last 30 years. Graph based methods were earlier considered
to be too inefficient in practice. Recent advances in technol-
ogy and algorithms ([3, 4]) have negated this assumption.

This work is directly based on the minimum spanning
tree based segmentation scheme in [3]. Two properties are
deemed important for producing regions:

1. The algorithm must reflect global aspects of the image.

2. The algorithm must be highly efficient.

At a higher level, our point of departure from the algo-
rithm in [3], denoted as Algorithm K in this paper, is the
second step. Our goal is to produce an algorithm that re-
tains the advantages of Algorithm K, but runs faster. The
results in Figure 1 show that our algorithm, Algorithm P2,
is invariably faster (especially for larger sized images). We
also prove that Algorithm P2 produces agood segmenta-
tion. (One of the contributions in [3] is the formal defintion
of an intuitive ‘good’ segmentation.)

Algorithm K starts off with a connected graph represen-
tation of an image that hasn vertices andO(n) edges. It

partitions the image (graph) into regions (components). It
measures the evidence for a boundary between two regions
by comparing two parametric measures: one based on in-
tensity differences across the boundary, and the other based
on intensity differences between neighbouring pixels within
each region. The algorithm starts with as many regions as
the vertices, and merges regions.

Our algorithm shares many important characteristics
with Algorithm K (notably, use of the framework, and proof
of being ‘good’). The important differences are

1. Our algorithm uses a notion of a seed point and grows
a region based on the seed. The seed is normally au-
tomatically chosen; however, when necessary, it sup-
ports segmenting only a part of a large image unlike
Algorithm K.

2. Our algorithm uses identical parameters to those in Al-

Figure 1: The ratio of time taken by Algorithm P2 to algo-
rithm K for 100 images (with random images on the x-axis)
of increasing sizes (y-axis). A box indicates that P2 is faster,
a dot without a box indicates that P2 takes about the same
time.



gorithm K. Since regions are grown sequentially, ‘what
if’ analysis by varying the parameters is easier, and a
segmentation can be abandoned earlier.

3. Algorithm K runs inO(E logE) time if there areE
edges. In modeling non-grid graphs, the algorithm re-
quiresE to beO(n) so that the overall algorithm runs
in “almost” linear time. By using the Prim variation on
MST and Fibonacci heaps, our algorithm has a theoret-
ical running time ofO(E + n log n) time. Therefore,
there is no linearity requirement if the segmentation is
to be performed in feature space.

4. Even without using Fibonacci heaps, our implementa-
tion shows a faster running time in 82 out of 100 cases
in images of size768× 768.

A variation of our algorithm retains all the advantages
mentioned above and is always faster. However, we cannot
formally prove that the algorithm isgood.

The rest of this paper is as follows. After a discussion
of the previous work in Section 2, we give details of our
method in Section 4. In Section 5 we give the results of our
approach. We conclude in the final section.

2. Previous work
There is a large literature on segementation and cluster-
ing and we refer the interested reader to textbooks on the
same. Our brief consideration is related to graph-based ap-
proaches.

As in the work of [4], we believe it is important that sege-
mentation algorithms take into account non-local properties
of the image, because local properties fail to capture per-
ceptually important differences in images.

Early graph based approaches do not appear to satisfy the
non-local property requirement of region formations. [7]
breaks large edges in a minimum spanning tree of a sub-
graph. Performance of [7] is based on certain heuristics and
is difficult to characterize. The algorithm proposed in [5]
uses a measure of local variability to decide which edges to
break in partitioning of graph. The measure is based only
on the nearest neighbors of each point. When applied to
image segementation problems, the nearest neighbors alone
are not enough to get a reasonable measure of image vari-
ability. A problem with clustering methods [2] that are
based on finding compact (small radius) clusters in some
intensity-based feature space is that they often [3] produce
nearly constant intensity regions.

More recent graph based approach are efficient and pro-
duce good quality. The spectal partitioning technique [4],
[6] operate by finding minimum cuts in the graph, where
the cut criterion is designed to minimize the similarity be-
tween regions that are being split. Efficient approximation

to the use of sophisticated models based on Markov Ran-
dom Fields are reported in [1].

3. Algorithm K
In this section, we present only the salient parts of the algo-
rithm in [3] as it relates to our work and skip many details.

Given a setV of elements (e.g. image pixels) to be
segmented, the goal is to find a partition, orsegmenta-
tion S = {C1, C2, . . . , Cp}. We denote byD(Ci, Cj) a
pairwise region comparison Boolean function that judges
whether or not there is evidencefor a boundary between two
componentsCi andCj . S is said to betoo finewhen there
is some pair of regionsC1 andC2 for whichD(C1, C2) is
false. Given two segmentationsS andT of V , T is said to
be a proper refinement ofS when∀C ∈ T , ∃C ′ ∈ S such
thatC ⊂ C ′. S is said to betoo coarsewhen there exists a
proper refinement ofS that is not too fine.

A segmentation isgood if it is neither too fine nor too
coarse. There are several (different) good segmentations for
the same image, and the nature ofD dictates some of them.

In a weighted graph based image segmentation scheme,
pixels correspond to vertices, adjacent pixels contribute
edges, and the difference in image properties (such as inten-
sity, color, motion) contribute to weights. A segmentation
is obtained by discarding some of the edges, and the result-
ing connectivity among the vertices results in components.
By defining the internal variation of a component to be the
largest weight in the minimum spanning tree of the compo-
nent, and the external variation to be the minimum weight
edge connecting two components, andD to be true if the
external variation is larger than the two internal variations,
we get agoodsegmentation. The icing on the cake is that
using Kruskal’s algorithm a good segmentation is obtained
in n log n time. (In practice, instead ofD to be defined as
above, a thresholdτ is used to control the degree of differ-
ence).

4. Algorithm P2
The input to our algorithm is a graphG = (V,E) with n
vertices andm edges. The output is a segmentation that
is neither too fine nor too coarse. Our algorithm uses two
priority queuesQ1 andQ2.

Inspecting algorithm P2, we observe that we essentially
have two different ways to grow a component. Algorithm
K worked by ordering the edges, and inserting them one
by one into a component taking care never to introduce a
cycle, or never to introduce a boundary edge. In contrast,
the grow() method in Algorithm P2 builds a component
starting from a source, and by adding ‘leaves’ one at a time
to the current component. When a component cannot be
grown further, a new source needs to be seleted – which is
available inQ2. The choice of the new source is central



overall (){
initQ2();
for v ∈ V do {
key[v] =∞;
insertQ1(v, key[v]);
}
i = 0;
while (Q2 6= { }) {
s = findMin (Q2);
Q1.dec(s, 0);
grow (s, i);
i = i+1;
}
}

initQ2 () {
for v ∈ V do {
x = minAdjacent(v);
insertQ2 (v,x);
}
}

grow (s, i){
done = false;
Ci = makeSet();
while not done do{
u = findMin(Q1);
if (causesMerge(u, i)){
Ci = Ci

⋃
u;

updateAdj(u);
delete(Q1,u);
delete(Q2,u);
}
else done = true;
}
}

causesMerge(u, i){
if (key[u]<int(Ci) + τ )
return TRUE;

else return FALSE;
}

updateAdj(u){
for each v∈ adj(u){
if (v ∈ Q1 and
w(u,v)< key[v]) {
key[v] = w(u,v);
Q1.dec(v, key[v]);
}
}
}

Figure 2: Algorithm P2

to obtaining a good segmentation, as the following result
shows.

Lemma 4.1 The segmentationS produced by Algorithm
P2 is not too fine.

Proof: In order forS to be too fine, there is some edge
between componentCi andV − Ci for which D returns
false. This means there were some edgee such thatw(e) <
Int(Ci) + τ . But in this case,causesMerge() would
have succeeded contradicting the non existence of edgee in
Ci. ut

Lemma 4.2 The segmentationS produced by Algorithm
P2 is not too coarse.

Proof: In order forS to be too coarse, there must be a proper
refinementT that is not too fine. Thus some component of
S must be split into two or more components inT . Consider

the minimum weight edgee that is internal to a component
C ∈ S but connects distinct componentsA andB, both
∈ S. SinceT is not too fine, letw(e) > Int(A) + τ(A)
without loss of generality. By construction, any edge con-
necting A to another subcomponent ofC must have weight
as large asw(e) which implies that the weights of edges in
A is smaller than that ofe. This implies that source must
have been selected fromA in the methodoverall() .
Hence the algorithm must have formedA before forming C.
But the existence ofewould then have prevented the growth
of A into C which happened, contradicting the assumption
thatC is too coarse. ut
.

The running time of the algorithm depends on how we
implement the priority queue. If we use a normal binary
heap (implemented as an array), it takesO(log n) time to
retrieve a new node. For each incident edge we spend po-
tentiallyO(log n) time decreasing the key of the neighbour-
ing vertex. Thus the time isO(log n+degree(u)log n). The
computation of internal variation is done in constant time
within the loop in grow(). As a result the entire algorithm
takesO((n + E) logn). However, if Fibonacci heaps are
used, the decrease key is done inO(1) amortized time.
Therefore the algorithm runs in timeO(E + n log n).

4.1 Algorithm P1

As a variation, we disbanded with the second priority queue,
and used only one as in the traditional Prim algorithm.
When a component stops growing, the new source is set to
the vertex with minimum key in the priority queueQ1. This
variation makes the proof of Lemma 4.2 invalid. Neverthe-
less, as we see in Section 5, the quality of segmentation is
good, and the running time is excellent.

5. Results
Two types of results are shown in this section. We first show
evidence that the qualitative performance of Algorithm P2
and Algorithm P1 is acceptable. Later we show that the time
taken by our algorithms is often less.

5.1 Qualitative Results

Figure 3(a) is an interesting synthetic image with three per-
ceptually distinct regions on which Algorithm K works very
well. Algorithms P2 and P1 pass this test very well as seen
in Figure 3(b), Figure 3(c) and Figure 3(d) respectively.

Figure 4 and Figure 5 show the results of segmentation
on other images. In all these cases, the the first image
of these figures is the original image. The second, third,
and fourth sub-figures show the segmented results of Algo-
rithms K, P2, and P1 respectively. Fig. 4(a) shows the origi-
nal dinosaurs image. Note that P2 (Fig. 4(c)) produces only



(a) A well known synthetic
image (size 448x438).

(b) Algorithm K (4.98 sec-
onds, k=300,σ=0.8)

(c) Algorithm P2 (7.86 sec-
onds, k=80000,σ=2.75)

(d) Algorithm P1 (4.95 sec-
onds, k=2000,σ=1.75)

Figure 3: Segmenting a synthetic image. The goal is to
obtain only 3 components.

1 segment for the background. Figure 4(e) shows a plane
in the sky with perceptually two distinct regions. The seg-
mentation output (Fig. 4(f), Figure 4(g) and Figure 4(h)) are
nearly the same in segmentation quality, but the proposed
methods take only half as much time. Figure 4(i) shows as
the original image a synthetic horse. The proposed methods
(Figure 4(k) and Figure 4(l)) appear to have about the same
quality as that of Algorithm K (Figure 4(j)). The running
time is lower. Figure 5(a) shows an image of a boy carrying
a bucket. The P2 method (Figure 5(c)) produces only one
major segment for the background, whereas the other two
methods (Figure 5(b) and Figure 5(d)) produce many small
segments. Figure 4(q) shows a street scene. The results of
all the three methods are comparable.

5.2 Running Time

Figure 6 shows the ratio of the running time of our algo-
rithm to that of Algorithm K. The x and y axes correspond
to the image ID and the ratio respectively. The points lying
below the liney = 1 show that our proposed methods (P2

or P1) is better than algorithm K.

(a) Algorithm P2 (Image size
384x384.)

(b) Algorithm P2 (Image size
768x768.)

(c) Algorithm P1 (Image size
384x384.)

(d) Algorithm P1 (Image size
768x768.)

Figure 6: Ratio of running times. See text.

The results in Figure 7 show that our algorithm, Algo-
rithm P1, is invariably faster (especially for larger sized im-
ages) and also produces agoodsegmentation.

Figure 7: The ratio of time taken by Algorithm P1 to algo-
rithm K for 100 images (with random images on the x-axis)
of increasing sizes (y-axis). A box indicates that P1 is faster,
a dot without a box indicates that P1 takes about the same
time.



(a) The original image. (b) Algorithm K(34.97 sec) (c) Algorithm P2(3.68 sec) (d) Algorithm P1(2.47 sec)

(e) The original image. (f) Algorithm K(23.29 sec) (g) Method P2(10.94 sec) (h) Algorithm P1(6.80 sec)

(i) The original image. (j) Algorithm K(42.20 sec) (k) Algorithm P2(16.85 sec) (l) Algorithm P1(11.07 sec)

(m) The original image. (n) Algorithm K(1.19 sec) (o) Algorithm P2(1.54 sec) (p) Algorithm P1(1,12 sec)

(q) The original image. (r) Algorithm K(5.14 sec) (s) Algorithm P2(5.12 sec) (t) Algorithm P1(3.61 sec)

Figure 4: Results of various segmentation algorithms best viewed in color.



(a) The original image. (b) Algorithm K(3.62 sec) (c) Algorithm P2(3.84 sec) (d) Algorithm P1(2.53 sec)

Figure 5: Results of various segmentation algorithms best viewed in color.

6. Concluding remarks
In this paper we have used the framework for image seg-
mentation developed in [3] to come up with a faster algo-
rithm that is also proved to begood.

The original result used the union-find data structure and
a particular function to determine when components ought
to be merged. It was also observed that tweaking this func-
tion resulted in a NP-hard problem. Given this background,
we did not change the nature of function. Instead, we ob-
serve that a source based simplification is possible using the
Prim variation on minimum weight spanning tree. Our im-
plementation using two priority queues was almost always
faster than the original implementation.

A weaker version of our algorithm may result in a seg-
mentation that is too coarse. We have found this algorithm
useful in content based image retrieval where the fine de-
tails might not always be relevant. This version works even
faster than our dual queue version.

Acknowledgements

We thank the authors of [3] for providing the source of the
original algorithm which enabled us to perform exhasutive
testing. We also thank Mayur Srivastava for help with pro-
duction of images.

References

[1] Y. Boykov, O. Veksler, and R. Zabih. Markov Random Fields
with efficient approximations. InIEEE Conference on Com-

puter Vision and Pattern Recognition, pages 648–655, 1998.
[2] D. Comaniciu and P. Meer. Robust analysis of feature spaces:

Color image segmentation, 1997.
[3] P. Felzenszwalb and D. Huttenlocher. Image segmentation us-

ing local variation. InIEEE Conference on Computer Vision
and Pattern Recognition, pages 98–104, 1998.

[4] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(8):888–905, 2000.

[5] R. Urquhart. Graph theoretical clustering based on limited
neighbourhood sets.Pattern Recognition, 15:173–187, 1982.

[6] Z. Wu and R. Leahy. An optimal graph theoretic approach to
data clusterin:theory and its application to image segmenta-
tion. IEEE Transactions on PAMI, 11:1101–1113, 1993.

[7] C. Zahn. Graph-theoretic methods for detection and de-
scribing Gestalt clusters.IEEE Transactions on Computers,
20:68–86, 1971.


