

Unknown, Irregular Light Sources in Dynamic Global Illumination

Sharat Chandran

http://www.cse.iitb.ac.in/~sharat

(Joint work with Mayur Srivastava) October 21, 2002

Overview

- The nature of the problem
- Background of existing methods
 - Pre-1995 methods
 - Recent methods
- Setting for our solution
- The intuition behind the algorithm
- Some details
- Some results
- Conclusion, limitations, and prospects

Why consider this problem?

• Sudden changes in lighting are common (If the geometry of the light sources are known in advance, existing incremental radiosity techniques can be used.)

Why consider this problem?

- Sudden changes in lighting are common (If the geometry of the light sources are known in advance, existing incremental radiosity techniques can be used.)
- However, lighting may change unpredicatably

Why consider this problem?

- Sudden changes in lighting are common (If the geometry of the light sources are known in advance, existing incremental radiosity techniques can be used.)
- However, lighting may change unpredicatably

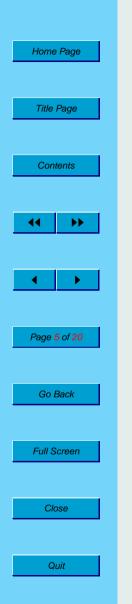
Ноте	Page
Title	Page
Con	tents
44	••
•	•
Page	4 of 20
Go	Back
Full S	Creen
Clo	ose
Q	uit

• Partial pulling of window blinds or closing of curtains

Home	Page
_	
Title	Page
	_
Cont	tents
••	>>
•	
De sus	1-100
Page 4	4 of 20
Gol	Back
	Dack
Fulls	creen
Clo	ose
Q	uit

- Partial pulling of window blinds or closing of curtains
- Appearance of daylight in room because of motion of parked cars

	_
Hom	e Page
Title	Page
Cor	ntents
••	••
•	
Page	4 of 20
Go	Back
Full S	Screen
	lose
	USE
G	Quit


- Partial pulling of window blinds or closing of curtains
- Appearance of daylight in room because of motion of parked cars
- Bathing of interiors as the full moon appears past overcast clouds

Home	Page
Title	Page
Cont	tents
••	••
•	•
Page 4	4 of 20
Go E	Back
Full S	creen
Clc	ose
Q	uit

- Partial pulling of window blinds or closing of curtains
- Appearance of daylight in room because of motion of parked cars
- Bathing of interiors as the full moon appears past overcast clouds
- Effects created in operas and theaters

Home Page
Title Page
Contents
Page 4 of 20
Go Back
Eull Somen
Full Screen
Close
Quit

- Partial pulling of window blinds or closing of curtains
- Appearance of daylight in room because of motion of parked cars
- Bathing of interiors as the full moon appears past overcast clouds
- Effects created in operas and theaters
- Revolving police search beams, particularly during dusk and dawn

• Precomputations (Dorsey et al. 1991)

• Precomputations (*Dorsey et al. 1991*) Problem: Run time light changes is not permissible

- Precomputations (*Dorsey et al. 1991*) Problem: Run time light changes is not permissible
- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*)

- Precomputations (*Dorsey et al. 1991*) Problem: Run time light changes is not permissible
- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*) Problem: Calls for **re-computation**

Home Page	
Title Page	
Contents	
Page 5 of 20	
Go Back	
E.# Orman	
Full Screen	
Close	
Quit	

- Precomputations (*Dorsey et al. 1991*) Problem: Run time light changes is not permissible
- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*) Problem: Calls for **re-computation**
- Line-space hierarchy (Drettakis et al. 1997, Schoeffel et al. 1999, Damez 1999)

Home Page
risino r ago
Title Page
Contents
∢ ∢ →
 ▲
Page 5 of 20
Go Back
Full Screen
0/111
Close
Quit

- Precomputations (*Dorsey et al. 1991*) Problem: Run time light changes is not permissible
- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*) Problem: Calls for **re-computation**
- Line-space hierarchy (Drettakis et al. 1997, Schoeffel et al. 1999, Damez 1999)

Problem: Only local Illumination changes are handled

Home Page
Title Page
Contents
Page 5 of 20
Go Back
GU BACK
Full Screen
Class
Close
Ouit

- Precomputations (*Dorsey et al. 1991*) Problem: Run time light changes is not permissible
- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*) Problem: Calls for **re-computation**
- Line-space hierarchy (Drettakis et al. 1997, Schoeffel et al. 1999, Damez 1999)

Problem: Only local Illumination changes are handled

• Caching (Tole et al. 2002)

Home	Page
Title	Page
Con	tents
••	••
•	•
Page (5 of 20
Gol	Back
Full S	creen
Clo	ose

- Precomputations (*Dorsey et al. 1991*) Problem: Run time light changes is not permissible
- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*) Problem: Calls for **re-computation**
- Line-space hierarchy (Drettakis et al. 1997, Schoeffel et al. 1999, Damez 1999)

Problem: Only local Illumination changes are handled

• Caching (Tole et al. 2002)

Problem: Cache defeated by **new** patch inclusion

How do we define dynamic?

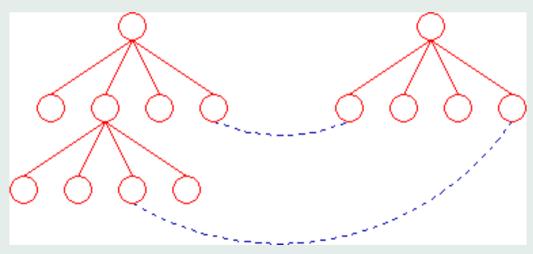
• Scene geometry does not change

How do we define dynamic?

- Scene geometry does not change
- Light sources (of arbritary shape) can be added or removed

Home Page	
Title Page	
Contents	
•••	
•	
Page 6 of 20	
Go Back	
Full Screen	
Close	

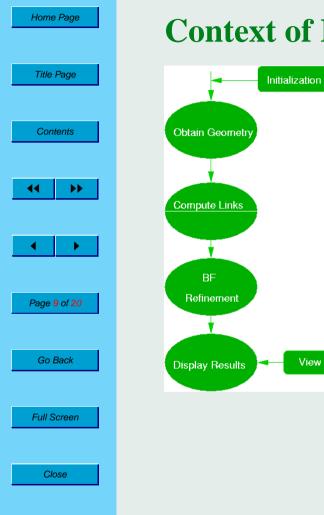
Quit


How do we define dynamic?

- Scene geometry does not change
- Light sources (of arbritary shape) can be added or removed
- Straightforward solution
 - Introduce a new patch that models the light source, and recompute energy values
 - To turn of light source, shoot negative energy (keep the patch in memory, we may need it later on?)
 - Creation of patch and recomputing solution is time consuming.
- Our approach
 - Can we take a incremental solution for adding?
 - Can we modify the best solution out there?

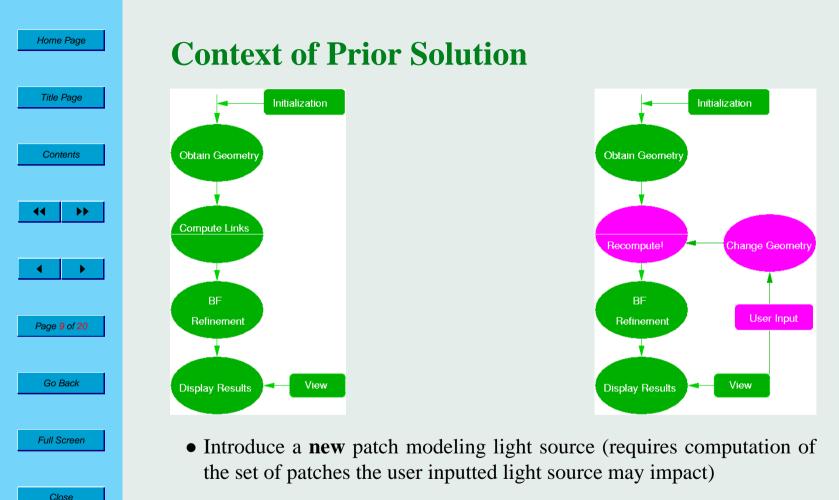
Hierarchical Radiosity

- Trade complexity for error in a disciplined way
- Computation of geometric configuration ("formfactors") is more time consuming than energy calculation
- Preprocess scenes by setting up energy exchange links.


```
Home Page
 Title Page
 Contents
        Page 8 of 20
 Go Back
Full Screen
   Close
```

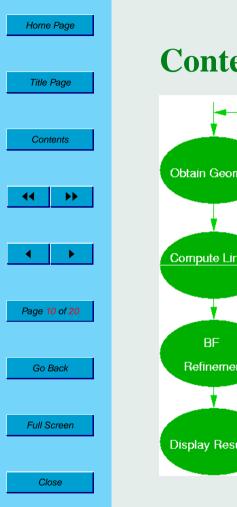
Quit

Hierarchical Radiosity Interaction Computation

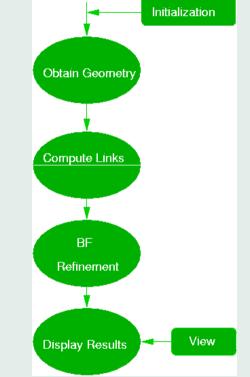

If we divide k patches into n elements, the total number of interactions is ${\cal O}(n)$

```
Refine(Patch *p, Patch *q, float Feps, float Aeps) {
  float Fpq, Fqp;
  Fpq = FormFactEstimate(p,q); Fqp = FormFactEstimate(q,p);
  if (Fpq < Fqp && Fqp < Feps) Link (p,q);
  else {
    if (Subdiv(q, Aeps)) {
      Refine (p,q.nw, Feps, Aeps); Refine (p,q.ne, Feps, Aeps);
      Refine (p,q.sw, Feps, Aeps); Refine (p,q.se, Feps, Aeps);
    else
      Link(p,q);
  }}}</pre>
```


Quit

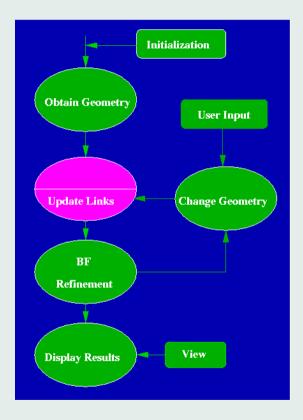

Context of Prior Solution

• Set up links again

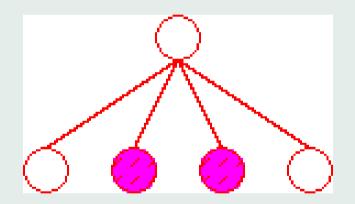

Quit

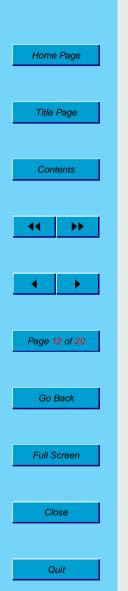
• Implies throwing away some of the hardwork done


Quit

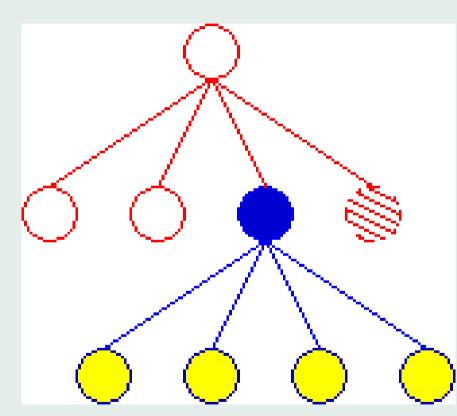

Context of Our Solution

Context of Our Solution


Update links, rather than recompute

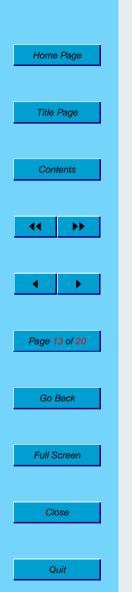

Quit

Intuition Behind Our Solution

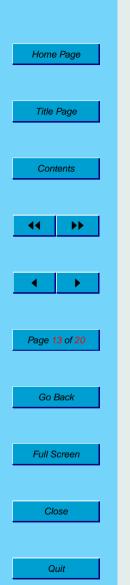

- HR has subdivided the geometry
- What if nodes in our tree is a part of the un-known light source?
- Straightforward to update patch properties of these nodes

Intuition Behind Our Solution

- If the HR node is a proper subset of the light source ...
- Expand the node
- Recursively process the node



• Mark the nodes that are *completey* inside the light source



- Mark the nodes that are *completey* inside the light source
- Sub divide nodes that partially intersects with the light source

- Mark the nodes that are *completey* inside the light source Algorithm Intersection(LightSource R, Quadtree Q if Disjoint(R,Q) then
- Sub divide nodes that partially intersects with the light source
- Further refine node if it is a leaf in the hierarchical radiosity computation, and recurse
- return NULL; if Contained(R,Q) then /* Q is contained in R* return Q; else for each child_i of Q do Intersection (R, Q.child_i);

• Assign the emissivity of the light source to the *marked* nodes.

- Mark the nodes that are *completey* inside the light source Algorithm Intersection(LightSource R, Quadtree Q if Disjoint(R,Q) then
- Sub divide nodes that partially intersects with the light source
- Further refine node if it is a leaf in the hierarchical radiosity computation, and recurse

```
return NULL;
if Contained(R,Q) then /* Q is contained in R*
return Q;
else for each child<sub>i</sub> of Q do
Intersection (R, Q.child<sub>i</sub>);
```

- Assign the emissivity of the light source to the *marked* nodes.
- Distribute the emissivity of a *marked* node to its descendents

Home Page
Title Page
Contents
•• ••
•
Page 14 of 20
Go Back
Full Screen
Close
Quit

What if there is too much adaptive refinement?

AR may take considerable time when:

- Scenes are dense
- User introduced light source is not axis aligned with patch boundaries

Home Page
Title Page
Contents
•
Page 14 of 20
Go Back
Full Screen
Close
Quit

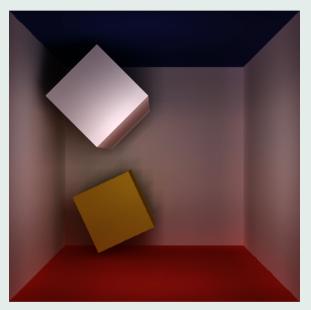
What if there is too much adaptive refinement?

AR may take considerable time when:

- Scenes are dense
- User introduced light source is not axis aligned with patch boundaries
- A faster solution (Fractional Emissivity(FE)
 - Do not refine the node if it is a HR leaf

Home Page	
Title Page	
Contents	
••	••
	•
Page 14 of 20	
Go Back	
Full Screen	
Clo	se

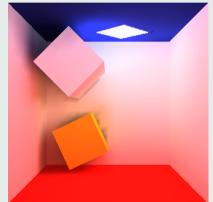
Quit


What if there is too much adaptive refinement?

AR may take considerable time when:

- Scenes are dense
- User introduced light source is not axis aligned with patch boundaries
- A faster solution (Fractional Emissivity(FE)
 - Do not refine the node if it is a HR leaf
 - Calculate the fractional overlap (Δf) with the light source
 - $-E_{node} = \Delta f * E_{lightSource}$
 - Requires a clipping algorithm such as Sutherland-Hodgman
- Disadvantages of FE: Coarser approximation of light source


Standard Test Scene



A pigeon's view of the Cornell Room.

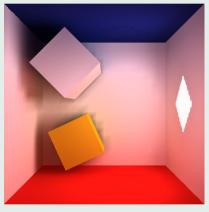
Results

Naive method (126 sec) AR Rendering (3 sec) FE Rendering (0.8 sec) Light filters through the southern wall onto the blue wall. The resulting scene is rendered incrementally in the two methods on the right.

Results



FE Rendering (0.8 sec)


Naive method (172 sec) AR Rendering (4 sec) A second light appears on the eastern wall.

Quit

Results

Naive method (92 sec) AR Rendering (1.5 sec) FE Rendering (0.8 sec) The light on the blue wall disappears to reflect the passage of time.

Home Page	
Title Page	
Contents	
•• ••	
• •	
Page 19 of 20	
Go Back	
Full Screen	
Close	

Quit

More Results

An office with two flat monitors, presumably with screen savers on. The appearance changes because mouse motion causes the windows to break out of the screen saver mode.

The solution on the right is incrementally computed based on the illumination in the first by Algorithm AR.

Conclusion

• Considered a sub-class of dynamic global illumination environments

Conclusion

- Considered a sub-class of dynamic global illumination environments
- The method is fast and simple

Conclusion

- Considered a sub-class of dynamic global illumination environments
- The method is fast and simple
- The solution can be buried in more sophisticated schemes