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Learning Methods for Sequential Decision Making

with Imperfect Representations

Shivaram Kalyanakrishnan, Ph.D.
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Supervisor: Peter Stone

Sequential decision making from experience, or reinforcement learning

(RL), is a paradigm that is well-suited for agents seeking to optimize long-

term gain as they carry out sensing, decision, and action in an unknown en-

vironment. RL tasks are commonly formulated as Markov Decision Problems

(MDPs). Learning in finite MDPs enjoys several desirable properties, such

as convergence, sample-efficiency, and the ability to realize optimal behavior.

Key to achieving these properties is access to a perfect representation, under

which the state and action sets of the MDP can be enumerated. Unfortunately,

RL tasks encountered in the real world commonly suffer from state aliasing,

and nearly always they demand generalization. As a consequence, learning

in practice invariably amounts to learning with imperfect representations. In

this dissertation, we examine the effect of imperfect representations on dif-

ferent classes of learning methods, and introduce techniques to improve their

practical performance. We make four main contributions.
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First we introduce “parameterized learning problems”, a novel exper-

imental methodology facilitating the systematic control of representational

aspects such as state aliasing and generalization. Applying this methodology,

we compare the class of on-line value function-based (VF) methods with the

class of policy search (PS) methods. Results indicate clear patterns in the

effects of representation on these classes of methods. Our second contribution

is a deeper analysis of the limits imposed by representations on VF methods;

specifically we provide a plausible explanation for the relatively poor perfor-

mance of these methods on Tetris, the popular video game.

The third major contribution of this dissertation is a formal study of

the “subset selection” problem in multi-armed bandits. This problem, which

directly affects the sample-efficiency of several commonly-used PS methods,

also finds application in areas as diverse as industrial engineering and on-line

advertising. We present new algorithms for subset selection and bound their

performance under different evaluation criteria. Under a PAC setting, our

sample complexity bounds indeed improve upon existing ones. As its fourth

contribution, this dissertation introduces two hybrid learning architectures for

combining the strengths of VF and PS methods. Under one architecture, these

methods are applied in sequence; under the other, they are applied to separate

components of a compound task. We demonstrate the effectiveness of these

methods on a complex simulation of robot soccer.

In sum, this dissertation makes philosophical, analytical, and method-

ological contributions towards the development of robust and automated learn-

ing methods for sequential decision making with imperfect representations.
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Chapter 1

Introduction

In this introductory chapter, we describe the motivations and foundational

assumptions underlying this thesis. We argue that representations used for

sequential decision making are invariably imperfect in practice, and therefore,

learning methods must aim to maximize rewards in spite of them. We proceed

to summarize the contributions of the thesis and to provide a guide to the sub-

sequent chapters.

Sequential decision making from experience, or reinforcement learning

(RL) (Sutton and Barto, 1998), is an ideal problem formulation for agents seek-

ing to optimize long-term gains as they carry out sensing, decision, and action

in an unknown environment.1 RL tasks are commonly formulated as Markov

Decision Problems (MDPs). The analysis of learning and planning algorithms

in MDPs has benefited immensely from a strong theoretical framework that

has been developed over the years. The cornerstone of this framework is the

value function of the MDP (Bellman, 1957), which encapsulates the long-term

utilities of decisions.

1Throughout this thesis, we use the term “reinforcement learning” to refer to the problem

of sequential decision making from experience, and not to any specific class of learning
methods addressing that problem. Such an interpretation is consistent with Sutton and
Barto (1998, see chapter 3).
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Value functions naturally give rise to control policies. In the context

of finite MDPs, several learning algorithms provably converge to optimal poli-

cies (Watkins and Dayan, 1992; Singh et al., 2000), and indeed while being

efficient in terms of samples, computation, and memory (Strehl et al., 2006;

Szita and Szepesvári, 2010a). Yet, in the RL tasks we face in the real world,

learning seldom proceeds with the same exactness and efficiency that the afore-

mentioned results guarantee. Not only do the traditional objectives of conver-

gence and optimality not apply to a vast majority of these tasks, in many of

them, we cannot even ascertain the best performance that can be achieved, or

how much training is necessary to achieve satisfactory behavior. What, then,

is the chief difference between the mainstream theory of RL, as typified within

methods seeking to learn value functions, and its practice? In this dissertation,

we argue that the difference is representation (as of the policy, value function,

or model), which is invariably imperfect in practice.

1.1 Imperfect Representations

The MDP formulation elegantly captures the very crux of sequential

decision making: the quest for taking actions that will bring long-term ben-

efit. However, the assumption that a learner can enumerate the states or

state-action pairs in an MDP, such as for associating utilities or distributions

with them, is rarely true in practice. In other words, the classical “tabular”

representation that is used for most theoretical analysis—which is “perfect”

in its capacity to enumerate states or state-action pairs—is most often inap-

plicable in practice. For illustration consider Table 1.1, which lists a variety of
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RL applications from the last two decades.2 The table draws our attention to

two major factors that introduce “imperfection” in the representations agents

use in practice: state aliasing and generalization.

A majority of the examples listed in Table 1.1 are affected by state

aliasing (or partial observability). In complex systems such as stock mar-

kets (Nevmyvaka et al., 2006), physical environments (Gomez and Miikku-

lainen, 2003), and cellular tissue (Guez et al., 2008), available measurements

seldom suffice to capture all the information that can affect decision making.

Nearly every agent embedded in the real world (Kwok and Fox, 2004; Ng

et al., 2004; Lee et al., 2006) receives noisy sensory information. The inade-

quacy of the sensory signal in identifying the underlying system state hinders

the assumption of a Markovian interaction between the agent and the envi-

ronment, on which the theoretical guarantees associated with most learning

methods rely. Whereas coping with state aliasing in a systematic manner is a

well-studied problem, it is yet to scale to complex tasks with high-dimensional,

continuous state spaces (Chrisman, 1992; Cassandra et al., 1994; Bakker et al.,

2003; Pineau et al., 2006).

Of the 25 applications listed in Table 1.1, 15 involve continuous state

spaces, which force the use of generalization in the representation. General-

2This author has populated Table 1.1 by browsing several relevant journals, conference
proceedings and citations contained therein. For every entry in the table, this author has
judged that the application itself, rather than the RL algorithm employed, is the primary
focus of the relevant publication. By no means comprehensive, Table 1.1 at least represents
applications from a wide spectrum of domains. Other independently-compiled surveys of
sequential decision making applications corroborate the observations we proceed to draw
based on Table 1.1. Langley and Pendrith (1998) describe several RL applications presented
at a symposium organized around the topic; Szepesvári lists numerous applications from
the control and approximate dynamic programming literature at this URL: http://www.
ualberta.ca/~szepesva/RESEARCH/RLApplications.html.

3



4

Table 1.1: Characterization of representative real-world applications of RL. “Policy struc-
ture” describes the underlying representation from which the policy is derived. A “neural
network” representation is non-linear, incorporating at least one hidden layer of units. Un-
der tile coding and Gaussian Process, the number of “features” indicates the number of
state variables, rather than the number of individual tiles or basis functions.

Task
State State Policy structure
aliasing space (Number of features)

Backgammon
Absent Discrete

Neural network
(Tesauro, 1992) (198)

Job-shop scheduling
Absent Discrete

Neural network
(Zhang and Dietterich, 1995) (20)

Tetris
Absent Discrete

Linear
(Bertsekas and Tsitsiklis, 1996) (21)

Elevator dispatching
Present Continuous

Neural network
(Crites and Barto, 1996) (46)

Acrobot control
Absent Continuous

Tile coding
(Sutton, 1996) (4)

Dynamic channel allocation
Absent Discrete

Linear
(Singh and Bertsekas, 1997) (100’s)

Active guidance of finless rocket
Present Continuous

Neural network
(Gomez and Miikkulainen, 2003) (14)

Fast quadrupedal locomotion
Present Continuous

Parameterized policy
(Kohl and Stone, 2004) (12)

Robot sensing strategy
Present Continuous

Linear
(Kwok and Fox, 2004) (36)

Helicopter control
Present Continuous

Neural network
(Ng et al., 2004) (10)

Dynamic bipedal locomotion
Present Continuous

Feedback control
(Tedrake et al., 2004) policy (2)

Adaptive job routing/scheduling
Present Discrete

Tabular
(Whiteson and Stone, 2004) (4)

(Table continued on next page.)



Table 1.1 – continued

Task
State

State space
Policy structure

aliasing (Number of features)

Robot soccer Keepaway
Present Continuous

Tile coding
(Stone et al., 2005) (13)

Robot obstacle negotiation
Present Continuous

Linear
(Lee et al., 2006) (10)

Optimized trade execution
Present Discrete

Tabular
(Nevmyvaka et al., 2006) (2-5)

Blimp control
Present Continuous

Gaussian Process
(Rottmann et al., 2007) (2)

9 × 9 Go
Absent Discrete

Linear
(Silver et al., 2007) (≈1.5 million)

Ms. Pac-Man
Absent Discrete

Rule list
(Szita and Lőrincz, 2007) (10)

Autonomic resource allocation
Present Continuous

Neural network
(Tesauro et al., 2007) (2)

General game playing
Absent Discrete

Tabular (over
(Finnsson and Björnsson, 2008) part of state space)

Soccer opponent “hassling”
Present Continuous

Neural network
(Gabel et al., 2009) (9)

Adaptive epilepsy treatment
Present Continuous

Extremely randomized
(Guez et al., 2008) trees (114)

Computer memory scheduling
Absent Discrete

Tile coding

(İpek et al., 2008) (6)

Motor skills
Present Continuous

Motor primitive
(Peters and Schaal, 2008b) coefficients (100’s)

Combustion Control
Present Continuous

Parameterized policy
(Hansen et al., 2009) (2-3)
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ization refers to the phenomenon wherein a parameter (or a “degree of free-

dom”) in the representation influences the choice of action from more than

one state. In the context of value function-based learning methods, general-

ization is typically given attention as the problem of “function approximation”.

Even among the ten applications in Table 1.1 that have discrete state spaces,

seven use some form of generalization, as their state spaces are too large to be

enumerated. The use of generalization negates the theoretical guarantees of

achieving optimal behavior. Often the generalization scheme used is not ca-

pable of representing an optimal policy for a task; even when it is, typically it

cannot be guaranteed that a learning algorithm will discover such a policy. Al-

though there do exist convergence guarantees for certain algorithms that use

linear function approximation schemes (Konda and Tsitsiklis, 2003; Perkins

and Precup, 2003; Maei et al., 2010), such guarantees seldom come with effec-

tive lower bounds on the values of the learned policies. Further, convergence

results rarely extend to situations in which non-linear representations such as

neural networks are used to approximate the value function; yet non-linear

representations are used commonly in practice, as apparent from Table 1.1.

In summary, we may conclude from Table 1.1 that hardly is it accurate

or even feasible to view practical sequential decision making tasks as finite

MDPs with enumerable states. In practice, state aliasing and generalization

introduce inevitable imperfections in the representation with which an agent

is constrained to learn.

Before continuing, we might reflect that imperfect representations are

not peculiar to sequential decision making, but in fact they ail all walks of arti-

ficial intelligence and machine learning. As a positive example—demonstrating
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that the capability of representations often determines the overall effectiveness

of a methodology—consider how the Scale Invariant Feature Transform (Lowe,

2004) (commonly identified through its practical utility: “SIFT features”) has

effected a seismic shift in the capacity to solve problems in computer vision.

Such successes are the exception: predominantly it is far from clear, in prob-

lems of any substantial complexity, how best to constrain and bias the rela-

tionship between input and output variables.

1.2 Learning with Imperfect Representations

An agent that comes endowed with an imperfect representation could

still actively improve its representation as it interacts with the environment.

Conceptually we can imagine the agent’s memory as divided into two por-

tions: one for dealing with representational aspects (such as for disambiguat-

ing aliased states, identifying features, building control hierarchies, and so on),

and the other devoted to learning (typically by updating a real-valued vector of

weights). Such a view is not universally accurate: under certain architectures,

the elements of representation discovery and learning are hard to separate.

Nevertheless, in a majority of cases, a meaningful distinction can be drawn

between the two aspects, and indeed this distinction is made quite commonly

in the literature (Van Roy, 1998, see page 13). Likewise for the purposes of

this thesis, we assume that an agent’s internal representation is a template for

mapping its raw sensory input to its actions; the learning procedure updates

real-valued parameters in this template to determine the precise mapping.

This author’s overarching view is that representation discovery and

learning must be interactive processes that complement each other towards

an agent’s ultimate benefit, as illustrated schematically in Figure 1.1. From a
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practical standpoint, that benefit is quite well-defined: to accrue high rewards

in a given amount of time on a specified task. Unfortunately the process

of representation discovery typically operates on a much slower time scale

than learning. In practical applications such as those listed in Table 1.1,

there is little hope that an agent can substantially improve its representational

architecture in the time it interacts with the environment—typically a few

hours or days on a robot or computer. In such cases, the apt assumption to

make is that the agent must make do with the imperfect representation it has

been provided.

The main philosophical choice this thesis advocates is first to acknowl-

edge that over short time scales, representation discovery is often an intractable

problem, and having done so, to explicitly consider devising learning methods

method

Learning

REPRESENTATION

Generalization
estimation

State

Figure 1.1: A schematic depiction of the conjunctive relationship between
learning and representation discovery (itself comprising state estimation and
generalization). The modules need to complement each other in order to
achieve high long-term reward on a specified task. Representation discov-
ery typically operates at a slower time scale than learning, and so is rendered
infeasible in many practical tasks.
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that would be effective when applied with imperfect representations. Specifi-

cally this dissertation examines the following question:

Thesis Question: How well do different learning methods for sequential
decision making perform in the presence of state aliasing and generaliza-
tion; can we develop methods that are both sample-efficient and capable
of achieving high asymptotic performance in their presence?

The problem of sequential decision with imperfect representations is

a general problem underlying a large section of the RL tasks we encounter

in practice. In such tasks, our formulation calls for the learning module in

Figure 1.1 to bear extra burden in working together with a representation

module that is in general imperfect. This approach is in contrast with the

common practice (such as evidenced in many of the examples listed in Ta-

ble 1.1) whereby learning methods originally developed to work with perfect

representations are applied unchanged in imperfect-representation settings.

In seeking answers to its motivating question, the main thrust of this

dissertation is in understanding the nature of the dependence of various learn-

ing methods on observed state transitions. Solutions to sequential decision

making problems are policies, which are mappings from states to actions. In

order to learn policies, methods generalize based on a set of experiences that

register the effects of actions an agent has taken from the states it has visited.

Different RL methods generalize based on observed state transitions in differ-

ent ways. For example, fully bootstrapping temporal difference (TD) learning

methods such as Sarsa(0) (Rummery and Niranjan, 1994) use the estimated

values of next states in order to estimate values of states, while Monte Carlo

methods such as Sarsa(1) estimate state values based on samples of long-term
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reward. Policy search approaches such as NEAT (Stanley, 2004) and CMA-

ES (Hansen, 2009) do not even estimate state values; rather, they directly

evaluate policies.

It is natural to expect that the fewer the assumptions a method makes

about associations between states (and between states and values), the less

it will suffer due to state aliasing and generalization, both of which constrain

the scope of functions that can be learned over the state space. On the other

hand, exploiting the relationships between states occurring in a sequence is

precisely the reason for the sample-efficiency of bootstrapping TD methods,

which Monte Carlo and policy search methods are not likely to match. Thus,

learning needs to cope with a tension between sample-efficiency on the one

hand, and robustness towards imperfect representations on the other. Ex-

isting methods are not specifically designed to achieve satisfactory tradeoffs

between these conflicting objectives: rather than hoping that they will in an

incidental manner on a given problem, this thesis examines when and why

different methods succeed, and how their strengths can be synthesized.

1.3 Contributions of Thesis

The contributions of this dissertation fall into three categories: (1) the

conceptual formulation of learning with imperfect representations, (2) exper-

imental evaluation and analysis of the relationship between different learning

methods and representations, and (3) additions to learning methodology di-

rectly motivated by practical concerns of sample-efficiency and performance.

Below is a summary of the contributions in these categories.
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1.3.1 Conceptual Framework

As explained in Section 1.2, recall that the central principle behind this

thesis is that learning methods must not rely on having perfect representations;

rather, they must strive to maximize performance even when representations

are imperfect. This novel formulation naturally engenders a unified view of

various existing classes of learning methods against the backdrop of repre-

sentation quality. The pragmatic sense of the formulation, coupled with the

research it encourages towards unifying the strengths of contrasting learning

approaches, signifies a new conceptual framework and a positive step towards

scaling RL to increasingly complex applications.

1.3.2 Evaluation and Analysis

This thesis undertakes two studies to evaluate the relationships between

representations and learning methods.

Experimental comparison of learning methods. We devise parameter-

ized learning problems as a methodology to systematically control represen-

tational aspects such as state aliasing and generalization, and measure their

effects on learning methods through targeted studies. Apart from providing

precise control of the parameters that affect learning, parameterized learning

problems enable benchmarking against optimal behavior; their relatively small

sizes facilitate extensive experimentation.

Using parameterized learning problems, we compare two qualitatively

distinct classes of algorithms for RL: on-line value function-based methods

and policy search methods. Empirical comparisons among various methods

within each of these classes project Sarsa(λ) (Rummery and Niranjan, 1994;
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Sutton and Barto, 1998) and Q-learning(λ) (Watkins, 1989; Rummery, 1995;

Peng and Williams, 1996), as the best performers among the former class, and

CMA-ES (Hansen, 2009) as the winning candidate in the latter. Comparing

Sarsa(λ) and CMA-ES further on relevant problem instances, our study high-

lights regions of the problem space favoring their contrasting approaches. In

particular we find that Sarsa(λ) is able to learn quickly, reaching near-optimal

performance when provided near-perfect representations; however, CMA-ES

is able to outperform Sarsa(λ) when the quality of the generalization is down-

graded. Short run-times for the experiments allow for an extensive search

procedure that provides additional insights on relationships between method-

specific parameters—such as eligibility traces, initial weights, and population

sizes—and problem instances.

Future work might extend the experimental comparisons described above

to other classes of learning methods: in particular, model-based and batch RL

methods, actor-critic methods, and policy gradient techniques. A brief survey

of these classes of learning methods is included in the thesis, but it exceeds

the scope of the thesis to subject them to systematic empirical evaluation.

Effect of representations in Tetris. We follow our extensive comparative

study with a more targeted analysis of the role of representations in deter-

mining the success of learning methods. Specifically we consider Tetris, the

popular video game and RL benchmark. The literature shows that value

function-based methods perform significantly worse on this task than policy

search methods; yet the reasons for this shortcoming of value function-based

methods have not been fully understood. We design experiments to test the

hypothesis that the representation used for learning imposes fundamental lim-
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its on the performance of value function-based methods on the Tetris task.

We find evidence in support of this hypothesis. In particular we demonstrate

that policy iteration with an approximate architecture could actually lead to

a degradation in performance on this task.

1.3.3 Practice-driven Learning Methodology

The experimental and analytical studies described in Section 1.3.2 pro-

vide a number of insights about the characteristics of different learning meth-

ods in the presence of imperfect representations, highlighting possibilities for

tailoring learning methods to perform better in practice. We pursue two such

possibilities, which have resulted in concrete algorithmic and methodological

contributions. Below we briefly describe these elements of the “constructive”

contribution of this dissertation.

Subset selection and efficient policy search. One of the observations re-

sulting from our experimental study is that policy search methods, while they

can achieve relatively high rewards even in the presence of poor representa-

tions, typically require a large number of samples to achieve their asymptotic

performance. Can they be made more sample-efficient? A key step that affects

the sample-efficiency of policy search methods such as CMA-ES and the cross-

entropy method (de Boer et al., 2005) is “subset selection”: from a population

of candidate policies, selecting a subset of those with the highest fitness values,

based on sampling the fitness of the policies (running Monte Carlo rollouts of

episodes). Since fitness evaluations are noisy, policies must be evaluated mul-

tiple times in order to reliably select the best subset. How must we allocate

fitness evaluations among the policies in order to obtain a good selection, while
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keeping the total number of fitness evaluations minimal?

We formalize the above subset selection problem using stochastic multi-

armed bandits, where each arm corresponds to a real-valued random variable.

We consider three relevant operational settings: probably approximately cor-

rect (PAC) selection, simple regret (SR) minimization, and cumulative regret

(CR) minimization. Under all three settings, we generalize existing problem

formulations that focus on the selection of a single arm (that is, m = 1) to

instead deal with subsets of arms. Under the PAC setting, we provide algo-

rithms for subset selection that improve existing sample complexity bounds

when instantiated with m = 1. Under the SR and CR settings, our algorithms

and regret bounds essentially generalize existing algorithms and bounds.

Subset selection is a fundamental problem in exploration; the subset-

selection algorithms developed in this thesis apply to problems in a variety of

areas, such as simulation, industrial engineering, and on-line advertising. Ex-

perimental results demonstrate that indeed they improve the sample-efficiency

of policy search methods such as CMA-ES and the cross-entropy method.

Hybrid learning methods. In addition to our theoretical work on the subset

selection problem, we present two case studies involving learning architectures

that integrate the strengths of qualitatively different learning algorithms.

First, as a means to combine the sample-efficiency of Sarsa(λ) with

the robustness of CMA-ES to imperfect representations, we devise a natu-

ral “sequencing” algorithm wherein Sarsa(λ) is run for a certain number of

episodes, following which the learned weights are used to initialize a run of

CMA-ES. Tests over a range of parameterized learning problems establish that
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the resulting algorithm performs at least as well as CMA-ES, and often per-

forms better. A similar algorithm sequencing Sarsa(0) and the cross-entropy

method performs better than either of those methods on the Keepaway soccer

benchmark (Stone et al., 2005), where the policy is represented using a neural

network.

As we encounter increasingly complex sequential decision making tasks,

it is likely that the diversity of the challenges they pose can only be addressed

by combining the strengths of different learning algorithms. We examine this

aspect of learning in our second case study, which involves the Keepaway task.

Whereas previous successful results in Keepaway have limited learning to an

isolated, infrequent decision that amounts to a turn-taking behavior (passing),

we expand the agents’ learning capability to include a much more ubiquitous

action (moving without the ball, or getting open), such that at any given

time, multiple agents are executing learned behaviors simultaneously. We in-

troduce a policy search method for learning “GetOpen”, to complement the

TD learning approach employed for learning “Pass”. Empirical results indi-

cate that the learned GetOpen policy matches the best hand-coded policy

for this task, and outperforms the best policy found when Pass is learned.

We demonstrate that Pass and GetOpen can be learned simultaneously to

realize tightly-coupled soccer team behavior. The interleaved schedule em-

ployed for learning Pass and GetOpen can be viewed as an application of

the “layered learning” paradigm (Stone, 1998) to high-level sequential decision

making in a multiagent environment.

In summary, this thesis (1) defines a scope for learning in practical

tasks, (2) applies novel experimental methodology towards characterizing the
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influence of representation quality on the performance of different learning

methods, and (3) contributes new methods designed to improve the perfor-

mance of existing ones. Application domains covered in the dissertation in-

clude Tetris and simulation robot soccer.

1.4 Summary of Chapters

Below is a summary of the remaining chapters in this dissertation. The

dissertation can be divided into four logical parts, as indicated in Table 1.2.

Chapter 2 provides a background on sequential decision making, and

specifically considers the effect of state aliasing and generalization on RL meth-

ods. The chapter builds on an argument that leads to a formal statement of

the problem of learning in the presence of imperfect representations.

Chapter 3 introduces parameterized learning problems as a methodol-

ogy for evaluating learning methods while systematically varying representa-

tional aspects. We employ this methodology to compare on-line value function-

based methods with policy search methods across an extensive suite of problem

instances.

Chapter 4 presents a more focused investigation on the role of repre-

sentations in limiting the performance of value function-based methods on the

Tetris task.

Chapter 5 is devoted to a formal study of the subset selection problem

under the PAC, simple regret, and cumulative regret settings. Apart from

novel theoretical results, we present evidence that efficient subset selection

can indeed improve the performance of certain policy search methods.

Chapter 6 presents two case studies in which on-line value function-

16



Table 1.2: Organization of chapters.

Part Chapter

Conceptual framework 2. Background and problem definition

Evaluation and 3. Experimental comparison of learning methods
analysis 4. Limits of representation: an illustration

Practice-driven
learning methodology

5. Subset selection and efficient policy search
6. Hybrid learning methods: two case studies

Discussion 7. Conclusion and future work

based methods and policy search methods are combined in innovative ways

successfully tackle complex sequential decision making tasks. In particular

both case studies are evaluated on the Keepaway robot soccer task.

Chapter 7 summarizes and concludes the thesis. The chapter also high-

lights several important areas for future research to extend the work presented

in this thesis.

The dissertation does not have a separate chapter dedicated to related

work. Instead, we discuss related work in detail in each of the individual

chapters.
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Chapter 2

Background and Problem Definition

This chapter presents a detailed description of the problem of sequential de-

cision making with imperfect representations, which the remainder of the dis-

sertation addresses through analysis and the design of learning methods. We

begin with an account of learning in finite MDPs (Section 2.1), which is an

idealized abstraction of sequential decision making. We then consider how the

phenomena of state aliasing (Section 2.2) and generalization (Section 2.3) af-

fect learning. Learning algorithms operating with the imperfect representations

these factors induce are less amenable to theoretical analysis. We argue that

the performance of learning algorithms can yet be evaluated precisely, and that

the evaluation framework should inspire their design, too. This observation

leads to a formal problem definition for sequential decision making with im-

perfect representations (Section 2.4).

Sequential decision making is traditionally formalized using the frame-

work of Markov Decision Problems (MDPs). An MDP M = (S, A, T, R, γ, D)

comprises a set of states S and a set of actions A available from each state.

A transition function T generates next states stochastically: the probability

of reaching state s′ by taking action a from state s is given by T (s, a, s′). A

reward function R assigns numerical rewards to state transitions; R(s, a, s′)

is the reward for reaching state s′ by taking action a from state s. A (deter-
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ministic) policy π : S → A specifies the action a to take from a given state s;

associated with π is its action value function Qπ : S×A→ R, which gives the

expected long-term discounted reward for taking action a from state s. Qπ

can be defined recursively as:

Qπ(s, a) =
∑

s′∈S

T (s, a, s′) [R(s, a, s′) + γQπ(s′, π(s′))] , ∀s ∈ S, ∀a ∈ A,

where γ ∈ [0, 1) is the discount factor (γ can be set to 1 in episodic MDPs).

The value function of the policy π, V π : S → R, associates with every state s,

the expected long-term discounted reward that will be accrued by starting at

s and following π: it is given by V π(s) = Qπ(s, π(s)). Provided a distribution

D over S to probabilistically pick start states, the value of a policy π is given

by V (π) =
∑

s∈S D(s)V π(s). Among the set of all policies Π applicable to

the MDP M , an optimal policy π∗ is one whose value is not exceeded by

that of any other: that is, V (π∗) = maxπ∈ΠV (π). The action value function

corresponding to π∗ is denoted Q∗, and the value function of π∗ is denoted V ∗.

Note that there could exist multiple optimal policies π∗; however, the optimal

action value function Q∗ and the optimal value function V ∗ are unique in every

MDP.

Figure 2.1 schematically depicts the interaction between an agent and

its environment, formulated as an MDP. The agent, aware of its current state

st, takes the action at prescribed by its policy πt. The transition function T

and the reward function R are embedded in the environment, which stochas-

tically picks a next state st+1 and generates the corresponding reward rt+1.

On receiving these signals, the agent resumes its interaction, and over time

gathers a sequence of “experiences”, which are transitions (or samples) of the

form (st, at, rt+1, st+1). The agent’s objective is to update πt such that over

time, the value of πt increases towards its maximum.
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Figure 2.1: Schematic view of agent learning to perform sequential decision
making from experience (figure adapted from the textbook by Sutton and
Barto (1998, see chapter 3)).

2.1 Finite MDPs

A seminal result due to Watkins and Dayan (1992) establishes that if

S and A are finite, an agent can learn the optimal action value function Q∗,

provided it takes every action from every state infinitely often in the limit.

In order to do so, the agent maintains a table with an entry for each state-

action pair, to which it performs a “Q-learning” update every time the state

is visited and the action taken. If the learning rate in the updates is annealed

according to a certain schedule, the entries in the table converge to Q∗ values.

Acting greedily with respect to these converged action values induces optimal

behavior; that is, π∗(s) = argmaxa∈AQ∗(s, a), ∀s ∈ S. Singh et al. (2000)

derive a similar proof of convergence to the optimal action value function and

optimal policy for the Sarsa(0) learning algorithm.

Subsequent work has provided learning algorithms that achieve near-

optimal behavior after collecting a number of samples that is polynomial in

the size of the state space (|S|) and the number of actions (|A|) (Kearns and
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Singh, 2002; Brafman and Tennenholtz, 2003; Strehl and Littman, 2005; Szita

and Szepesvári, 2010a); indeed such behavior can be achieved using a memory

bounded in size by O(|S||A|) (Strehl et al., 2006). Learning algorithms have

also been devised for achieving near-optimal “regret” (Jaksch et al., 2010); in

other words, the losses they accrue while learning are essentially minimal. In

short, an agent interacting with a discrete, finite MDP with fully observable

states can achieve optimal behavior in the limit, while being efficient in terms

of samples, memory, and regret.

2.2 State Aliasing

In an MDP, the state signal summarizes all the information necessary to

predict the future. However, in a predominant number of sequential decision

making tasks encountered in practice, the information relayed to the agent

through its sensors at every decision cycle only provides an occluded view of

the underlying state. Thus, it becomes necessary to distinguish the agent’s

observation at any instant of time from the environment’s state at the same

instant. For example, in a soccer game, the state of the system might be fixed

by the positions and velocities of the players and the ball. However, a player

with a restricted field of view might not always perceive all the objects on

the playing field. Even if the player does, a single visual snapshot would not

identify the velocities of the other players and the ball. Further, a camera

with finite resolution and noisy pixels would lead to incorrect estimates of

the objects’ positions, too. In all these cases, and in many other practical

applications, the agent’s instantaneous observations do not always uniquely

identify the underlying system state.

The term “state aliasing” traces back to Whitehead and Ballard (1991),
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who introduce the term perceptual aliasing to describe the phenomenon of mul-

tiple states manifesting as the same observation to an agent. They argue that

perceptual aliasing could indeed be beneficial if there is no need to distinguish

aliased states; that is, if all the aliased states have the same optimal action.

The advantage of such a situation is that the agent can use a simpler repre-

sentation for decision making than one that can discriminate between any set

of states in the task. In several practical tasks, aliased states do need to be

distinguished, and so state aliasing becomes more of a worry than a blessing.

In general an agent augmented with a short-term memory can remem-

ber sequences of observations, and use this history as a means to differentiate

aliased states. Lin and Mitchell (1993) provide empirical evidence suggest-

ing that several models of memory—such as finite windows of past experi-

ences, and recurrent neural networks computing the model or the action value

function—can be used in conjunction with learning to boost the performance

of an agent acting in a partially observable world. Several researchers have

indeed applied memory-based approaches to overcome state aliasing (Glick-

man and Sycara, 2001; Todd et al., 2009). Chrisman (1992) shows similar

results obtained by explicitly modeling the underlying MDP and observation

function, which together constitute a Partially Observable Markov Decision

Problem (POMDP) (Monahan, 1982). McCallum (1993) designs a Utile Dis-

tinction Memory (UDM) in which states are distinguished only if doing so will

increase the utility of decision making. The appeal of this approach is that

the agent has a dynamic memory size that is adapted based on the needs of

decision making, rather than on the underlying complexity of the state space.

A shortcoming of the UDM approach is that it learns very slowly, because

it needs large amounts of experience to provide the statistical confidence for
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deciding which states to distinguish. However, McCallum (1996) shows that

the adoption of a prediction suffix tree (PST) as the data structure indexing

memory can significantly speed up learning. Recent work (Holmes and Is-

bell, Jr, 2006) provides a proof that looping PSTs can exactly represent finite

POMDPs with deterministic transition and observation functions, and indeed

that these PSTs can be learned from experience.

The mathematical principles for solving POMDPs stem from the sem-

inal work of Åström (1965). The key idea contributed by Åström is the use of

belief states, which are probability distributions over the state space of the un-

derlying MDP. To solve a POMDP P , Åström constructs an MDP M ′ whose

states are belief states over the states in P . Transitions in M ′ are defined

such that an optimal policy for M ′ induces an optimal policy for P . Crucially,

the next state in M ′ (the next belief state in P ) depends only on the current

state in M ′ (the current belief state in P ) and the most recent action and

observation in P . In other words, belief states summarize all the information

necessary for optimal decision making in P .

Since a belief state in P is a probability distribution over its underlying

state space, the set of belief states is continuous. Hence, M ′ is an MDP with

a continuous state space. There has been active research over the last few

decades focusing on solving M ′ efficiently. It has been shown that the value

functions of a certain class of policies for M ′ are convex and piecewise linear

(Sondik, 1978), which allows more efficient solution than arbitrary continuous

MDPs. Much of the work on POMDPs is in the context of planning: assuming

that P is known, and also that it is finite. An early, landmark result from this

body of research relates to the Witness algorithm provided by Cassandra et al.

(1994), which can compute policies with values arbitrarily close to the value
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of an optimal policy for P . It remains that even in the context of planning,

finding the optimal policy for a POMDP is very computationally expensive.

For instance, the effectiveness of the point-based value iteration method, a

sophisticated technique recently proposed by Pineau et al. (2006), has only

been demonstrated on finite POMDPs with a few hundreds of states.

In a learning setting, samples are typically expensive to obtain, and

even for problems with small, finite, state spaces, it becomes impractical to im-

plement POMDP solution techniques that rely on reasoning exactly about be-

lief states. Further, several problems in practice have continuous state spaces,

which further erode the applicability of classical POMDP algorithms. Indeed

there have been some attempts to tackle state aliasing using “approximate be-

lief states” (Rodŕıguez et al., 1999), which can achieve a more favorable tradeoff

between computational time and solution quality, but nor has this approach

been demonstrated effective on tasks with more than a few hundreds of states.

The failure of theoretically-grounded POMDP learning and planning

techniques to scale to practice has not derailed research seeking to apply RL

methods to tasks with state aliasing. Indeed a significant fraction of sequen-

tial decision making tasks encountered in practice do not have fully observable

states, and yet several successes have been noted on such problems (as Ta-

ble 1.1 attests). In practice significant manual effort is expended in designing

an “observed state” signal that encapsulates as much information as possible

about the underlying state. Past observations and actions, and other useful

sources of information, are combined to construct the observed state, making

extensive use of domain knowledge. For example, it is common for robot soccer

agents to use particle filtering to estimate positions and velocities of objects

based on their past configurations, and applying the laws of physics. Little is
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known about the factors influencing the dynamics of a rat’s nervous system

when it is subjected to electrical stimuli; in designing a stimulation schedule

for reducing the incidence of epileptic seizures, the only measurements avail-

able to Guez et al. (2008) are a sequence of electrical activations in the tissue,

of which they treat a finite window as the observed state. It is so common in

the practice of RL to use a well-designed observed state as a surrogate for the

system state that the important distinction between them—the preservation

of the Markov property!—is often forgotten. The (typically implicit) assump-

tion underlying this practice is declared explicitly as follows by Nevmyvaka

et al. (2006, see Section 3), who design a learning algorithm for the task of

optimized trade execution:

“We note that where we say state we more precisely mean observed

state; we in no way suggest that our state representations are suf-

ficient to render a system as complex as modern financial markets

truly Markovian. In what follows we will essentially be treating a

partially observable environment as if it were fully observable to us;

the test of this assumption will lie in our empirical evaluation.”

In this thesis, we adopt the perspective that in general, a learning agent

in a practical task can only access an observed state signal. Figure 2.2 shows

a schematic view of a state-estimator module that derives this signal based

on past observations and actions, as well as the current observation recorded

by the agent’s sensors. The key point to note is that the observed state s′ is

not necessarily a sufficient statistic for decision making, unlike a belief state.

While observed states often yield “reasonable” policies when they are treated

as states, an explicit acknowledgement of the modeling mismatch leads to
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Figure 2.2: In practical tasks, we assume that the agents’ sensors provide an
observation signal o, which does not always identify the underlying system
state s. A state estimator computes an observed state s′ based on o and the
sequence of past observations and actions in memory. This figure is based on
one by Cassandra et al. (1994), in which s′ is a belief state, rather than an
observed state.

the following question: can better policies be learned by using optimization

methods that do not treat observed states as states in an MDP? It does not

seem ideal to completely ignore the “somewhat Markovian” nature of observed

states either, as the sequence in which they occur encapsulates some amount of

information for learning. Thus, a more pointed question to consider is whether

we can learn by exploiting the properties of MDPs to the extent that observed

states exhibit the Markov property, and use general optimization methods to

the extent that they do not. Again, it is not obvious how to precisely measure

to what extent the observed state space follows the Markov property; yet it

appears reasonable to believe that an observed state that mixes X amount of

noise to the true state signal will be more Markovian than an observed state

that mixes 2X amount of noise.

In our experiments, we evaluate learning methods against representa-

tions of different quality by systematically varying sensor noise to implement

different “levels of Markovianness”. Our experiments also control generaliza-

tion in a similar manner to gauge its effect on learning. In the next section,

we proceed to consider the role of generalization in RL.

26



2.3 Generalization

State aliasing handicaps learning by invalidating the Markov property

in observed state transitions. However, even in fully observable worlds—where

an agent’s observation can unambiguously identify the system state—the sheer

size of the state space can pose a formidable challenge to learning. Consider: a

policy maps observed states to actions, and hence a general representation for

learning must maintain a data structure that can assign an arbitrary action

to every observed state. The number of parameters that would have to be

stored and updated during learning in order to do so would be too large for

most tasks occurring in practice. The impracticability of maintaining an index

of individual states necessitates the use of generalization, whereby a smaller

set of parameters approximates the learned policy. Even if generalization is

strictly not necessary for learning over finite state and action spaces (as it is

for infinite state and action spaces), it can still promote quicker learning in

finite MDPs.1

Figure 2.3(a) depicts a typical architecture for learning a policy that

generalizes over states and actions. Perhaps the most influential aspect in

the success of a generalization scheme is the list of features made available

to the learner. We can assume that a feature extraction scheme generates a

vector of features φ based on the agent’s state. For example, in the Keepaway

task (Stone et al., 2005), φ is a 13-dimensional vector describing distances

and angles among estimates of the players’ and ball’s positions, as shown

in Figure 2.3(b). It is expected that these 13 features will facilitate better

1Here, and often in the remainder of this text, we use the term state informally, without
explicitly differentiating states from observed states. We do so to ease the reader’s burden;
we still assume that observed states and states are properly distinguished as in Section 2.2.
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generalization than, say, x and y coordinates of the players and the ball, which

would, in aggregate, convey the same information.

Given a feature vector corresponding to the state—which serves as a

“factored” representation of that state—a parameterized functional form ρ

accepts this feature vector as an input, and produces outputs that can be

interpreted using some simple rule to pick an action for that state, thereby

implementing a policy. Figure 2.3(c) shows a typical generalization scheme

π
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ρ
(Representation)
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(Action)
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Figure 2.3: (a) Typical generalization architecture used in practice, in which a
policy is represented using a functional form ρ parameterized by a set of weights
w. Given a feature vector φ as input, the outputs computed by ρ determine
the action to select, implementing a policy π. (b) 13 features corresponding
to distances and angles among (estimated) positions of the players in the
Keepaway task. (c) A possible representation for a policy in Keepaway, which
has three actions. For each action ai, a separate neural network ρai

computes
an output zi, given the current feature vector φ and network weights wai

. The
policy is to choose an action solely based on the values of zi.
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adopted for learning in Keepaway (used, for example, by Stone et al. (2006)).

Under this particular scheme, ρ comprises three neural networks, each pro-

ducing an output corresponding to one of the three actions in Keepaway. The

inputs to the neural networks are the 13 features, and the policy is to pick the

action corresponding to the neural network with the highest activation. From

Table 1.1, we observe that indeed neural networks are a common choice for ρ.

Other function approximators used in practice are tile coding, decision trees,

and linear combinations. Note that in nearly every task using generalization

in Table 1.1, the feature extraction module and the functional form ρ are care-

fully designed by the programmer a priori. In other words, these components

of the learning agent stay constant during learning. What is “learned” is the

vector of parameters to ρ, which we denote w. In the case of neural networks,

w could serve as the network’s weights and biases; if ρ is linear, its output is

given by wT φ.

In general, φ and ρ, which are components of the agent’s representa-

tion, can also be adapted along with w as transition data become available.

Indeed “representation discovery” has received steady attention over the years

as a research area. Important topics that have been considered therein in-

clude, among others, state abstraction (Dietterich, 2000), temporal abstrac-

tion (Sutton et al., 1999), subgoal discovery (Digney, 1998), hierarchical con-

trol (Parr, 1998), feature selection and discovery (Ormoneit and Sen, 2002;

Girgin and Preux, 2008; Kolter and Ng, 2009; Petrik et al., 2010), neuroevo-

lution (Whiteson, 2007), and variable resolution discretization (Munos and

Moore, 2002). It remains that while these studies make very important con-

ceptual contributions, representation discovery is yet to be demonstrated as a

general methodology that can be applied successfully across a wide range of
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sequential decision making problems. As stated in Chapter 1, we contend that

representation discovery is likely to be successful in general only if an agent

has a lot of data—orders of magnitude more than agents in today’s practi-

cal applications can gather. We proceed to consider, therefore, how learning

methods (for adapting w alone) must be designed under the assumption that

the representation (combining φ and ρ) is useful, but not necessarily perfect.

2.4 Demands of a Practical Learning Method

Continuing from Section 2.3, let us assume that a learning agent em-

ploys an underlying function representation ρ, and at each time step t, receives

as input a vector of features φt, depending on the state st. The applications

mentioned in Table 1.1 and the discussion in sections 2.2 and 2.3 affirm that it

is realistic, and perhaps most appropriate, to expect that ρ and φt are affected

to some extent by state aliasing, facilitate some amount of useful generaliza-

tion, but are not perfect. Given this limitation, what is demanded of the

learning method in adapting the representation parameters w?

The output of the learning agent at time t is an action at, based on

which the environment will generate a next state st+1 (partially visible to the

agent through features φt+1) and a reward rt. Perhaps the greatest appeal of

RL lies in the manner desirable behavior can be specified succinctly through a

scalar-valued reward function (Sutton and Barto, 1998). It is natural, there-

fore, that the objective of learning must be to maximize expected long-term

reward. Surely the developers of the 25 applications mentioned in Table 1.1

will agree! Formalizing the motivating question laid down in Section 1.2, this

dissertation concretely specifies the objective of learning in practical sequential

decision making problems as follows.
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Problem Definition: Given φ, ρ, and the number of samples that
can be gathered, adapt w based on experience such that the expected
long-term reward of the resulting policy is maximized.

This definition appears quite natural, and at first glance, the reader

might wonder what is novel about it. Has the maximization of long-term re-

ward not always been the central tenet of RL? If anything, the definition above

underscores that it has, and that it must continue to be even when the repre-

sentation is imperfect. From the definition, it is clear that if an agent possesses

a perfect representation, maximizing long-term reward is exactly achieved by

learning the optimal action value function (Bellman, 1957), which it is possi-

ble to achieve in a sample-efficient manner (Brafman and Tennenholtz, 2003).

Thus, if representations are perfect, the problem definition above essentially

becomes equivalent to learning a model or a value function exactly and effi-

ciently. However, the key implication of the problem definition is on learning

with imperfect representations. If state aliasing and generalization handicap

the representation, how can w be adapted to reap the greatest rewards after a

given amount of training time? Approximating the model or value function is

no longer the obvious, provably correct answer. In some cases, the predictive

power of such approaches might be desired as an end in itself, but here we

solely demand performance, a pragmatic measure.

Several problems in machine learning have profited through concrete

specifications of an objective function to optimize by adapting a vector of

parameters. For example, classification is commonly posed as the problem

of updating real-valued coefficients to maximize a separating margin; cluster-

ing and regression are implemented as the minimization of appropriate loss
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functions (Bishop, 2006). Our problem definition above for sequential deci-

sion making with imperfect representations is in the same spirit. However, it

is important to note that whereas for several problems, setting up the right

objective function naturally gives rise to solution strategies, it is not obvious

how we may devise learning methods for sequential decision making under

imperfect representations to maximize expected long-term reward.

We view the problem statement above as a fair reflection of the true

needs of a majority of practical learning agents. Even if solution strategies are

not readily forthcoming based on this definition, we believe that the quest for

answers must be pursued in the spirit exhorted by the noted statistician John

Tukey (1962, see pages 13–14):

“... Far better an approximate answer to the right question, which

is often vague, than an exact answer to the wrong question, which

can always be made precise.”

This thesis primarily adopts experimental means to look for answers

to the “right question” of learning with imperfect representations. Before

proceeding to the next chapter, we consider one final aspect concerning the

evaluation of learning algorithms, which, on purpose, we have left unspecified

in our problem definition. In some tasks involving agent learning, it is neces-

sary to measure the rewards accrued while learning (or to measure the on-line

performance) (İpek et al., 2008). In other situations, it is more appropriate

to assume that the learner outputs an entire policy after learning, which can

then be evaluated off-line, with no further learning (Crites and Barto, 1996;

Ng et al., 2004; Guez et al., 2008; Gabel et al., 2009). Either of these criteria

can be applied in our problem definition to properly define expected long-term
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reward. As a concrete evaluation criterion for the experiments in this thesis,

we adopt the latter strategy; that is, we treat the training and the deployment

of a learning agent as distinct phases, measuring performance as the value

of the policy that is generated at the end of the learning phase. Having a

separate learning phase before the agent is deployed in practice finds appeal

when it is not feasible to learn during an agent’s long-term operation, for

example, because of computational considerations, or because learning sim-

ply cannot be trusted in the agent’s deployed scenario (such as a helicopter

in flight (Ng et al., 2004)). Turning off learning, and testing what has been

learned, also facilitates meaningful comparisons with policies that have been

obtained through ways other than learning.

This chapter concludes the first part of the dissertation, wherein we

have argued the inevitability of having to work with imperfect representations.

After presenting some fundamental results related to learning in finite MDPs,

we have described the phenomena of state aliasing and generalization, and have

thereafter proceeded to define the problem of sequential decision making with

imperfect representations. In chapters 3 and 4, we experimentally evaluate

the performance of different existing classes of learning methods under this

problem definition. In chapters 5 and 6, we present ideas for improving the

performance of learning methods that are constrained to work with imperfect

representations.
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Chapter 3

Experimental Comparison of Learning

Methods

This chapter is the first one in a series (which also includes chapters 4, 5,

and 6) devoted to describing the individual technical contributions of the the-

sis. Specifically this chapter presents the first contribution introduced in Sec-

tion 1.3.2, which constitutes a major and defining portion of the dissertation.

As a first step towards engaging with the problem definition in Section 2.4—of

how we might devise effective learning methods for imperfect representations—

in this chapter, we devise a thorough experimental study to evaluate existing

classes of RL methods under imperfect representations.

First we propose “parameterized learning problems” as a novel experimental

methodology, which enables us to systematically control representational as-

pects such as state aliasing and generalization, and to characterize their ef-

fects on learning methods (Section 3.1). Employing this methodology, we com-

pare two qualitatively distinct classes of algorithms: on-line value function-

based methods and policy search methods (Section 3.2). Empirical comparisons

among various methods within each of these classes determine Sarsa(λ) and

Q-learning(λ) as winners among the former, and CMA-ES as the winner in

the latter. Comparing Sarsa(λ) and CMA-ES further on relevant problem in-

stances, we find conclusive evidence that any one of these methods outperforms

the other in some part of the problem space, thereby affirming our founding hy-
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pothesis that different representations call for different learning methods (Sec-

tion 3.3). We discuss several new insights relating problems, learning methods,

and method-specific parameters (Section 3.4), and provide references to related

work (Section 3.5).

In chapters 1 and 2, we laid down the conceptual framework of this

thesis, which wrestles with the question of devising learning methods to be

effective in practice (that is, when working with imperfect representations).

As with any endeavor in science and engineering, the first step in our quest

for answers has to be that of exploring and mapping the landscape that we set

forth to penetrate. In this chapter, we undertake such an exercise. Specifically

we conduct an extensive experimental study to compare existing classes of RL

methods under various settings of “representational quality”. In short we seek

to ascertain: in what ways, and to what extent, does the representation used

for learning determine the dominance of one class of learning methods over

another?

In a formal sense, the “No Free Lunch” theorems of Wolpert and

Macready (1997) establish that for any optimization algorithm, an elevated

performance in one class of problems is offset by worse performance in some

other class. Even so, the enterprise of machine learning rests on the assumption

that classes of problems of any practical interest tend to possess regularities:

we desire learning methods that can perform well on such practically-relevant

problems by actively characterizing and exploiting the problems’ regularities.

Consequently, to the extent that the relationships between problem instances

and the performance properties of algorithms are unclear, it becomes a worth-

while pursuit to uncover them. The need for such research has been advocated
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ever since the inception of machine learning as a field; in an early editorial in

the Machine Learning journal, Langley (1988, see page 7) writes:

“For instance, one might find that learning method A performs bet-

ter than method B in one environment, whereas B fares better than

A in another. Alternatively, one might find interactions between

two components of a learning method or two domain character-

istics. We believe the most unexpected and interesting empirical

results in machine learning will take this form.”

In line with Langley’s vision, the practice of supervised learning has

benefitted from a number of empirical studies that seek to identify the strengths

and weaknesses of learning methods. For example, Caruana and Niculescu-

Mizil (2006) undertake a detailed comparison involving a number of supervised

learning methods, test problems, and evaluation metrics. Caruana et al. (2008)

present empirical results demonstrating that random forests (Breiman, 2001)

are typically more effective than several other classification methods on prob-

lems with high dimensionality (greater than 4000). Although the canonical

boosting algorithm (Freund and Schapire, 1996) enjoys desirable theoretical

properties and is predominantly effective in practice, studies comparing it with

other ensemble schemes such as bagging (Quinlan, 1996; Bauer and Kohavi,

1999) hint at its vulnerability in the presence of noisy training data. Banko

and Brill (2001) advance the case that for problems with very large data sets

(for example, natural language applications on the Internet), simple classi-

fiers such as Winnow (Littlestone, 1987) can be the most effective, and that

voting-based ensemble schemes do not retain their attractiveness.
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By associating problem characteristics with the strengths and weak-

nesses of supervised learning methods, the studies listed above provide useful

“rules of thumb” to a practitioner who must choose a method to apply to a

problem. Unfortunately the much broader scope of the RL problem leaves the

practitioner of RL with few such guidelines. Faced with designing an agent

for a sequential decision making problem, not only does a designer need to

pick a learning algorithm, he/she has to address the related issues of state

estimation, exploration, and function approximation, while possibly satisfying

computational and memory constraints.

The experimental study described in this chapter is among early steps

towards the the eventual development of a “field guide” for the practice of

RL, which would both inform the choices made by designers of RL solutions,

and identify promising directions for future research. Ultimately, a field guide

would be evaluated based on the extent to which it can expedite the process

of designing solutions for full-scale deployed applications. Nevertheless, such

applications are themselves too complex and constrained to provide reliable

data from which the principles for a field guide can be inferred. Rather, there is

a need for simpler, more transparent problems through which we, as designers,

can systematically sort through the complex space of interactions between RL

problems and solution strategies.

Existing work on the subject of comparing RL algorithms has primarily

relied on standard, benchmarking tasks, with possibly a small number of vari-

ations (Moriarty et al., 1999; Gomez et al., 2008; Heidrich-Meisner and Igel,

2008a; Whiteson et al., 2010). By contrast, we design a synthetic, parameter-

ized learning problem with the explicit purpose of ascertaining the “working

regions” of learning algorithms in a space that is carefully engineered to span
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the dimensions of the task and the learning architecture. Our approach enjoys

the following merits:

1. The designed task and learning framework are easy to understand and

can be controlled precisely.

2. We may examine the effect of subsets of problem parameters while keep-

ing others fixed.

3. We can benchmark learned policies against optimal behavior.

4. The learning process can be executed in a relatively short duration of

time, thereby facilitating extensive experimentation.

Whereas parameterized learning problems can be designed for testing

virtually any problem characteristic, in keeping with the pursuit of this thesis,

we employ them to study two key representational aspects: state aliasing and

generalization. In our study, these factors are systematically controlled in

order to gauge their effect on different learning methods. While state aliasing

and generalization can be construed as aspects internal to the agent, our study

also considers task-specific characteristics such as the size of the state space

and the stochasticity of actions. Any fixed setting for the parameters that

control these factors determines a learning problem, on which different learning

methods can be compared.1

1The term “parameterized learning problem” is quite generic; such problems have been
used in the past both in RL and in other fields. For some examples, see our discussion of
related work in Section 3.5 We apply the term to our framework here to underscore that
problem parameters are its very crux; they are not secondary as in related work.
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In our study, we compare learning methods from two contrasting classes

of algorithms. The first class corresponds to (model-free) on-line value function-

based methods, which learn by associating utilities with action choices from

individual states. The second class of algorithms we examine are policy search

methods. Rather than learn a value function, policy search methods seek

to directly optimize the parameters representing a policy, treating the ex-

pected long-term reward accrued as an objective function to maximize. First

we evaluate several methods within each of the above classes, and based on

their empirical performance, pick one method from each class to further com-

pare across a suite of problem instances. The representatives thus chosen are

Sarsa(λ) (Rummery and Niranjan, 1994; Sutton and Barto, 1998) from the

class of on-line value function-based methods, and CMA-ES (Hansen, 2009)

from the class of policy search methods. In evaluating a method on a problem

instance, our experimental framework allows us to extensively search for the

method-specific parameters (such as learning rates, eligibility traces, and sam-

ple sizes for fitness evaluation) that lead to the method’s best performance on

that instance. Our experiments identify regions of the problem space that are

better suited to on-line value function-based and policy search methods, and

yield insights about the effect of algorithm-specific parameters.

While the careful design of a synthetic learning problem empowers us

with a high degree of control in our experimentation, equally it qualifies the

extent to which our conclusions may generalize in practice. Thus, the results

from our study are to be taken as starting points for further empirical inves-

tigation, rather than treated as well-grounded final products in themselves.

In this sense, the methodology we put forth enjoys a complementary relation-

ship with the research strategy of evaluating RL methods on more realistic
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problems. The subsequent chapters of this thesis indeed pay close attention

to some complex sequential decision making problems: Tetris (Bertsekas and

Tsitsiklis, 1996) (Chapter 4) and robot soccer Keepaway (Stone et al., 2005)

(Chapter 6). Lessons drawn from the present chapter do find validation and

inspire new algorithmic contributions in these more complex tasks.

Whereas the experiments in this chapter are restricted to two classes

of learning methods—on-line value function-based methods and policy search

methods—the experimental framework developed here can easily support other

classes of learning methods. In particular some relevant classes of methods in-

clude model-based and batch RL methods, actor-critic methods, and policy

gradient techniques. We provide a brief survey of these classes of learning

methods in Appendix C, and discuss relationships between them in Chap-

ter 7. However, it exceeds the scope of the thesis to subject these methods to

systematic empirical evaluation.

This chapter is organized as follows. In Section 3.1, we describe the

detailed design of our parameterized learning problem. Section 3.2 provides

brief descriptions of the methods compared in the study. In Section 3.3, we

present detailed results from our experiments, which we follow with a discus-

sion in Section 3.4. Related work is discussed in Section 3.5. We summarize

and conclude the chapter in Section 3.6.

3.1 A Parameterized Sequential Decision Making Problem

In this section, we describe the construction of our parameterized learn-

ing problem, which is composed of a task MDP and an accompanying learning

framework that incorporates state aliasing and generalization.
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3.1.1 Problem Size and Stochasticity

The class of tasks we design consists of simple, square grids, each having

a finite number of states. An example of such a task is illustrated in Figure 3.1.

The size of the state space is s2−1, where s, the side of the square, serves as a

parameter to be varied. Each episode begins with the agent placed in a start

state chosen uniformly at random from among the set of non-terminal states,

as depicted in Figure 3.1(a). The north and east sides of the grid are lined

with terminal states, of which there are 2(s − 1). From each state, the agent

can take either of two actions: North (N) and East (E). On taking N (E),

the agent moves north (east) with probability p and it moves east (north) with

probability 1 − p. The variable p, which essentially controls the stochasticity

in the transitions, is also treated as a parameter of the task MDP. Note that

irrespective of the value of p, the agent always moves either north or east on

each transition before reaching a terminal state. Consequently episodes never

last more than 2s− 3 steps.

Through the course of each episode, the agent accrues rewards at the

states it visits. Each MDP in our class is initialized with a fixed allotment of

rewards drawn uniformly from [0, 1], as illustrated in Figure 3.1(b). In general

the rewards in an MDP can themselves be stochastic, but in our tests, we

find that the effect of stochastic rewards on the performance of our learning

algorithms is qualitatively similar to the effect of stochastic state transitions,

which are controlled by the parameter p. Thus, we keep the rewards deter-

ministic. Figures 3.1(c) and 3.1(d) show the optimal values and the actions

to which they correspond under the reward structure shown in Figure 3.1(b)

(assuming p = 0.1).

We do not discount rewards in the computation of values. Notice that
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Figure 3.1: (a) Example of parameterized MDP example with s = 7; the
number of non-terminal states is 36. (b) Rewards obtained at “next states”
of transitions. (c) Optimal action values from each state when p = 0.1. (d)
Corresponding optimal policy.

the variation in values along the north and east directions is gradual, thereby

supporting the scope for generalization between neighboring cells. The values

marked in Figure 3.1(c) are obtained using dynamic programming. Indeed it

is also straightforward under this setup to learn the optimal policy based on

experience, for example, by using a table of action values updated through

Q-learning. However, the objective of our study is to investigate situations in
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which table-based approaches are not guaranteed to succeed. In the remainder

of this section, we specify the aspects of our learning problem that, in ways

similar to real-world problems, render table-based approaches infeasible.

3.1.2 State Aliasing

As argued in Section 2.2, state aliasing is widespread in practice, forcing

agents to use observed states as surrogates for the true system state. We

adopt an appropriate encoding of state aliasing in our parameterized learning

problem. Each cell in our task MDP corresponds to a state. In order to model

state aliasing, we constrain the learner to use an observed state o, which, in

general, can be different from the true state s. Our scheme to pick o based on

s is depicted in Figure 3.2. Given s (say, with coordinates (x, y)), we consider

all the cells with x coordinates between x and x+dx (both inclusive) and with

y coordinates between y and y + dy (both inclusive). From among these cells,

we pick one uniformly at random to serve as the corresponding observed state

o. By controlling dx and dy, we vary the extent of state aliasing.

Before starting a learning run, we fix dx and dy: each is sampled from

a Gaussian distribution with zero mean and a standard deviation equal to σ,

and then rounded to the nearest integer. Note that dx and dy can be positive,

negative, or zero. Figures 3.2(b) and 3.2(c) show an illustrative trajectory

of states numbered 1 through 9. Under different settings of dx and dy, the

figures show the set of all possible observed states that could result while the

agent traces its trajectory. As is apparent from the figures, by keeping dx or dy

fixed for the entire course of a learning run (that is, by not changing them from

episode to episode), the state aliasing (or state noise) encountered by the agent

during its lifetime is systematic in nature. Informal experimentation with a
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Figure 3.2: An implementation of state aliasing in the example MDP from
Figure 3.1. (a) Variables dx and dy (themselves generated randomly based on
parameter σ) define a rectangle with the true state at a corner; cells within
this rectangle are picked uniformly at random to constitute observed states.
(b) A trajectory of true states 1 through 9, and the set of all possible observed
states that could be encountered during this trajectory when dx = −2 and
dy = 1. (c) For the same trajectory, the set of possible observed states when
dx = 1 and dy = 0.

number of schemes for implementing state noise suggests that biased noise

tends to affect learning more severely than zero-mean noise. The magnitude

of the noise, implemented through dx and dy, is controlled by the single free

parameter σ, which we vary in our experiments. Setting σ to 0 removes state

aliasing. Progressively larger values of σ lead to observed states that are

farther apart from the agent’s true state, and render the agent’s interaction

with the environment non-Markovian.

3.1.3 Generalization

Recall from Section 2.3 that generalization is the phenomenon wherein a

free parameter in the policy representation might influence the choice of action
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from more than one state. The generalization scheme in our learning problem

is motivated by “CMAC” (Albus, 1981), a popular method that is used in a

number of RL applications (Singh and Sutton, 1996; Stone et al., 2005; İpek

et al., 2008). At each decision making step, we provide the learning agent a

vector of nf features to describe its observed state. Each feature is a square

“tile”, with a binary activation: 1 within the boundary of the tile and 0 outside.

Tiles have a fixed width w, which serves as a parameter in our experiments

that determines the extent of generalization between states while learning. The

centers of the tiles are chosen uniformly at random among non-terminal cells

in the MDP. Figure 3.3 continues the example from Figure 3.1, describing our

generalization architecture. In Figure 3.3(a), nine tiles (numbered 1 through

9) are used by the generalization scheme. The tile width w is set to 3; for

illustration, four among the nine tiles are shown outlined.

Notice that every non-terminal cell in Figure 3.3(a) is covered by at

least one tile: every such cell has at least one feature that is active. Indeed

we ensure that complete coverage is always achieved, in order that non-trivial

decisions can be made at every cell. Clearly, not all the cells will be covered

if the number of tiles (nf ) and the width of each tile (w) are both small

compared to the number of non-terminal states ((s − 1)2). Therefore, in all

our experiments, we set these parameters such that in conjunction they can

facilitate complete coverage of all non-terminal cells. The placement of the nf

tiles is performed randomly, but preserving the constraint that all non-terminal

cells are covered. In order to implement this constraint, we first place the tiles

in regular positions that guarantee complete coverage, and then repeatedly

shift tiles, one at a time, to random positions, while still preserving complete

coverage. Rather than treat nf directly as a parameter in our experiments, we
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Figure 3.3: Generalization scheme in example MDP from Figure 3.1. (a) A
randomly chosen subset of cells (numbered 1 through 9) are the centers of
overlapping tiles (giving χ = 9

36
= 0.25). The tile width w is set to 3; tiles

1, 2, 5, and 9 are shown outlined (and clipped at the boundaries of the non-
terminal region). (b) Table showing coefficients associated with each tile for
actions N and E. (c) The activation value of each cell for an action is the sum
of the weights of the tiles to which it belongs. The figure shows the higher
activation value (among N and E) for each cell. (d) Arrows mark a policy
that is greedy with respect to the activations: that is, in each cell, the action
with a higher activation value is chosen. In general the agent will take the
greedy action from its observed state, which is determined as described in
Section 3.1.2.
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normalize it by dividing by the number of non-terminal cells: (s − 1)2. The

resulting quantity, χ =
nf

(s−1)2
, lies in the interval (0, 1], and is more appropriate

for comparisons across different problem sizes. In Figure 3.3(a), nf = 9 and

s = 7, yielding χ = 0.25. We treat χ as a parameter in our experiments.

As we shortly describe, χ determines the resolution with which independent

actions can be taken from neighboring cells. In this sense, χ measures the

“expressiveness” of the generalization scheme.

Given the vector of features for its observed state, the agent computes

a separate linear combination for each action, yielding a scalar “activation”

for that action. For illustration consider Figure 3.3(b), which shows a possible

assignment of coefficients for each feature and action. It is these coefficients

(or “weights”) that the agent updates when it is learning. Figure 3.3(c) shows

the higher of the activations for the two possible actions at each cell in our

illustrative example; Figure 3.3(d) shows the action with the higher activa-

tion. While learning, the agent may take any action from the states it visits.

However, while evaluating learned behavior, we constrain the agent to take

the action with the higher activation, breaking ties evenly. This strategy ef-

fectively implements the choice we made in Section 2.4 of evaluating behavior

off-line.

In effect, the only free parameters for the learning agent to update are

the coefficients corresponding to each action. By keeping other aspects of the

representation—such as the features and policy structure—fixed, we facilitate a

fair comparison between different learning methods. In general, value function-

based methods such as Sarsa(λ) seek to learn weights that approximate the

action value function. We expect that setting σ = 0 and χ = 1 would favor

them, as the optimal action value function can then be represented. While
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this is so under any value of w, setting w = 1 replicates the case of table-based

learning with no generalization. Higher settings of w enforce generalization.

Increasing σ or reducing χ would likely shift the balance in favor of policy

search methods, under which activations of actions are merely treated as action

preferences. As Baxter and Bartlett (2001) illustrate, even in simple 2-state

MDPs, with generalization it is possible that the optimal action value function

cannot be represented, even if an optimal policy can be represented.

In summary the design choices listed in this section are the end prod-

ucts of a process of trial and error directed towards constructing a suite of

instances that allow us to study trends in learning algorithms, rather than

constructing instances that are challenging in themselves. Table 3.1 summa-

rizes the parameters used in our framework. Parameters s, p, σ, χ, and w,

along with a random seed, fix a learning problem for our experiments. By av-

eraging over multiple runs with different random seeds, we estimate the mean

performance achieved by learning methods as a function of s, p, σ, χ, and w.

Note that even if these parameters do not perfectly replicate an instance of

any specific sequential decision making in practice, they are capable of being

varied in a controlled manner to measure their effect on learning methods.

It must be noted that the parameterized learning problem described

above is limited in several respects. While it enables the study of the most

central problem parameters—problem size, stochasticity, state aliasing, and

generalization—it does not likewise isolate several other aspects influencing

practical implementations of RL. Foremost is the question of exploration,

which is not very crucial in our setup due to the occurrence of start states

uniformly at random. The learning agent only has two actions; in practice

large or continuous action spaces are quite common. Understanding the ef-
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Table 3.1: Summary of learning problem parameters. The last column shows
the ranges over which each parameter is valid and meaningful to test.

Parameter Property of: Controls: Range

s Task Size of state space {2, 3, . . . ,∞}

p Task
Stochasticity of

[0, 0.5)
transitions

σ
Agent/task

State aliasing [0,∞)
interface

χ Agent
Expressiveness of

(0, 1]
generalization scheme

w Agent
Width of {1, 3, . . . , 2s − 3}
generalization

fects of other aspects such as computational and memory constraints, the

variation among action values from a state, different types of state noise, the

sparsity and spread of the rewards, and the average episode length, would

also be important for designing better algorithms in practice. We hope that

the experimental methodology introduced in this chapter will facilitate the

investigation of such questions in the future.

In the next section, we provide brief descriptions of the learning algo-

rithms used in our experiments; in Section 3.3, the algorithms are compared

at a number of different parameter settings drawn from the ranges provided in

Table 3.1. Along with the parameterized learning problem itself, the results

of these experiments constitute an important contribution of this thesis.
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3.2 Methods in Study

As noted earlier, we compare two contrasting classes of learning meth-

ods in our study: on-line value function-based (VF) methods, and policy search

(PS) methods. Methods from both classes find wide use in practice, for exam-

ple, in several applications from Table 1.1. With the aim of comparing these

classes themselves, we first evaluate various methods within each class to pick

a representative. In this section, we describe the learning methods thus con-

sidered, and include relevant implementation-specific details. Experimental

comparisons follow in Section 3.3.

3.2.1 On-line Value Function-based (VF) Methods

We compare three learning methods from the VF class: Sarsa(λ) (Rum-

mery and Niranjan, 1994; Rummery, 1995), Q-learning(λ) (Watkins, 1989;

Watkins and Dayan, 1992; Rummery, 1995; Peng and Williams, 1996; Sutton

and Barto, 1998), and Expected Sarsa(λ) (abbreviated “ExpSarsa(λ)”) (Rum-

mery, 1995; van Seijen et al., 2009). These methods are closely related: they

all continually refine an approximation of the action value function, making a

constant-time update every time a new state is encountered. Yet the methods

are distinguished by subtle differences in their update rules. We include these

methods in our study to examine how their differences affect learning under

state aliasing and generalization: settings under which theoretical analysis is

limited. We proceed to describe the methods themselves.

Sarsa(λ) is a model-free value function-based method, which makes on-

line, on-policy, temporal difference (TD) learning updates. The learning agent

maintains an estimate of an action value function, Q, which is updated as it

encounters sequences of states (s), actions (a) and rewards (r). In particular
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assume that the agent encounters the following trajectory, in which suffixes

index decision steps:

st, at, rt+1, st+1, at+1, rt+2, st+2, at+2, rt+3, . . . .

The agent updates Q(st, at) by computing a target, QTarget(st, at), and

taking an incremental step towards it as follows:

Q(st, at)← (1− αt)Q(st, at) + αtQTarget(st, at),

where αt ∈ (0, 1] is the learning rate for the update. Recall that in our

architecture, Q is represented as a linear function approximator; hence, the

learning update is implemented through gradient descent. Under Sarsa(0), the

“fully bootstrapping” version of Sarsa, the target is computed as follows:

Q
Sarsa(0)
Target (st, at) = rt+1 + γQ(st+1, at+1),

where γ ∈ [0, 1) is a discount factor.2 Note that the target does not count the

actual rewards accrued beyond time step t + 1; rather, the discounted sum of

these “future” rewards is substituted with its current estimate: Q(st+1, at+1).

By contrast, a Monte Carlo method, Sarsa(1) computes its estimates wholly

from sample returns, as:

Q
Sarsa(1)
Target (st, at) = rt+1 + γ

∞∑

k=1

γk−1rt+1+k.

2It is legitimate to use γ = 1 in episodic tasks. We do so in our experiments (see
Section 3.3).
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This target of Sarsa(1) would not change depending on the actual states

that the trajectory visited, but only based on the sequence of rewards ob-

tained, making Monte Carlo methods less dependent on the state signal than

fully bootstrapping methods. Both methods still try to estimate state-action

values, and therefore rely on being able to precisely detect st and represent

QSarsa
Target(st, at). In general, intermediate methods that implement varying ex-

tents of bootstrapping can be conceived by varying the “eligibility trace” pa-

rameter λ ∈ [0, 1]. The estimated target for Q(st, at) used by Sarsa(λ) is:

Q
Sarsa(λ)
Target (st, at) = rt + γ{(1− λ)Q(st+1, at+1) + λQ

Sarsa(λ)
Target (st+1, at+1)}.

For the case of discrete MDPs, in which Q can be maintained as a table,

Singh et al. (2000) show that by following a policy that is “greedy in the limit”

with respect to Q, and which performs an infinite amount of exploration,

Sarsa(0) will ultimately converge to the optimal action value function Q∗,

from which the optimal policy π∗ can be derived by acting greedily. For

linear function approximation schemes such as in our parameterized learning

problem, Perkins and Precup (2003) show that convergence to a fixed point

can be achieved by following a method similar to Sarsa(0).

We use a standard on-line implementation of Sarsa(λ) with binary

features, a linear representation, and replacing eligibility traces (Sutton and

Barto, 1998, see page 212). While learning, the agent follows an ǫ-greedy pol-

icy. We treat both the exploration strategy and the schedule for annealing the

learning rate as parameterizable processes. We follow an ǫu-greedy exploration

policy during episode u, keeping ǫ0 as a free parameter, and ǫU = 0.01, where

U is the total number of training episodes. Intermediate values of ǫu are set
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based on a harmonic sequence going from ǫ0 to 0.01. We use such a schedule

based on empirical evidence of its effectiveness. Interestingly, informal exper-

imentation shows that a similar annealing schedule is also the most effective

for the learning rate α; that is, we keep α0 as a free parameter and anneal

it harmonically to 0.01 at the end of training. Since features are binary, we

divide the mass of each update equally among the features that are active

under the state-action being updated. We note that theoretically-motivated

update rules do exist for annealing the learning rate. For example, Hutter

and Legg (2008) derive a rule based on minimizing the squared loss between

estimated and true values. However, their approach only applies with tabular

representations of Q, and only in continuing (rather than episodic) tasks.

Apart from λ, ǫ0, and α0, yet another parameter influencing Sarsa(λ) is

the setting of the initial weights (coefficients in the linear representation). In

our experiments, we set all the weights initially to θ0, which is our final method-

specific parameter. Table 3.2 summarizes the parameters defining Sarsa(λ).

These parameters also apply to other methods in the VF class, which we now

describe.

Whereas Sarsa(λ) computes its target for time t based on the action

to be taken at time t + 1—at+1—ExpSarsa(λ) and Q-learning(λ) compute

their targets (and make learning updates) before at+1 is chosen. Once st+1 is

reached, ExpSarsa(λ) computes its target based on an expectation over the

possible choices of at+1 while following the current ǫ-greedy policy πt+1:

Q
ExpSarsa(λ)
Target (st, at) = rt+

γ

{
(1− λ)

∑

a∈A

P{a|st+1, πt+1}Q(st+1, a) + λQ
ExpSarsa(λ)
Target (st+1, at+1)

}
.
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Table 3.2: Summary of parameters used by methods within VF. The last
column shows the ranges over which we tune each parameter.

Parameter Controls: Range

λ Eligibility traces [0, 1]

α0 Initial learning rate [0.1, 1]

ǫ0 Initial exploration rate [0.1, 1]

θ0 Initial weights [−10.0, 10.0]

This alteration leads to a reduced variance in the update, as a sampled

action value is now replaced with a smoothed-out estimate. It is shown by

van Seijen et al. (2009) that like Sarsa(0), ExpSarsa(0) can also be made

to converge to the optimal policy in discrete, finite MDPs. Q-learning(λ)

differs from Sarsa and ExpSarsa in that it is an off-policy method: rather

than learning the action value function of the policy being followed, πt, Q-

learning(λ) seeks to directly learn the action values of the optimal policy π∗.

This objective is achieved by computing the target as follows:

Q
Q-learning(λ)
Target (st, at) = rt+γ{(1−λ) max

a∈A
Q(st+1, a)+λQ

Q-learning(λ)
Target (st+1, at+1)}.

Sutton and Barto (1998, see page 184) refer to the update rule resulting

from the target above as a “näıve” implementation of Q-learning with eligibil-

ity traces, because the rule lacks technical justification as a proper TD learning

update. By contrast, there do exist some sound variations of Q-learning with
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eligibility traces (Watkins, 1989; Peng and Williams, 1996), under which up-

dates additionally have to account for whether chosen actions are greedy or

non-greedy. In fact, a wide array of possibilities exists for devising TD learning

algorithms: several variants of basic algorithms such as Q-learning and Sarsa

can be realized by making subtle alterations to their update rules. For exam-

ple, Nissen (2007) introduces a method called Q-Sarsa(λ), which takes an ad-

ditional parameter to determine a balance between the on-policy and off-policy

nature of updates. In his Ph.D. thesis, van Hasselt (2011) introduces several

novel TD learning rules—such as Double Q-learning and QV-learning—and

analyzes the estimation biases in their update rules.

It exceeds the scope of our dissertation to undertake an extensive

study comparing all possible variants of TD update rules. Rather, a novel

contribution of our experiments is to consider three among them—Sarsa(λ),

ExpSarsa(λ), and (näıve) Q-learning(λ)—in the presence of state aliasing and

generalization. Indeed our results show that under the influence of these fac-

tors, uncharacterized patterns in performance emerge. We refer the reader to

the Ph.D. thesis of Rummery (1995, see Chapter 2) for an excellent presen-

tation of various TD learning rules. Note that Rummery refers to Sarsa as

“modified Q-learning”, and to Expected Sarsa as “summation Q-learning”.

As with Sarsa(λ), we parameterize ExpSarsa(λ) and Q-learning(λ) to

control their learning and exploration rates, as well as their initial weights. The

corresponding parameters, α0, ǫ0, and θ0, are summarized in Table 3.2. Hence-

forward, we drop the “λ” from Sarsa(λ), ExpSarsa(λ), and Q-learning(λ), and

refer to these methods simply as Sarsa, ExpSarsa, and Q-learning, respectively.

We do so to highlight that these methods are no longer only parameterized by

λ in our experiments—so are they by α0, ǫ0, and θ0.

55



Note that setting w > 1 in our parameterized learning problem intro-

duces generalization, and further, setting χ < 1 reduces the expressiveness of

the generalization scheme. Thus, in general, the approximate architectures

used are incapable of representing the optimal action value function Q∗. Even

with full expressiveness (χ = 1), if using generalization (w > 1), methods

from VF are not guaranteed to converge to the optimal action value function.

Further, even if these methods approximate the action value function well,

as defined through the Bellman error, greedy action selection might yet pick

suboptimal actions in regions of inaccurate approximation, resulting in low

long-term returns. The next chapter focuses on the manifestation of this phe-

nomenon in sequential decision making algorithms that have been applied to

Tetris (Bertsekas and Tsitsiklis, 1996), the popular computer video game.

A bulk of the research in RL with linear function approximation has

been in the context of prediction: estimating the value function of a fixed

policy (without policy improvement). An early result due to Sutton (1988)

establishes that TD(0) with linear function approximation converges when

the features used are linearly independent. Dayan (1992), and Dayan and

Sejnowski (1994), extend this result to TD(λ), ∀λ ∈ [0, 1], while Tsitsiklis

and Van Roy (1997) show convergence for the more realistic case of infinite

state spaces and linearly dependent features. Although most results for the

convergence of linear TD learning are for estimating values of the policy that

is used to gather experiences, the more general (and useful) case of off-policy

learning has also been addressed (Precup et al., 2001; Sutton et al., 2009).

The problems in learning approximate value functions on-line primarily

arise due to the nonstationarity and bias in the targets provided to the function

approximator (Thrun and Schwartz, 1993). The best theoretical guarantees
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for learning control policies with approximate schemes come with several re-

strictions. Most results are limited to linear function approximation schemes;

in addition some methods make demands such as Lipschitz continuity of the

policy being learned (Perkins and Precup, 2003) and favorable initial condi-

tions (Melo et al., 2008). Results tend to guarantee convergence of certain

updating schemes, but invariably lack desirable guarantees about the long-

term reward that will be accrued at convergence (Sabes, 1993; Perkins and

Pendrith, 2002; Perkins and Precup, 2003).

In recent work, Maei et al. (2010) introduce the Greedy-GQ algorithm,

which provably converges while making off-policy learning updates to a linear

function approximator. Unfortunately Greedy-GQ requires that the policy fol-

lowed while learning stay fixed, preventing the agent from actively exploring

based on the experiences it gathers. Thus, for example, ǫ-greedy exploration

with ǫ < 1 violates the conditions needed for Greedy-GQ to converge; our

informal experiments confirm that such a version of Greedy-GQ does not per-

form on par with the other methods we consider within the VF class. Thus,

we do not include Greedy-GQ in our extensive comparisons.

3.2.2 Policy Search (PS) Methods

We include three methods from the PS class in our study: the cross-

entropy method (CEM) (de Boer et al., 2005), the Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES) (Hansen, 2009), and a genetic algorithm

(GA). In addition we implement random weight guessing (RWG) to compare

as a baseline.

CEM is a general optimization algorithm that has been used effectively

as a policy search method on RL problems (Szita and Lőrincz, 2006). In our
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linear representation, the vector of weights constitute the policy parameters

to be adapted. The objective function, or “fitness” function, to be maximized

is the expected long-term reward accrued by following the greedy policy that

is derived from the weights. An iterative algorithm, CEM maintains and up-

dates a parameterized distribution over the multi-dimensional search space.

During each generation, a population of #pop points is sampled from the cur-

rent distribution. Each point is evaluated, and the µ points with the highest

fitness values are used to determine the distribution parameters for the next

generation. The update rule is such that with time, the variance of the dis-

tribution shrinks and its mean gravitates towards regions of the parameter

space with high fitness values. As is a common choice, in our experiments,

we use a Gaussian distribution to generate sample points. We initialize the

mean of this distribution to be the zero vector; along each dimension, the

variance is set to 1 (with no covariance terms). The update rule for Gaussian

distributions is such that at every generation, the updated distribution has as

its mean and variance, the sample mean and variance of the µ selected points

(independently for each parameter). In general the update can also depend on

the current distribution’s mean and variance; further, noise can be added to

the variance at each generation to prevent premature convergence (Szita and

Lőrincz, 2006). We do not implement these variations in our experiments as

they do not have an appreciable effect in our domain.

Like CEM, the CMA-ES method also employs the principle of updating

a distribution at each generation to maximize the likelihood of the µ points

with the highest fitness values being generated. However, unlike CEM, CMA-

ES tracks covariances across dimensions and actively monitors the search path

in the parameter space leading up to the current generation. Handling several
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aspects in the search procedure, CMA-ES is a fairly sophisticated optimization

technique (rather than furnish a detailed explanation here, we refer the reader

to descriptions from Hansen (2009) and Suttorp et al. (2009)). Yet, we find

it surprisingly straightforward to implement the algorithm based on existing

code, which automatically sets most of the method-specific parameters.3 We

set the initial distribution identically to the one set under CEM.

We implement GA in a manner akin to CEM and CMA-ES. On each

generation, we spawn and evaluate #pop policies; of these, the µ with the

highest fitness values are selected to generate the next population. Specifically

pairs are chosen uniformly at random from the selected µ and crossed over to

produce two offspring each. Policies are real-valued vectors over the space of

parameters searched. Each parameter, restricted to the interval [−1, 1], is rep-

resented using a 32-bit Gray-coded string. To implement crossover between

two individuals, the bit strings corresponding to each parameter are cut at

a random location and matched across individuals, thereby yielding two off-

spring. To implement mutation, individuals are picked from the population

with a small probability (0.05), and once picked, have each bit flipped with a

small probability (0.1). Both under CEM and GA, we set µ, the number of

policies selected every generation to seed the next, to 15% of the population

size #pop. Experiments suggest that these methods are not very sensitive

to µ values in this vicinity. CMA-ES uses a default value for µ depending on

#pop. Under all three methods, we return the policy that registers the highest

empirical performance (across all generations) as the output of learning.

In general, PS methods can work with a variety of representations.

An illustrative example is the PS framework implemented by Kohl and Stone

3See: http://www.lri.fr/~hansen/cmaes_inmatlab.html.
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(2004) to optimize the forward walking speed of an Aibo robot. The gait they

design has parameters describing trajectory positions and timings, which are

combined using manually designed sets of rules. In order to maintain a fair

comparison with the VF methods in this study, we enforce that the meth-

ods chosen from PS employ the same representation, under which real-valued

parameters are to be optimized (Section 3.1.3). In principle numerous evo-

lutionary and optimization techniques apply to this problem: among others,

amoeba, particle swarm optimization, hill climbing, simulated annealing, and

several variants of genetic and “estimation of distribution” algorithms. The

reason we choose CEM and CMA-ES in our comparison is due to the sev-

eral successes these methods have achieved in recent times (Szita and Lőrincz,

2006, 2007; Hansen et al., 2009), which partly owes to their mathematically-

principled derivation. We implement GA on the grounds that although it

optimizes exactly the same parameters, it employs a bit string-based internal

representation during its search, and thus is qualitatively different. Note that

all the methods described above only use the ranks among fitness values in a

generation to determine the population in the next generation. In this manner,

these methods differ from canonical policy gradient methods for RL (Sutton

et al., 2000; Baxter and Bartlett, 2001; Kakade, 2001), which rely on the gra-

dient of the value of a policy with respect to the policy parameters to identify

a direction for policy improvement. Since it is deterministic, our policy is not

analytically differentiable.

The three PS methods described above each take two parameters, listed

in Table 3.3. Since fitness is defined as the expected long-term reward accrued

by a policy, we estimate it by averaging the returns from #trials episodes.

The other method-specific parameter, #gens, is the number of generations
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Table 3.3: Summary of parameters used by methods from PS. The last column
shows the ranges over which we tune each parameter. The range shown for
#trials is used when the total number of episodes is 50,000, as in a majority
of our experiments (see Section 3.3). The range is scaled proportionately
with the total number of training episodes. Under RWG, #trials is the only
method-specific parameter.

Parameter Controls: Range

#trials Samples per fitness evaluation [25, 250]

#gens Generations [5, 50]

undertaken during the learning period. As a consequence, note that if the

total number of training episodes is U , the population size in each generation

is given by U
#trials×#gens

. Under RWG, we repeatedly generate policies, evaluate

each for #trials episodes, and retain the policy with the highest fitness. Thus,

#trials is its only method-specific parameter. Informal experimentation shows

that for RWG, it is more effective to sample policies based on a Gaussian

distribution for each parameter, rather than a uniform distribution.

3.3 Experiments and Results

In this section, we present experimental results. First, in Section 3.3.1,

we describe our experimental methodology. In Section 3.3.2, we perform com-

parisons within the VF and PS classes to pick representative methods from

each. These representative methods are further compared across a series of

experiments in Sections 3.3.3 through Sections 3.3.6 to ascertain their inter-

actions with parameters of the learning problem.
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3.3.1 Experimental Methodology

As defined in Section 3.1, a learning problem is fixed by setting s, p,

σ, χ, w, and a random seed. Additionally before conducting an experiment,

we fix U , the total number of learning episodes conducted. Recall from ta-

bles 3.2 and 3.3 that learning methods themselves have parameters: λ, α0, ǫ0,

θ0, #trials, and #gens. In some experiments, we study the learning perfor-

mance at fixed values of these method-specific parameters. However, note that

for a given method (say Sarsa), its best performance at different problem set-

tings will invariably be achieved under different settings of its method-specific

parameters (λ, α0, ǫ0, θ0). In response we conduct a search over the method-

specific parameter space (4-dimensional for Sarsa) to find a configuration that

yields the highest learned performance for a given problem instance and num-

ber of training episodes. The search procedure, illustrated schematically in

Figure 3.4 for a 2-dimensional parameter space, involves evaluating a number

of randomly generated points in the space and iteratively halving the search

volume, always retaining the region with the highest performance density. The

procedure is necessarily inexact due to stochasticity in evaluations, and since

performance might not be smoothly varying over the region searched. Yet in

practice we find that with sufficient averaging (2000 points per generation)

and enough splits (5 times the number of dimensions searched), the procedure

yields fairly consistent results.

We suffix the method-specific parameter configurations returned by the

search “∗” to indicate that they have been optimized for some task setting

and number of training episodes. Thus, Sarsa∗ refers to an instance of Sarsa

identified through the search procedure, its parameters being λ∗, α∗
0, ǫ∗0, and

θ∗0. Under Sarsa(λ)∗, λ is fixed, and only α0, ǫ0, and θ0 are optimized.
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(d) Final solution

Figure 3.4: Illustration of a search over two method-specific parameters, p1 and
p2, to optimize the performance achieved after learning for a given number of
episodes on a given task. Initial ranges for each parameter are specified as
inputs to the search. To begin, points are sampled uniformly from within the
specified ranges. At each sampled point, a single learning run is conducted
and the performance of the final policy it returns evaluated. Subsequently a
split is performed to halve the search volume, retaining an axis-aligned region
with the highest density of performance among all such regions. The process is
repeated several times: with each split, attention is focused on a smaller part
of the search space empirically found to contain the most successful learning
runs. Note that at each stage, any parameter could lead to the best split (p2,
p1, and p1 at stages 1, 2, 3, respectively, in the illustration). At termination,
the midpoint of the surviving volume is returned.
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For clarity, below we enumerate the sequence of steps undertaken in

each of our experiments.

1. We fix learning problem parameters s, p, σ, χ, and w.

2. We fix the total number of training episodes U .

3. Either we manually specify an instance of a learning method, or search

for one, as described above, to maximize performance for the problem

parameters and number of training episodes set in steps 1 and 2.

4. With the chosen method instance, we conduct at least 1,000 independent

trials of learning runs. Each trial is fixed by setting a different random

seed, which can generate additional seeds for the learning problem (to

determine features and rewards) and the learning method (to explore,

sample, etc.).

5. Each learning trial above results in a fixed policy. We estimate the per-

formance of this policy through 1,000 Monte Carlo samples. (Although

sometimes a policy can be evaluated exactly through dynamic program-

ming, the presence of state aliasing and generalization make it necessary

to estimate performance through sampling.) Note that methods from

VF and PS are both evaluated based on a greedy policy with respect to

the learned weights.

6. Since all the rewards in our parameterized learning problem are non-

negative, we find that problems with larger state spaces invariably lead

to policies with higher absolute rewards. To facilitate meaningful com-

parison across problems with different parameter settings, we scale the
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performance of a policy such that 0 corresponds to the value, under the

same settings, of a random policy, and 1 to that of an optimal policy.

In our graphs, we plot this normalized performance measure. Note that

our careful design of the task MDP allows us to compute the perfor-

mance values of random and optimal policies at each setting, even if

the settings themselves might preclude the learning of optimal behavior

by an agent. Policies that are “worse than random” have normalized

performance values less than zero.

7. We report the normalized performance achieved (over all trials), along

with one standard error (typically these are small and sometimes difficult

to distinguish visually in our graphs). Note that standard errors do

not apply to the results of our parameter search, such as to find λ∗

under some problem instance. For any task instance, the method-specific

parameter search is conducted exactly once.

In summary: the steps outlined above aim to provide each method the

best chance of success for a given problem instance and training time, and

then to fairly evaluate and compare competing methods. Having specified our

methodology, we proceed to describe the results from our experiments.

3.3.2 Picking Representative Methods, Setting Training Period

The first phase in our experiments is to pick representative learning

methods from the VF and PS classes. We now present comparisons among

methods from these classes (sections 3.3.2.1 and 3.3.2.2). We also describe

how the number of training episodes for learning runs is set in our experiments

(Section 3.3.2.3).
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3.3.2.1 Picking a Representative Method from VF

In comparing methods from the VF class, we observe that the method-

specific parameter with the most dominant effect on performance is the setting

of initial weights, θ0. For illustration consider Figure 3.5. In the experiments

reported therein, we compare Sarsa(0), ExpSarsa(0), and Q-learning(0). For

all these methods, we find that a broad range of the parameters α0 and ǫ0

yield policies with high performance; we manually pick favorable settings from

among these ranges. Q-learning(0) and Sarsa(0) use α0 = 0.8, ǫ0 = 0.8, while

ExpSarsa(0) uses α0 = 0.8, ǫ0 = 0.2. The total number of training episodes U

is set to 50,000.

The three methods show qualitatively similar patterns in performance

as θ0 is varied. In Figure 3.5(a), we find that all of them achieve near-optimal

behavior at large settings of θ0, directly reflecting the merits of optimistic
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(b) χ = 1, w = 5.
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(c) χ = 0.6, w = 5.

Figure 3.5: [s = 10, p = 0.2, σ = 0.] Plots showing the effect of the initial
weights θ0 on the performance of on-line value function-based methods. Note
the irregular spacing of points on the x axis. Plot (a) corresponds to an exact
tabular representation with no generalization. Generalization is introduced in
(b) by increasing w; additionally the expressiveness χ is reduced in (c).
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initialization (Even-Dar and Mansour, 2001). Action values tend to lie in

the range [0, 20]; correspondingly we notice that “pessimistic” initialization of

weights to lower values leads to noticeable degradation in performance. Note

that the settings in Figure 3.5(a) correspond to a fully expressive tabular repre-

sentation with no generalization. As we introduce generalization by increasing

w to 5 (Figure3.5(b)), we observe a significant change in trend: both very high

and very low initial weights lead to a marked decrease in the final performance.

This trend persists as the expressiveness χ is reduced (Figure 3.5(c)).

In figures 3.5(b) and 3.5(c), it is apparent that ExpSarsa(0) falls below

Sarsa(0) and Q-learning(0) at most settings of θ0. We posit that since it per-

forms a weighted average over all next state-action values, updates under Exp-

Sarsa(0) are likely to propagate error from state-actions that are encountered

less frequently. For a perfect tabular representation, such as in Figure 3.5(a),

van Seijen et al. (2009) prove that ExpSarsa(0) updates have the same bias,

but a lower variance, compared to updates under Sarsa(0). However, our re-

sults appear to suggest that when generalization is present (as w is increased),

and learning starts with a stronger initial bias (by setting θ0 farther away from

the true action values), ExpSarsa(0) suffers more from the error in its updates.

Extending this argument, we could expect ExpSarsa, based on its learning up-

date, to perform worse at high values of α0 and ǫ0 when generalization is used.

Shortly we present the evidence for such a phenomenon.

We design three problem instances to further investigate differences be-

tween Sarsa, ExpSarsa, and Q-learning. Table 3.4 summarizes these problem

instances. Instance I1 corresponds to a fully-expressive tabular representation

with no generalization, under which all three methods enjoy provable conver-

gence guarantees. Expressiveness is reduced and generalization introduced in
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Table 3.4: Parameter settings for illustrative problem instances I1, I2, and I3.

Problem instance s p χ w σ

I1 10 0.2 1 1 0

I2 10 0.2 0.5 7 0

I3 10 0.2 1 1 4

I2. While I1 and I2 are both devoid of state noise, I3 is identical to I1 except

for its higher setting of σ.

Figure 3.6 plots the performance of Sarsa∗, ExpSarsa∗ and Q-learning∗

on I1, I2, and I3. Notice that under I1, all the methods achieve near-optimal

behavior at the end of 50,000 episodes of training. While optimal behavior is

not to be expected under I2, it becomes apparent that ExpSarsa∗ trails the

other methods in this problem (p-value < 10−4).4 This finding parallels the

inference we draw from Figure 3.5: generalization adversely affects ExpSarsa,

as its learning updates propagate more bias than either Sarsa or Q-learning.

Recall that I3 is identical to I1 except that it features state noise. Thus,

when compared with I1, we observe that all three methods suffer a significant

drop in performance under I3. Yet, the introduction of state noise does not

appear to disadvantage any of the methods more than the others. Table 3.5

reports the optimized method-specific parameters found by our search strategy

under the three problem instances. From the table, we see that for all three

methods, the values of λ∗ found under I3 are significantly higher than the

4Throughout this thesis, p-values are reported based on an unpaired two-tailed t-test.
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Figure 3.6: Comparison of the performance of different VF methods on the
three problem instances from Table 3.4. Under each instance, and for each
of the methods—Sarsa, Q-learning, and ExpSarsa—a systematic search (see
Section 3.3.1) identifies the method-specific parameter settings (α0, ǫ0, θ0, and
λ) yielding the highest performance after 50,000 episodes of training. The
methods are marked “∗” as they are run under these optimized parameter
settings.

values found under I1 and I2. We may infer that reducing the reliance on

bootstrapped estimates (by setting high values of λ) counteracts the error

introduced in TD updates due to state noise. We also observe from Table 3.5

that the θ∗0 values found by our search strategy for each method and problem

are as one may expect based on Figure 3.5. These results affirm the reliability

of our search strategy.

Predominantly we find that the VF methods compared above are not

very sensitive to the learning rate parameter α0 and the exploration parameter

ǫ0 within the ranges in which we optimize them: [0.1, 1] for both parameters.

The only significant exception, to which we alluded earlier, is the case of Ex-

pSarsa under I2, which strongly favors lower α0 and ǫ0 settings. For reference

we provide graphs plotting the performance of VF methods as a function of

α0 and ǫ0 in Appendix A.1.
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Table 3.5: For each of three methods—Sarsa, Q-learning, and ExpSarsa—
the method-specific parameters yielding the highest performance (at 50,000
episodes of training), under problem instances I1, I2 and I3. Figures are
rounded to one place of decimal.

Problem Sarsa∗ Q-learning∗ ExpSarsa∗

instance λ∗ α∗
0 ǫ∗0 θ∗0 λ∗ α∗

0 ǫ∗0 θ∗0 λ∗ α∗
0 ǫ∗0 θ∗0

I1 0.4 0.4 0.5 9.0 0.4 0.4 0.7 9.4 0.4 0.4 0.5 3.9

I2 0.2 0.6 0.8 0.4 0.2 0.7 0.8 0.4 0.2 1.0 0.1 0.3

I3 0.8 0.5 0.8 5.6 0.8 0.6 0.7 8.6 0.8 0.5 0.5 7.2

In summary: we find that Sarsa and Q-learning (albeit with a “näıve”

implementation of eligibility traces) perform equally well on all our exper-

iments; both methods outperform ExpSarsa on problems in which general-

ization is employed. Arguing that Sarsa and Q-learning would continue to

register quite similar performance in our subsequent experiments (see sec-

tions 3.3.3 through 3.3.6), we break ties arbitrarily to pick Sarsa as a repre-

sentative method from the VF class.

3.3.2.2 Picking a Representative Method from PS

We reuse problem instances I1, I2, and I3 to compare methods from the

PS class. As noted in Section 3.2.2, two parameters have to be set for methods

from this class: #trials and #gens. Optimizing over these parameters, we

plot the performance of CEM∗, CMA-ES∗, GA∗ and RWG∗ in Figure 3.7.

Unlike with the VF class, the ordering among the methods from PS stays

consistent across the problem instances. In all cases, CEM∗ and CMA-ES∗
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Figure 3.7: Comparison of the performance of different PS methods on the
three problem instances from Table 3.4. Methods are marked “∗” to de-
note that method-specific parameters—#trials and #gens (except #gens for
RWG)—have been optimized for each task instance.

outperform GA∗ and RWG∗ (p-value < 10−4). However, CEM∗ and CMA-ES∗

themselves register virtually identical performance: they cannot be separated

with statistical significance (p-value < 0.05) on instances I1 and I3, although

on I2, CMA-ES∗ emerges the winner (p-value < 0.005).

It is worth noting that whereas all the VF methods in our study achieve

their highest performance on instance I1, all the methods from PS achieve

theirs on I2. 50,000 episodes is a relatively short duration of training for PS

methods, which do not make effective use of individual transition samples, but

rather, aggregate them in evaluating fitness. Greater generalization across the

state space (as in I2, where w = 5) enables them to learn more quickly. In

Section 3.3.6, we observe that if optimized for 500,000 episodes instead, PS

methods do perform better at w = 1.

The best parameter settings found for each PS method, under the three

chosen problem instances, are listed in Table 3.6. Although we search over

#trials and #gens, note that thereby we implicitly set up a search over the

population size #pop used in every generation. This is a consequence of the
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Table 3.6: For policy search methods, the method-specific parameters yielding
the highest performance (at 50,000 episodes of training) for problem instances
I1, I2, and I3. Figures are rounded to the nearest integer. Under CEM,
CMA-ES, and GA, the parameters searched are #gens (“#g”) and #trials
(“#t”). These parameters automatically fix the population size (“#p”), which
is suffixed with “D” to denote that it is implicitly derived. Under RWG, only
#t is optimized; #g is implicitly derived. Derived parameters values are shown
for reference.

Problem CEM∗ CMA-ES∗ GA∗ RWG∗

instance #g∗ #t∗ #p∗D #g∗ #t∗ #p∗D #g∗ #t∗ #p∗D #g∗D #t∗

I1 17 53 55 23 51 42 22 14 162 120 416

I2 12 117 35 30 84 20 22 19 120 241 207

I3 16 52 60 16 131 24 14 46 78 288 174

relation that #trials × #gens × #pop = U , the total number of training

episodes. In Table 3.6, we see that CMA-ES∗ typically has a smaller population

size than CEM∗, which itself has a smaller population size than GA∗.

Appendix A.2 displays the performance of the various PS methods as

a function of their input parameters. We observe a noticeable variance in

the performance of all the methods over the parameter ranges considered.

While CMA-ES∗ and CEM∗ have comparable performance on all three problem

instances (I1, I2, and I3), it is apparent that CMA-ES is more robust to

parameter settings; that is, it registers a higher performance over a wider range

of settings. This makes CMA-ES overall a slightly more favorable candidate

than CEM to represent the class of PS methods. Therefore, we select CMA-ES

for our further experiments.

72



3.3.2.3 Setting the Training Period

Even if the problems used in our experiments are themselves reason-

ably small, the extensive search and evaluation processes incur a significant

amount of time during each experiment. One factor that plays a major role in

determining the experimental running time is U , the total number of training

episodes in each run. Setting U = 50, 000, as we have in the experiments re-

ported thus far, it takes us roughly 1-2 hours to complete a single search and

evaluation procedure, such as, for example, identifying Sarsa∗ and evaluating

it under I2. In this duration, we have roughly 200 processes running in parallel

on a computing cluster with 2GHz CPUs. In general we do not find it feasi-

ble to conduct extensive experimentation under higher values of U (although

we do undertake such investigation under some interesting cases, such as in

Section 3.3.6).

To gauge the implications of consistently setting U = 50, 000 in our sub-

sequent comparisons, we run a single suite of experiments at multiple settings

of U . Figure 3.8 shows the performance of Sarsa∗, Q-learning∗, ExpSarsa∗,

CEM∗, and CMA-ES∗; under problem instances I1, I2, and I3; optimized for

various settings of U . As expected we find that all the methods improve their

performance with longer training periods. The gains from a longer training

period are more marked among the methods from PS, as in general, methods

from VF appear to plateau within a few thousands of episodes.

We observe from Figure 3.8 that under all problem instances, the trend

within methods in VF remains roughly the same at all values of U : under

I1, the methods all achieve comparable performance; under I2, ExpSarsa∗

performs poorest; and under I3, Q-learning∗. Likewise no outright winner

among CEM∗ and CMA-ES∗ emerges in any of the instances, for any setting
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Figure 3.8: Performance of different learning methods as the number of train-
ing episodes U is varied. Each plot corresponds to a problem instance from
Table 3.4. Note the irregular spacing of points on the x axis. At each point,
the best performance achieved by three learning methods from VF (Sarsa∗,
Q-learning∗, and ExpSarsa∗) and two from PS (CEM∗, CMA-ES∗) is shown
(key specified in plot (a)).
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of U . Therefore, we may conclude that our choice of picking Sarsa∗ and CMA-

ES∗ for further comparisons is justified. However, the choice of U does affect

comparisons between Sarsa∗ and CMA-ES∗ themselves. Notice that up to

25,000 episodes, Sarsa∗ consistently outperforms CMA-ES∗. Yet, from 50,000

episodes onward, CMA-ES∗ overtakes Sarsa∗ on I2 (p-value < 0.008). Under I1

and I3, CMA-ES∗ narrows the margin with Sarsa∗ at U = 1, 000, 000, although

it does not reach comparable performance.

The trends in Figure 3.8 inform our interpretation of the results to

follow in the remainder of this section. In general we expect that Sarsa will

not significantly improve its performance beyond 50,000 episodes of training,

whereas CMA-ES consistently improves at least up to 1,000,000 episodes. Even

so, in several problem instances, we find that CMA-ES outperforms Sarsa even

at 50,000 episodes, validating this choice of U as a meaningful comparison point

between the methods.

In summary: our “within class” comparisons in VF and PS provide

convincing evidence that Sarsa and CMA-ES are respectively the best meth-

ods to represent these classes when being evaluated within our parameterized

learning problem (except that Q-learning performs as well as Sarsa in VF). We

now proceed to compare these methods as relevant problem parameters are

varied. In each comparison (excepting cases in Section 3.3.6), the normalized

performance of these methods after 50,000 episodes of training is considered

while evaluating them.

3.3.3 Effect of Problem Size and Stochasticity

In our first set of “VF versus PS” experiments, we evaluate our learn-

ing methods as the size of the state space and the stochasticity of transitions
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in the task MDP are varied. Conjunctions of three settings of s (6, 10, 14)

and three settings of p (0, 0.2, 0.4) are compared; results are plotted in Fig-

ure 3.9. With complete expressiveness (χ = 1), no generalization (w = 1), and

full observability (σ = 0), all nine cases are akin to learning with a classical

“tabular” representation.

The most striking observation from the plots in Figure 3.9 is the dis-

parity in the learning rates of Sarsa∗ and CMA-ES∗. In all nine cases, Sarsa∗

reaches near-optimal behavior, and typically so within a few thousands of

episodes. At 50,000 episodes of training, in none of the problems does CMA-

ES∗ match the performance of Sarsa∗ (p-value < 10−4). The gap between

the methods is to be expected, as by making learning updates based on ev-

ery transition, VF methods make more efficient use of experience for learning

than PS methods do. Note that Sarsa is still on-line and model-free; we could

expect model-based methods (Sutton, 1990) and batch methods (Lin, 1992;

Lagoudakis and Parr, 2003) to further improve sample-efficiency.

Under both Sarsa∗ and CMA-ES∗, we notice a decrease in performance

as s is increased. This decrease is more marked for CMA-ES∗, as the dimen-

sionality of the parameter space it searches increases quadratically with s. The

effect of the stochasticity parameter p in widening the gap between Sarsa∗ and

CMA-ES∗ is also significant. The error bars plotted in the graphs show one

standard deviation in performance (in all other graphs in the chapter, one

standard error is shown). We observe that for both methods, the variance in

performance increases as p is increased, and further, that for any given prob-

lem, CMA-ES∗ displays a slightly higher variance than Sarsa∗. As described

earlier in Section 3.1, note that even at p = 0, there is stochasticity in the

task, as the start state for each episode is picked uniformly at random.
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Figure 3.9: [χ = 1, w = 1, σ = 0.] Sarsa∗ and CMA-ES∗ (optimized for 50,000
episodes of training) compared at different settings of s and p. Unlike other
plots in this section, in these learning curves, we plot one standard deviation
in the performance (instead of one standard error).
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Recall that the method-specific parameters of Sarsa∗ and CMA-ES∗

have been optimized for each problem and training period. While we do not

notice any significant patterns among the method-specific parameters thereby

found under Sarsa∗, we note that under CMA-ES∗, #trials∗ gets consistently

higher as p is increased. For example, at s = 10, the settings of #trials∗ found

by our search procedure are 44, 70, and 166 for p = 0, p = 0.2, and p = 0.4,

respectively. In other words, CMA-ES∗ benefits from more evaluation trials

in evaluating fitness values as the task stochasticity increases. In Chapter 5,

we consider how the total number of trials in a generation of CMA-ES (or

other similar PS methods) can be minimized by allocating trials intelligently

to different population members, rather than using the uniform allocation

strategy employed here.

The primary inference from the set of experiments above is that Sarsa

has significant advantages both in terms of the performance achieved and the

variance in performance as problem size and stochasticity are increased. Not

only is CMA-ES slower to learn, it demands better tuning of #trials across

different problem instances. To characterize the reasons underlying these ob-

servations, we turn to Cobb (1992), who separates the inductive biases in a

reinforcement learner into “language” and “procedural” biases. The former

corresponds to the representation used by the learner, which in this study, we

have fixed to be the same for the methods compared. VF and PS methods

are essentially separated by their procedural bias: how they updates weights

in the representation. The language bias in the problem instances above—

χ = 1, w = 1, σ = 0—strongly favors the procedural bias of Sarsa. How would

the methods fare if the language bias is changed? The experiments to follow

examine the effects of state noise, generalization, and expressiveness.
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3.3.4 Effect of State Aliasing

In our second set of experiments, we study the effect of state aliasing by

increasing σ. In so doing, we notice a conjunctive relationship between σ and

w, the generalization width. In response we conduct experiments with three

settings of σ (0, 2, 4) and three settings of w (1, 5, 9). Results are plotted in

Figure 3.10: in each graph therein, the performance of Sarsa(λ)∗ is plotted at

six values of λ (0, 0.2, 0.4, 0.6, 0.8, 1). The performance of CMA-ES∗ (which

does not depend on λ) is also shown.

In general the best memoryless policies for Partially Observable MDPs

(POMDPs) can be stochastic (Singh et al., 1994). Perkins and Pendrith (2002)

show that in order to converge in POMDPs, it is necessary for methods such

as Sarsa and Q-learning to follow policies that are continuous in the action

values, unlike the ǫ-greedy policies used by the VF methods in our experi-

ments. However, we do not observe any divergent behavior for Sarsa(λ) in the

experiments reported here.

We notice that when σ = 0 and w = 1, the effect of λ on the perfor-

mance of Sarsa(λ)∗ is not very pronounced. As soon as either σ or w is in-

creased, intermediate values of λ predominantly yield the highest performance

for Sarsa(λ)∗. These results echo the findings of Loch and Singh (1998), who

demonstrate that deterministic policies learned using Sarsa(λ) with ample ex-

ploration perform quite well on a suite of benchmark POMDPs. Key to their

success is the high values of λ used (between 0.8 and 0.975), which weight true

returns from actions much higher than estimated values.

As the generalization width w is increased, notice that there is no longer

a single winner between Sarsa∗ and CMA-ES∗: VF methods no longer domi-

nate PS methods completely when state aliasing occurs. An intriguing trend
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Figure 3.10: [s = 10, p = 0.2, χ = 1.] Sarsa(λ)∗ and CMA-ES∗ compared at
different settings of σ and w. Under each plot, six regularly spaced values of
λ are chosen and the corresponding Sarsa(λ)∗ evaluated. CMA-ES∗ appears
as a line, as it does not depend on λ.
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that becomes apparent from Figure 3.10 is that the performance of Sarsa(λ)∗

is not monotonic with respect to w: for most settings of σ and λ, the high-

est performance is achieved at w = 1, followed by w = 9, with the lowest

performance at w = 5. In Section 3.3.6, we find further evidence of such

anomalous patterns in the performance of Sarsa as w is varied. Interestingly

CMA-ES∗ registers its highest performance, for any fixed σ, at w = 5 or w = 9.

This trend arises as 50,000 episodes is a relatively short training duration for

PS methods in this domain; generalization promotes quick initial learning.

Experiments in Section 3.3.6 show that with more episodes of training, the

performance of CMA-ES under w = 1 begins to catch up with its performance

at higher settings of w.

A recent variant of Sarsa(λ) applied to POMDPs is SarsaLandmark

(James and Singh, 2009), in which λ is set to 0 (full bootstrapping) when

special “landmark” states (which are perfectly observable) are visited, but λ

remains 1 at all other times (Monte Carlo). SarsaLandmark is not directly

applicable in our domain as the agent receives no special information about

landmark states. In recent work, Downey and Sanner (2010) propose a method

to adaptively tune λ while learning. Formally derived under a Bayesian frame-

work, their algorithm—Temporal Difference Bayesian Model Averaging (TD-

BMA)—is shown to outperform Sarsa(λ) for any fixed value of λ on illus-

trative grid-world tasks. Our results highlight that tuning λ is of particular

relevance in problems with state noise and generalization; our parameterized

learning problem therefore becomes an ideal testbed for evaluating adaptive

approaches.

In Table 3.7, we report the best initial weights, θ∗0, found for Sarsa(λ)∗,

under various settings of λ, σ, and w. The most noticeable pattern from the
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Table 3.7: [s = 10, p = 0.2, χ = 1.] θ∗0 (initial weights under Sarsa(λ)∗) for
different problem instances. Each cell in the table corresponds to a setting of
σ, w (problem parameters), and λ (Sarsa parameter); entries correspond to
the value of θ0 found by searching for Sarsa(λ)∗. Note that each search is only
performed once.

w
λ = 0 λ = 0.4 λ = 1.0

σ = 0 σ = 2 σ = 4 σ = 0 σ = 2 σ = 4 σ = 0 σ = 2 σ = 4

1 9.5 7.3 5.9 8.3 6.9 7.5 8.1 8.3 6.0

5 -0.5 -0.1 -0.4 0 -0.5 -1.2 2.0 1.8 2.2

9 0.1 -0.4 -0.1 0.1 0.3 -1.3 -0.1 -0.1 0

table is the favor for lower settings of θ0 as w is increased. The best initial

weights do not appear to change much as state noise and eligibility traces are

varied.

3.3.5 Effect of Expressiveness of Generalization Scheme

Continuing our study, we conduct experiments to gauge the role of

the expressiveness parameter χ in determining the performance of learning

methods. Again, we find no single winner among Sarsa∗ and CMA-ES∗ as χ

is varied. Results in Figure 3.11 are obtained under σ = 0 and w = 5; the

qualitative nature of the results does not change as σ and w are varied.

In the learning curve in Figure 3.11(a), under χ = 1 (which allows

the optimal action value function to be represented), Sarsa∗ displays quick

learning to reach a normalized performance close to 0.9, whereas CMA-ES∗

fails to achieve comparable performance after 50,000 episodes. By contrast,
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Figure 3.11: [s = 10, p = 0.2, w = 5, σ = 0.] Plots (a) and (b) show learning
curves of Sarsa(λ)∗ and CMA-ES∗ at different values of χ. Plot (c) shows the
performance achieved after 50,000 episodes of training at different values of χ.

at χ = 0.4 (Figure 3.11(b)), we notice that Sarsa∗ suffers a dramatic drop in

performance, plateauing at a normalized performance value close to 0.7. At

the same setting of χ, CMA-ES∗ overtakes the learning curve of Sarsa∗ and

reaches a significantly higher performance at 50,000 episodes (p-value < 10−4).

As χ is decreased, the representation for the value function and policy

becomes increasingly handicapped. In Figure 3.11(c), we observe that both

under Sarsa and CMA-ES, the performance achieved after 50,000 episodes of

training decreases monotonically as χ is reduced. However, of the two methods,

Sarsa suffers the more significant drop in performance as χ is reduced. Whereas

Sarsa outperforms CMA-ES for χ ≥ 0.7 (p-value < 10−4), the opposite is true

when χ ≤ 0.5 (p-value < 10−4). We do not observe any striking trends in the

method-specific parameters of Sarsa∗ and CMA-ES∗ as χ is varied.

To the best of our knowledge, prior literature does not compare meth-

ods from VF and PS while constraining them to use the same representation.

Our finding that CMA-ES is able to achieve good performance even under
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a representation that is extremely impoverished for approximating the value

function suggests that it is a promising candidate in a large number of real-

world domains in which feature engineering and representations are deficient.

We posit that like the example constructed by Baxter and Bartlett (2001),

many of the cases with χ < 1 allow for the representation of high-reward poli-

cies, but only admit poor approximations of the action value function. Notice

that we do not have any irrelevant features in our learning problem: in the

future it would be useful to incorporate such a setting, which is often en-

countered in practice. Non-linear function approximation would be an equally

important avenue to explore.

3.3.6 Effect of Generalization Width

In Section 3.3.4, we noted that the “width of generalization” parameter

w plays a role in determining the relative order between Sarsa and CMA-

ES at different values of σ. In examining the effect of w more closely, we

notice that although its effect on CMA-ES is fairly regular, its interaction

with Sarsa is less predictable. Figure 3.12 shows the normalized performance

of these methods at settings of w varying from 1 (no generalization) to 15 (very

broad generalization). The three plots in the figure correspond to progressively

increasing settings for U , the total number of training episodes.

When trained for 50,000 training episodes, CMA-ES∗ performs its best

at w = 7 (not statistically significant in dominating w = 5 and 9 at p-value

< 0.05, but statistically significant in dominating w = 1, 3, 11, 13, and 15 at p-

value < 0.02). However, after 500,000 episodes of training, CMA-ES∗ registers

its best performance at w = 3 (indistinguishable from w = 5, 7, and 9 at

p-value < 0.05, but dominating w = 1, 11, 13, and 15 at p-value < 10−4).
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Figure 3.12: [s = 10, p = 0.2, χ = 1, σ = 2.] Performance of Sarsa∗ and
CMA-ES∗ at different values of w, optimized for (a) 50,000, (b) 500,000, and
(c) 5,000,000 training episodes.

It is apparent from Figure 3.12(c) that CMA-ES continues to improve its

performance even at 5,000,000 episodes of training, with its performance at

w = 1 catching up with the plateau visible across w = 3, 5, 7, and 9. We

ascribe the pattern in the performance of CMA-ES with respect to w and U

to the benefits of generalization early during the search—in quickly identifying

the most promising actions in localized regions of the state space. It is not

surprising that both for Sarsa and CMA-ES, the performance begins to drop

sharply for w > 9. Since in this problem, s = 10, some non-terminal cells in

the task MDP necessarily get activated by all the tiles present if the tile width

exceeds 9. Indeed beyond w = 19 (not shown in figure), no two cells in the

MDP remain distinguishable.

Interestingly Sarsa∗ presents a less regular pattern in performance as w

is varied, as evinced by Figure 3.12(a). We find that Sarsa∗ is most effective at

w = 1, but its performance suffers a dip until w = 5; again a rise until w = 9;

before monotonically decreasing again. 50,000 episodes is a fairly long duration
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by VF standards, as apparent from several learning curves shown in the chapter

(for instance, see Figure 3.11(a)). It is clear that the irregular performance

pattern of Sarsa∗ is not an artefact of training time, as the pattern essentially

persists up to 5,000,000 episodes of training (figures 3.12(b) and 3.12(c)). Also,

notice the small error bars in the plots: the pattern is systematic.

We investigate whether the irregular pattern in the performance of

Sarsa persists as the problem size is increased beyond s = 10. Figure 3.13 (see

top row) indeed affirms that at s = 14 and s = 18, too, multiple local minima

emerge in the performance as w is varied. Curiously, under all three settings of

s, we observe that as w is varied, a correlation exists—up to w < s—between

the performance of Sarsa∗ and λ∗, the eligibility trace parameter optimized for

each problem setting. The bottom row in Figure 3.13 shows the values of λ∗

under each setting. Observe that for w < s the local maxima and minima in

λ∗ predominantly coincide with those of the normalized performance (recall

that for w ≥ s, states necessarily become aliased, and so it is not surprising

to find no apparent correlation between the performance and λ∗).

At present we do not have a conclusive explanation for the phenomenon

described above. Since CMA-ES shows predictable variation with w, we sur-

mise that the variation shown by Sarsa ultimately arises from its on-line up-

dates to the value function. We speculate that “edge effects” in our tiling

scheme, whereby states on the periphery of the grid have fewer neighbors,

might induce irregular patterns in the trajectory taken by the value function.

Nevertheless, closer inspection would be necessary to fully explain such behav-

ior, which at present remains rather intriguing.

In the context of kernel-based methods, Ormoneit and Sen (2002) dis-

cuss the “bias-variance tradeoff” induced by generalization widths. Munos
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Figure 3.13: [p = 0.2, χ = 1, σ = 2.] Analysis of Sarsa∗ as s (columns)
and w (x axis in each plot) are varied. The top row shows the normalized
performance achieved at each setting; correspondingly the bottom row shows
λ∗—the value of λ found by searching for Sarsa∗—for the same settings.

and Moore (2002), and Sherstov and Stone (2005), devise schemes for setting

different generalization widths in different parts of the state space. Our pa-

rameterized learning problem becomes a valuable testbed to evaluate this line

of work, which our results hint needs attention.
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3.4 Discussion

The extensive suite of experiments reported in Section 3.3 uncovers

several interesting patterns characterizing the interaction between problem pa-

rameters and method-specific parameters in the context of sequential decision

making from experience. Overall, it is clear that there is no easy “one-size-fits-

all” solution to the problem of picking or devising learning methods to work in

tandem with different representational settings. In this section, we highlight

some of the main questions brought to relevance by our study.

Generalization. Our results consistently indicate that generalization signifi-

cantly alters the landscape while evaluating learning algorithms, in particular

those from VF. For instance, Section 3.3.2 presents conclusive evidence that

ExpSarsa suffers more severely due to the bias introduced by generalization

than either Sarsa or Q-learning. Section 3.3.6 brings into focus an irregular—

yet systematic—pattern in the performance of Sarsa as the tile width w is in-

creased. Interestingly this pattern is correlated with the best eligibility trace

settings. To the best of our knowledge, generalization has not been given

explicit attention in the context of PS methods. Our results show that gener-

alization can benefit PS methods, too, when the training duration is short.

As motivated in Chapter 1, generalization is necessary in nearly ev-

ery practical application of RL. Thus, the importance of understanding its

effects on algorithms cannot be understated. In future work, the experimental

framework introduced here can be used to probe more deeply into this subject.

Optimistic Initialization. Of special significance among the ramifications

of learning with generalization is its effect on the common practice of opti-
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mistic initialization. Optimistic initialization (of action values) has long been

employed as a mechanism to promote exploration. In the context of finite

MDPs, elegant proofs of convergence of VF methods have been derived on

the basis of optimistic initial values (Even-Dar and Mansour, 2001; Szita and

Lőrincz, 2008). Grześ and Kudenko (2009) provide experimental justification,

again on finite (or suitably discretized) MDPs, for schemes that refine the

basic optimistic initialization framework.

Our experiments in Section 3.3.2 convey that optimistic initialization

is only effective in the fully tabular case: for w > 1, the error introduced into

TD updates by high action values invariably degrades the performance of VF

methods. A question that arises in response is how we may initialize action

values when learning with generalization. Research in this direction appears

particularly relevant to algorithms that are guaranteed to reach fixed points

under linear function approximation (Perkins and Precup, 2003; Sutton et al.,

2009; Maei et al., 2010). Which reasonable strategies for setting initial weights

would profit such methods the most?

Meta-learning and Algorithm Portfolio Design. “Meta-learning” (Vi-

lalta and Drissi, 2002) is the enterprise of (1) characterizing the strengths and

weaknesses of learning methods vis-à-vis problem characteristics, with the in-

tent of (2) designing adaptive schemes that, given a problem, apply the method

best suited for it (Brodley, 1995; Pfahringer et al., 2000). Similarly “algorithm

portfolio” methods (Gomes and Selman, 2001) are those that rely on apply-

ing several candidate algorithms to a problem (either in series or in parallel)

before identifying the most effective choice or combination. While existing

work on the topics of meta-learning and algorithm portfolio design has largely
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been in the context of supervised learning and search (Leyton-Brown et al.,

2003; Xu et al., 2008), the work described in this chapter is motivated by the

meta-learning problem within sequential decision making.

Our experiments clearly show that there is a need for meta-learning

within RL. For example, Figure 3.11(c) succinctly conveys that Sarsa outper-

forms CMA-ES when expressiveness in the generalization scheme is above a

certain threshold, but that the opposite is true below the threshold. Indeed

our experiments unearth several other strengths and weaknesses of methods

within the VF and PS classes. Our results are validated on a parameterized

learning problem that is specifically designed to implement a methodology

for meta-learning within RL. We believe that this methodology can support

the eventual development of effective algorithm portfolio designs for sequen-

tial decision making, which currently appears a rather formidable undertaking.

Automatic Parameter Tuning. While meta-learning operates at the macro

scale of choosing between methods, our experiments also underscore the gains

obtained at a micro scale by tuning method-specific parameters. In this work,

we have employed a search technique to optimize method-specific parameters

such as learning rates and population sizes. In practice an agent would need

to automatically tune these parameters while learning. In the context of PS

methods, it is worth repeating that we find existing code for CMA-ES quite

adept in automatically setting and tuning several internal parameters in the

algorithm. For VF methods, techniques for tuning learning rates (Sutton and

Singh, 1994; George and Powell, 2006; Hutter and Legg, 2008) and eligibility

traces (Downey and Sanner, 2010) have predominantly been derived and vali-

dated for the case of finite MDPs. Our parameterized learning problem serves
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as an excellent mechanism for prototyping adaptive schemes for more realistic

settings involving state aliasing and generalization.

Learning and Representation. With the purpose of solely comparing the

“learning” behavior of VF and PS methods—how they adapt a vector of

weights—in this study, we have forced them to share a fixed, common rep-

resentation. In particular we adopt a linear function approximation scheme,

whose expressiveness and generalization width can be carefully controlled. Our

results show that VF and PS methods dominate at different settings of these

problem parameters, thereby affirming our research hypothesis.

While our approach makes for sound experimental methodology, it must

be noted that in general the greatest success can be achieved by adapting the

representation itself while learning (Whiteson and Stone, 2006a; Nissen, 2007).

Indeed Cobb and Bock (1994) argue that representations favoring an expert

agent might be unfavorable for an agent beginning to learn. Integrating learn-

ing with adaptive representation is yet another area of future work that our

parameterized learning problem enables. In pursuing such work, we would

treat χ and w as internal to the learning agent, rather than extraneous. The

agent could potentially adapt these representational aspects by applying meth-

ods from feature selection (Kolter and Ng, 2009; Petrik et al., 2010), structure

learning (Degris et al., 2006; Diuk et al., 2009) and manifold learning (Ma-

hadevan, 2009).

In taking steps towards the automated application of RL methods to

problems, the issues discussed above are all relevant to consider. We hope

that future work will make progress along all these directions by extending
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the ideas presented in this chapter. For a start, the next three chapters to

follow in this dissertation pursue some important questions arising from the

experimental study presented here; below is a summary.

• Chapter 4 undertakes an investigation into how representations impose

limitations on the performance of learning methods. In particular the

chapter analyzes the game of Tetris as a case study, providing an expla-

nation for the stark failure of VF methods to perform well in this task,

given that PS methods have been rather successful.

• It is natural to expect that because they disregard potentially useful

information contained in individual state transitions, PS methods will

be slower to learn than VF methods, which indeed make learning up-

dates based on atomic state transitions. This difference in performance

is clearly visible in Figure 3.9. Chapter 5 considers one way to speed

up PS methods such as CMA-ES by being judicious in allocating fitness

evaluations among the population being evaluated (rather than allocat-

ing each member the same number of samples, as done in this chapter).

Adopting a general, abstract view of the “subset selection” problem,

Chapter 5 makes novel contributions to the literature of multi-armed

bandits, applying the results to improve policy search methods.

• From Section 3.3.5, we clearly see that the inferior sample-efficiency of

PS methods is compensated by their relative robustness in the face of

poor representations. Can we develop a class of methods that is both

sample-efficient and robust to inadequate representations? Chapter 6

presents two case studies in which the strengths of VF and PS methods

are integrated.
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We now proceed to the next section in this chapter, where we discuss

related work in the context of parameterized learning problems and empirical

evaluations in RL.

3.5 Related Work

In an early article, Cohen and Howe (1988) consider the strong coupling

that exists in many disciplines of artificial intelligence between problem types

and method instances. While formulating guidelines for the evaluation of

methodological contributions to the field, they argue the need to precisely

characterize the set of problems on which a method is expected to be successful,

and symmetrically, the approaches that are likely to succeed on a given class of

problems. As noted in the introduction to this chapter, Langley (1988) makes

a similar observation in the specific context of machine learning.

Parameterized learning problems have been used in the literature to

study the effects of factors such as dimensionality and noise. For example,

Spall (2003) extensively uses the “Rosenbrock” function while comparing the

performance of optimization algorithms in his textbook. The “Sphere” func-

tion discussed by Beyer (2000) has long served as a standard benchmark for

evolutionary algorithms.

The work within the RL literature that is philosophically the closest to

the contribution of this chapter is the notion of “generalized environments”

proposed by Whiteson et al. (2011). Here, too, the authors argue against “en-

vironment overfitting”, whereby methods tend to get evaluated on problems

that favor them, but the broader scope of their applicability, especially that of

their weaknesses, is not easy to gauge. A generalized environment represents

a formally defined distribution of environments: the objective is to develop
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methods that perform well over the entire distribution. Whereas the motiva-

tion for generalized environments comes from realistic tasks such as helicopter

control and Tetris, the apparatus developed in this chapter examines the per-

formance of learning methods in a carefully-designed, controllable, abstract

setting. Our results underscore that qualitatively different learning methods

excel in different regions of the problem space, while teasing apart effects that

method-specific parameters introduce.

The empirical approach we adopt here to characterize the interactions

between learning problems and methods is complemented by theoretical formu-

lations designed with a similar objective. Littman (1993) characterizes agents

and environments based on the amount of memory they can use and the length

of the horizon for which they seek to optimize rewards. He then considers sev-

eral interesting classes of problems—for example, those with nonstationary

environments—that fit within this formalization. Ratitch and Precup (2003)

define environmental properties such as state transition entropy and forward

controllability, and investigate how these properties bear on the exploration

strategy of a learning agent. To the best of our knowledge, the issue of gener-

alization has not been addressed through similar theoretical formulations.

The main difference between our comparative study and others in the

RL literature is that our parameterized learning problem enables us to evaluate

the effects of individual parameters while keeping others fixed. For example,

in most related studies, methods typically use different generalization schemes,

thereby introducing an additional qualification in any comparisons. Also, our

formulation allows us to control problem parameters continuously along a scale

from “high” to “low”; in the studies we shortly list, comparisons are typically

between two or three distinct task settings. In this sense, this chapter answers
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the call put forth by Togelius et al. (2009) for parameterizable benchmarks,

and affirms their basic conjectures on the strengths and weaknesses of “on-

togenetic” (similar to VF) and “phylogenetic” (similar to PS) methods. In

addition our results shed light on hitherto unexplored questions such as the

effects of optimistic initialization when used in conjunction with generaliza-

tion. We now list a number of studies comparing RL algorithms.

Moriarty et al. (1999) apply a suite of “Evolutionary Algorithms for

Reinforcement Learning” (EARL) to a simple grid-world MDP, and compare

results with Q-learning. Policies are represented using lists of rules or neural

networks, which are evolved using standard genetic operators. The main con-

clusion of their study is that EARL is more suited to tasks with large state

spaces (but represented compactly), tasks with incomplete state information,

and tasks with nonstationary returns. Whiteson et al. (2010) undertake a com-

parative study between Sarsa(0) and NEAT (Stanley, 2004), a policy search

method. These methods are compared on the benchmark tasks of Keepaway

soccer (Stone et al., 2005) and Mountain Car (Sutton and Barto, 1998). Their

findings are that sensor noise affects the final performance of Sarsa(0) more

than NEAT, and indeed that stochasticity has the opposite effect, as policy

evaluations under NEAT become more noisy.

Heidrich-Meisner and Igel (2008a) compare the “natural actor-critic”

method with CMA-ES on a pole-balancing task. Both methods are “vari-

able metric”; that is, they are insensitive to linear transformations of the

parameter space. The methods achieve comparable results, but CMA-ES is

found to be less sensitive to initial settings for the policy, which has a small

number of parameters. Similar results are registered in the noisy Mountain

Car task (Heidrich-Meisner and Igel, 2008b). Gomez et al. (2008) carry out
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an extensive suite of comparisons on single and double pole-balancing tasks

(with hidden state). The methods compared are evolutionary algorithms such

as CoSyNE, NEAT, ESP, and SANE, along with Q-learning, Sarsa, recur-

rent policy gradient, random weight guessing, and “Value and Policy Search”

(VAPS) (Baird and Moore, 1999). The authors’ findings reinforce the expec-

tation that under the presence of state aliasing, evolutionary algorithms dom-

inate model-free value function-based methods such as Q-learning and Sarsa.

Heidrich-Meisner and Igel (2009b) conduct a further series of experiments on

a similar suite of single and double pole-balancing tasks, on which they find

CMA-ES significantly more successful than several competing policy search

methods. The underlying representation used is a neural network; the authors

find that networks without “bias” connections perform better than those with

biases, likely because bias breaks the inherent symmetry in pole-balancing.

Lucas (2010) applies novel information-theoretic techniques for com-

paring evolutionary algorithms with TD learning methods. He shows that

the theoretical upper bound on the information that can be learned by a TD

learner after a certain number of environmental interactions far exceeds that of

an evolutionary algorithm on the same problem (in his case a simple grid world

task). Further, experiments demonstrate that indeed the “amount of learning”

a TD method achieves in practice is of the same order as its theoretical upper

bound; an evolutionary algorithm (CMA-ES), though, falls well short of its

upper bound. These experimental results are obtained under a perfect tabular

representation. Interestingly when function approximation is introduced (by

way of a neural network or an interpolated table), the order between the per-

formance of TD learning and CMA-ES no longer remains consistent. It does

appear very promising to integrate the experimental approach adopted in this

96



chapter with the theoretical ideas conceived by Lucas in further investigating

the role of representations in sequential decision making. We comment further

on this possibility in Chapter 7 (Section 7.2.1, page 257).

The recent thesis of van Hasselt (2011) shares many of the motivations

of our current dissertation. After evaluating several learning algorithms (a

majority of them TD learning methods) both analytically and experimentally,

van Hasselt (2011, see Section 8.3) derives rules of thumb for choosing among

these methods based on problem characteristics such as the size and conti-

nuity of the state and action spaces. The work in this chapter differs from

van Hasselt’s contribution mainly in that (1) we carefully vary representation

quality (along the lines of state noise, expressiveness, and width of generaliza-

tion) while evaluating methods; the dramatic effect of these representational

aspects on learning methods makes (2) comparisons among qualitatively dis-

tinct classes of methods (VF and PS) our primary focus (even if we do perform

intra-class comparisons in Section 3.3.2 to pick representatives). By contrast,

van Hasselt’s thesis takes a detailed look mostly at methods that learn (action)

value functions, and does not dissect representational aspects as minutely as

we do.

3.6 Summary

In this section, we summarize the contributions of this chapter, which

serves as the groundwork for our dissertation. In particular the chapter under-

takes an extensive experimental study to characterize the interactions between

learning methods and the representations used for learning.

As a general framework to conduct empirical studies in RL, we in-

troduce parameterized learning problems, in which the factors influencing the
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performance of a learning algorithm can be controlled systematically through

targeted studies. The main merits of our experimental methodology are that

(1) the designed task and learning framework are easy to understand; (2) we

may examine the effect of subsets of problem parameters while keeping others

fixed; (3) we can benchmark learned policies against optimal behavior; and

(4) the learning process can be executed in a relatively short duration of time,

thereby facilitating extensive experimentation. The purposefulness of param-

eterized learning problems—in getting to the heart of the phenomena being

investigated—distinguishes them from the empirical studies on more realistic

(and less controllable) problems.

Consistent with the theme of the thesis, we design a parameterized

learning problem to evaluate the effects of state aliasing and generalization:

representational aspects that are imperfect in a sizeable fraction of realistic RL

tasks. On this problem, we evaluate various methods from the classes of on-line

value function-based (VF) methods and policy search (PS) methods. Through

a series of carefully-designed experiments, we obtain clear patterns separating

the learning methods considered. A novel aspect of our study is a search

procedure that enables us to find the best method-specific parameters (such

as learning rates and population sizes) for a given problem instance. Largely

made possible by the relative simplicity of our simulation, the search procedure

uncovers interesting patterns relating problem instances and method-specific

parameters.

Within the VF class, we find that Sarsa and Q-learning perform bet-

ter than Expected Sarsa (ExpSarsa) when learning with generalization and

function approximation. Within the PS class, we find that CMA-ES and the

cross-entropy method (CEM) achieve significantly better performance than
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a genetic algorithm (GA); CMA-ES is more robust to its parameter settings

than CEM. Comparing Sarsa (from VF) and CMA-ES (from PS), we find that

the former enjoys a higher speed of learning, and also better asymptotic per-

formance, when the learner is provided an expressive representation. On the

other hand, CMA-ES is significantly more robust to severely deficient repre-

sentations. Both methods suffer noticeably when state noise is added; their

relative performance is additionally determined by the width of generalization

in the representation. Our experiments highlight several promising lines of

inquiry involving generalization, representation, meta-learning, initial weight

settings, and parameter tuning.

It would be ideal for future work to extend the experiments reported

in this chapter to other classes of learning methods, specifically model-based

and batch methods, actor-critic architectures, and policy gradient techniques.

A lack of time prevents us from incorporating these methods into the already

extensive body of work contained in this chapter. In Chapter 7, we present a

unifying view of several classes of learning methods against the backdrop of

representation.

The next chapter continues our examination of the relationship between

learning and representation. Adopting a more analytical approach, the chapter

presents results seeking to explain how representations might impose limits on

the performance of learning methods. Specifically this analysis is performed

in the context of Tetris, the popular computer video game.
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Chapter 4

Limits of Representation: An Illustration

This chapter continues the line of inquiry initiated in Chapter 3: how does

representation affect the performance of different learning methods? In the

previous chapter, recall that we carefully designed a parameterized abstraction

of learning problems, on which we compared the performance of various VF

and PS methods, while varying representation quality. By contrast, in this

chapter, we focus on a concrete, well-known sequential decision making task:

the popular computer video game Tetris.

Over the last two decades, numerous learning algorithms have been tested on

Tetris. The most striking pattern among the results reported in previous studies

is the dramatic gap that exists between the performance of VF and PS methods

on this task. Whereas VF methods have, at best, learned policies that can

clear a few thousands of rows in the Tetris game, PS methods, using similar

representations, have been able to clear millions of rows. What explains this

glaring disparity in the performance of these methods?

Several factors confound learning in Tetris: for example, high stochasticity and

long episodes. In this chapter, we present experimental analysis showing that

even if such factors were somehow to be circumvented, value function learning

in Tetris is still likely to fail due to the fundamental limits imposed by the

representation that has typically been used with this task (a linear architecture

with a few tens of features). In this sense, the Tetris task and its accompany-
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ing linear representation provide a stark example of representations strongly

favoring one class of learning methods over another.

After describing the Tetris task in Section 4.1, we present a perspective view of

previous work, highlighting the choices in picking learning methods and repre-

sentations (Section 4.2). For one common choice of representation, we design

experiments to ascertain the “best” approximation a VF method could possibly

achieve in a policy evaluation setting (Section 4.3). Results indicate that even

this best approximation would lead to a worsening of performance if the policy

improvement operation were then applied, as under standard policy iteration.

The results also provide ideas towards effectively combining VF and PS meth-

ods; we investigate these ideas further in Chapter 6.

In Chapter 3, we saw extensive evidence of representational aspects—

expressiveness (χ), generalization width (w), and state noise (σ)—determining

the dominance of one class of learning methods over another on a given MDP.

In particular consider Figure 3.11 (see page 83), which clearly demonstrates

that (1) Sarsa, a VF method, outperforms CMA-ES, a PS method, at high

settings of χ, but (2) the opposite is true at low settings of χ. In the com-

mentary following Figure 3.11, we speculated on reasons for the latter result.

Specifically we hypothesized that low settings of χ were probably capable

of representing reasonably good policies, but they could not support “good

enough” approximations of value functions.

Now, it is true that acting greedily with respect to the value function

V π of a policy π will yield higher expected long-term reward than π itself ac-

crues (or, if π is optimal, yield the same expected long-term reward) (Bellman,

1957). However, acting greedily with respect to V̂ π, an inexact approximation
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of V π, could indeed result in lower expected long-term reward than π achieves.

For clarity we depict this contrast between exact and approximate policy eval-

uation through a sketch (see Figure 4.1).

For a more concrete example of the phenomenon illustrated in Fig-

ure 4.1, we refer the reader to Baxter and Bartlett (2001, see Appendix A).

In the example they construct, a linear function approximator (with one fea-

ture) is employed to approximate value functions in an MDP with two states

V
π

V
π

π

Policy

Exact policy evaluation Approximate policy evaluation
(imperfect representation)

Greedy policy w.r.t. V
π

V
π

Greedy policy w.r.t. V
π

V
π

Value function Approximate value function

π ’ π ’ = greedy(      )= greedy(      )

(perfect representation)

Figure 4.1: Contrast between exact and approximate value functions. For a
policy π, consider (left branch) its value function V π and a policy π′ that is

greedy with respect to V π; and (right branch) V̂ π an approximation of V π, and
the corresponding greedy policy π̂′. Provably, we have V (π′) ≥ V (π): that
is, π′ leads to at least as high expected long-term reward as π. However, due
to the approximation error in V̂ π, indeed it could happen that V (π̂′) < V (π).
This chapter investigates the occurrence of this phenomenon when learning
approximate value functions for Tetris.
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and two actions. In particular the authors focus on approximating the opti-

mal value function V ∗, which is the value function of any optimal policy π∗.

Among the functions that the linear architecture can represent, the authors

show that V̂ ∗, the one providing the best approximation of the optimal value

function, itself induces a sub-optimal policy.1 Ironically, the same linear ar-

chitecture still gives rise to an infinite number of other functions that do not

approximate V ∗ nearly as well, but that still induce the optimal policy!

Any attempt to learn value functions in practical tasks is likely to

suffer, to varying extents, the ailment of Baxter and Bartlett’s example. How

bleak are the consequences? On the one hand, enough practical successes

of VF methods have been reported in the scientific literature (several among

the applications listed in Table 1.1) to assure us that learning through value

function approximation is a viable enterprise. On the other hand, one must

take into account that examples of VF methods failing are less likely to be

published in the literature on equal terms with cases where they succeed.

Over the years, this author has heard anecdotally of numerous such negative

examples from colleagues, and has personally borne witness to many. Can we

scientifically characterize the reasons VF methods often fail to perform well?

In this chapter, we consider a long-established failure case of VF methods, and

examine if the failure indeed owes to the phenomenon highlighted in Baxter

and Bartlett’s example.

The example we study is the popular computer video game Tetris,

1Here approximation error is defined as the squared distance between the optimal and
approximate value functions, weighted by the stationary distribution of states under the
optimal policy. By this definition, V̂ ∗ would be the function to which, say, TD(1) would
converge if evaluating the optimal policy with a linear representation. A policy “induced”
by a function f over the state space takes actions greedily with respect to f .
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which has served as a benchmark for evaluating RL methods for over a decade

(Bertsekas and Tsitsiklis, 1996; Böhm et al., 2005; Szita and Lőrincz, 2006;

Thierry and Scherrer, 2010a). Nearly every instance of learning applied to

Tetris in the literature has employed a linear representation with a few tens of

features. In the case of VF methods, this representation is used to approximate

the value function. Under PS methods, the representation gives rise to an

evaluation function (of afterstates), which, coupled with a simulation model,

induces a corresponding policy. For the experiments in this chapter, we adopt

the set of 22 features originally introduced by Bertsekas and Tsitsiklis (1996).

With this fixed representation, we compare the following policies:

πHC , a hand-coded policy that clears about 1, 000 lines on average in a

Tetris game, and

πHC−vf−greedy, a policy that is greedy with respect to the best approx-

imation of the V πHC
among the functions our linear architecture can

represent.

In defining “best” approximation in the latter case, it is typical to apply

the squared error norm weighted by the stationary distribution of πHC (Tsitsik-

lis and Van Roy, 1997). Nevertheless, other choices of distribution and norm

apply, and could potentially induce better policies (Koller and Parr, 2000).

In our experiments, we consider three natural distributions for weighting the

squared error norm, and show that in all three cases, the resulting instance of

πHC−vf−greedy performs significantly worse than πHC (the best among the three

clears 70 lines on average in a Tetris game). In short, these results indicate

that the linear representation of Bertsekas and Tsitsiklis places a significant

handicap on value function-learning in this task.
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The remainder of this chapter is organized as follows. We begin with

a concise description of the Tetris task in Section 4.1. For learning this task,

several choices present themselves in terms of learning methods and representa-

tional aspects. In Section 4.2, we describe these possibilities through a survey

of previous work on Tetris. For our experiments, we pick the linear represen-

tation of introduced by Bertsekas and Tsitsiklis; we evaluate the capacity of

this representation to approximate value functions in Tetris. Experiments and

results are presented in Section 4.3. A summary and discussion in Section 4.4

concludes the chapter.

4.1 Tetris: Task Description

Tetris was a introduced in the mid-1980’s as a video game, and it

has been an extremely popular one ever since. Alexey Pajitnov and Dmitry

Pavlovsky are credited with the creation of this game while working as engi-

neers in the Russian Academy of Sciences.2

In this section, we describe our implementation of Tetris. First we

relate the basic idea behind the game in Section 4.1.1. Several choices arise

towards fully specifying the rules of the game. In Section 4.1.2, we describe

our implementation, which matches one that has widely been used by the RL

community (Thierry and Scherrer, 2010a). In Section 4.1.3, we briefly sketch

how our implementation maps to a formulation of Tetris as an MDP. The

reader familiar with the Tetris may skip Section 4.1.1, and directly proceed to

sections 4.1.2 and 4.1.3.

2Fahey’s web page on Tetris (see http://www.colinfahey.com/tetris/tetris_en.

html) is an excellent resource documenting the history of the game, its several variations,
standards, scientific aspects, and so on.
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4.1.1 Basics of Game

Figure 4.2 shows a screenshot from a typical Tetris game. The game

comprises a rectangular board, whose standard dimensions are a width of 10

and height of 20. Each cell in the board can be filled or empty. Each game

(or episode) starts with an empty board. Subsequently, one of seven fixed

“tetromino” pieces is generated (uniformly at random) at the top of the board,

in line with the central columns. Tetrominoes are contiguous patterns filling

up four cells; the seven standard Tetris tetrominoes are listed in Figure 4.2.

Once generated, a tetromino starts falling from the top of the board towards

the bottom (“vertically” downward, as if under the influence of gravity), until

it gets lodged either because some cell underneath it is already filled, or the

Figure 4.2: (Top) Screenshot from a Tetris game (source: http://vuigame.

net/). (Bottom row) List of tetrominoes, left to right: O, I, S, Z, L, J, and T.
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tetromino has reached the bottom of the board. Once a tetromino gets lodged,

a new one is generated, and the above sequence repeats. Thus, whereas the

first tetromino descends into an empty board, in general, a “wall” of previously

lodged tetrominoes is already present when a new one gets generated.

A player (in our case a computer program) can alter the trajectory of

a falling tetromino by shifting it laterally or rotating it as it descends. These

actions, which have deterministic consequences, enable the player to control

where the piece gets lodged, thereby determining the shape of the resulting

wall. The defining aspect of the Tetris game is that if in getting lodged, a

piece results in one or more rows in the wall getting completely filled, then

those rows are cleared, and the portion of the wall above them descends by as

many rows. In effect, the wall grows in size as pieces get lodged, and shrinks

as rows get cleared. The player gets rewarded for each row cleared during a

game: the player’s objective is to maximize the number of rows cleared until

the episode ends (as described in formally in section 4.1.2 and 4.1.3).

4.1.2 Some Choices in Implementation

So far we have described the overall scheme within a Tetris game. Be-

low we complete our description by specifying particular choices made in our

implementation.

Actions. In most Tetris interfaces intended for humans to play the game,

the player is allowed to execute an action on the falling piece every time it

descends by a cell. In particular the player may shift the piece left or right; or

rotate it clockwise or counter-clockwise; or do nothing. Thus, the player has

to pick one of five actions. The main drawback of the above scheme is the time
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consumed in computing the next configuration after each action is taken. Not

only does the simulator need to consistently check for collisions between the

falling piece and the wall, the sheer number of actions between the generation

of a piece and its eventual getting lodged can be as high as 20.

Like other researchers before us, we opt for a simpler set of actions that

significantly speeds up simulations. In particular we only admit actions to be

taken when a tetromino is first generated. The action merely specifies a column

and an orientation for the tetromino. Such an action has the deterministic

effect of dropping the tetromino from the top of the specified column, in the

specified orientation, until it gets lodged. Figure 4.3 illustrates this process

through an example. Note that the number of distinct actions in a situation

will depend on the piece that is falling, The number of column settings for a

piece can at most be 10 (for an I piece), and the number of orientations at

most 4 (for L, J, and T pieces).

Our simplified action scheme indeed allows for faster simulations than

the alternative of applying shift or rotate actions to a piece as it falls. It is

worth bearing in mind that nevertheless, the latter scheme allows the player

more options in the placement of the tetromino on the wall. For example,

shifting a piece even as it falls makes it possible to fill up holes, which cannot

be achieved by merely dropping a piece from the top.

Episode termination. In most human-friendly versions of Tetris, newly

generated pieces are actually generated inside the 10 × 20 board, within the

top few rows. The game is then deemed to have ended when a newly generated

piece collides with the existing wall. In our implementation, though, we deem

an episode to have terminated only when there is no action that will result in
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(a) (b) (c)

Figure 4.3: Example sequence from the middle of a Tetris episode. (a) New
piece (T) generated. (b) Action (column, orientation) specified. (c) Transition
effected, including the clearing of a row, and next piece (L) generated.

the newly-generated piece getting properly lodged within the 10 × 20 board;

in other words, the piece will necessarily overshoot into an imaginary 21st row.

Whereas both the schemes described above have the same qualitative

intent of penalizing walls that exceed a certain size, experiments from Thierry

and Scherrer (2010a) show that such subtle differences in implementation can

have a significant effect on the performance of players. Even so, we do not

believe that the relative order between the performance of different learning

algorithms changes with the implementation choice; this chapter is primarily

concerned only with the relative order.

Visibility of next piece. The essential decision for an agent to make while

playing Tetris is where to place the newly-generated piece. In some versions
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of Tetris, the player’s decision can benefit from the additional knowledge of

what piece the simulator will generate next, following the current one. The

reader might have noticed the presence of this feature in the screenshot from

Figure 4.2, wherein it is visible that a T piece is due to fall next, even as an

I piece is currently descending. In our implementation, consistent with other

RL researchers’, the player only gets to see one piece at a time: the piece that

currently needs to be controlled.

Rewards. How is a Tetris player evaluated? In our implementation, the

player (or a policy) gets a reward of 1 for every row cleared. Thus, the value

of a policy becomes the expected number of rows it will clear before the episode

terminates. In some variants of the game, players have additional incentives

for clearing multiple rows at a time (the maximum possible is four rows, which

can sometimes be cleared when lodging an I piece). We do not provide addi-

tional rewards if multiple rows are cleared at the same time.

Before proceeding further, we summarize how our Tetris implementa-

tion maps to an MDP formulation.

4.1.3 Formulation as MDP

We can treat Tetris as an MDP, in which each state corresponds to

a configuration of the wall and the index of the piece that is due to fall.

Assuming all possible wall configurations are reachable, we find that the size

of the state space is 7 × 210×20, which is more than 1061. Up to 34 actions

can apply from a state. Note that on applying an action from a state, we

may deterministically compute the resulting configuration of the wall, which
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it is convenient to think of as an afterstate. The transition from a state to an

afterstate also generates a deterministic reward based on the number of rows

cleared. Figure 4.4 presents a schematic depiction of trajectories in Tetris.

It has formally been shown that regardless of the actions taken, almost

all Tetris episodes must eventually terminate (Burgiel, 1997). The proof hinges

on the occurrence of a long sequence of alternating S and Z pieces, which it

can be shown cannot be contained within a finite board height. Importantly,

this result implies that the value functions of policies are well-defined even

when no discounting is used (indeed we use γ = 1 in our evaluation), and

therefore, that there is an optimal value function for Tetris. However, very

little is known about the structure of optimal policies. Breukelaar et al. (2004)

show that even if the entire sequence of tetrominoes in a game is known in

advance, computationally verifying whether the tetrominoes can be placed to

state

afterstate

action reward

state

afterstate

action reward

state

afterstate

action reward

deterministic transition

.  .  .

state

stochastic transition

Figure 4.4: Structure of a trajectory in Tetris. The first state is always one of
a fixed seven: an empty wall with one of the standard seven tetrominoes due
to fall. (Conceptually, one might imagine every trajectory as actually starting
with an afterstate corresponding to the empty wall.) An action taken from
a state leads to a deterministic reward and afterstate. From an afterstate s̄,
the next state is determined by picking one of the seven standard tetrominoes
uniformly at random, and retaining the wall corresponding to s̄. A state is
terminal if no action taken from it will lead to the lodgment of the associated
tetromino within the 10 × 20 board.

111



clear a certain number of rows is an NP-complete problem.

The main advantages of Tetris as a benchmark problem—for evaluating

sequential decision making algorithms—are its discrete state and action sets,

and its concise forward model. Its main drawbacks include the large sizes of

its state and action spaces, and the stochasticity in the transitions, which ad-

ditionally gets exacerbated by the very long trajectories that result from good

policies. In our experiments in Section 4.3, we mitigate this high stochasticity

by running a large number of Monte Carlo simulations. Our experiments an-

alyze the interaction between representations and learning methods in Tetris;

the next section describes these aspects in some detail.

4.2 Choices in Representation and Learning

The large size of the state space in Tetris rules out the use of a tabu-

lar representation for storing value functions or policies. Rather, a compact

representation is needed. Recall from Figure 4.4 that trajectories in Tetris

have a special structure that is commonly found in board games. Specifically,

at every decision step, the agent has (1) a full description of the state, and

(2) a deterministic forward model to compute the afterstate that will result

from taking some action. As a result, it becomes natural to represent policies

through an evaluation function over afterstates. As far as we are aware, ev-

ery instance of learning applied to Tetris in the literature has adopted such a

representation, which we illustrate through a picture in Figure 4.5.

In the case of VF methods, the evaluation function over afterstates is

learned to approximate the value function under some policy (the expected

long-term reward to follow from each afterstate). On the other hand, PS

methods seek to tune the parameters of the evaluation function such that they
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Current state

(wall, piece)

Afterstate 1 Afterstate 2 Afterstate 3 Afterstate n
(wall) (wall) (wall) (wall)

.  .  .

Evaluation 1 Evaluation 2 Evaluation 3 Evaluation n

Chosen action: argmax   (Evaluation a)a

Compare and pick maximum

Simulate all possible actions (column and orientation)

Figure 4.5: Typical structure of a Tetris policy based on an evaluation function
(figure adapted from one presented by Thierry and Scherrer (2010a, see Figure
2)). From the current state, all possible actions are simulated using a one-step
forward model to determine afterstates. An evaluation function associates
each afterstate with a real number (the evaluation). The policy then is to pick
an action leading to an afterstate with the highest evaluation (with ties broken
uniformly at random). VF methods attempt to match the evaluation function
with the value function being learned; PS methods search for parameters of the
evaluation function that maximize the resulting performance. Note that some
researchers have considered performing deeper-ply simulations before applying
the evaluation function; that is, they consider all the states that could result
from an afterstate, the afterstates that would result from those states, and
so on. While deeper-ply simulations are more computationally demanding,
they can lead to slightly better performance (Böhm et al., 2005; Kistemaker,
2008). Consistent with the vast majority of RL applications to Tetris in the
literature, we stick with the single-ply simulations depicted in the figure.
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induce the highest long-term reward. Thus, under PS methods, the evaluation

of an afterstate bears no special semantics.

Interestingly, nearly every application of learning to Tetris in the lit-

erature has used a linear architecture to represent the evaluation function.

Thus, in all previous work, the evaluation function learned is a linear combi-

nation of features derived from the afterstate: learning amounts to adapting

the coefficients (or “weights”) in the linear combination. As a concrete exam-

ple, consider the early efforts of Bertsekas and Tsitsiklis (1996), in which the

features used are the column heights of the wall, differences in the heights of

consecutive columns, the maximum column height, and the number of “holes”

in the wall (empty cells with at least one filled cell above them in the same

column). Additionally a “bias” feature (always 1) is used to aid value func-

tion approximation. Table 4.1 lists the features introduced by Bertsekas and

Tsitsiklis, of which there are 22.

For the experiments in this chapter, indeed we use the representa-

tion developed by Bertsekas and Tsitsiklis (1996). However, we must note

that apart from the 22 features included therein, researchers in the past have

considered several others, and often with demonstrable performance improve-

ments (Thierry and Scherrer, 2010a, see Table 1). It exceeds the scope of this

chapter to undertake systematic feature engineering and selection for Tetris.

Rather than develop the most effective learning algorithms for the task, our ob-

jective here is to evaluate existing algorithms on an existing representation. For

this purpose, we consider the architecture introduced by Bertsekas and Tsit-

siklis appropriate, as (1) it continues to be used by other researchers (Farias

and Van Roy, 2006; Szita and Lőrincz, 2006), and (2) the alternative rep-

resentations proposed (Lagoudakis et al., 2002; Boumaza, 2009; Thierry and
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Table 4.1: Features used by Bertsekas and Tsitsiklis (1996). For illustration we
list the values these features assume on afterstates encountered in Figure 4.3.

Feature
Value: wall in
Figure 4.3(a)

Value: wall in
Figure 4.3(c)

Column height

h1 5 4
h2 0 2
h3 1 1
h4 3 2
h5 4 3
h6 3 2
h7 5 4
h8 7 6
h9 4 3
h10 2 0

Successive column
height difference

|h1 − h2| 5 2
|h2 − h3| 1 1
|h3 − h4| 2 1
|h4 − h5| 3 1
|h5 − h6| 1 1
|h6 − h7| 2 2
|h7 − h8| 2 2
|h8 − h9| 3 3
|h9 − h10| 2 3

Number of holes (numHoles) 2 1

Maximum height (maxHeight) 7 6

Bias 1 1

Scherrer, 2010b) remain qualitatively similar to it: linear combinations of a

few tens of features.

For a comprehensive description of previous learning approaches ap-

plied to Tetris, we refer the reader to the excellent survey by Thierry and

115



Scherrer (2010a). For convenient reference, we list the methods described

therein, along with the scores they achieve, in Table 4.2. Broadly, we may

divide the methods in the table into two groups: methods that seek to learn

or compute the value function (VF methods), and those that directly tune the

weights of a controller based on feedback from a suitable fitness function (PS

methods).

As Thierry and Scherrer (2010a) correctly observe, subtleties in im-

plementing Tetris (such as in the rule to determine episode termination, or

the lack of sufficient averaging to diminish noise) can significantly affect the

observed results. Even so, we believe that the difference in the scales of per-

formance achieved by VF and PS methods on Tetris—clearly visible in Ta-

ble 4.2—cannot be due to noise or subtle differences in the implementation.

For example: using the features listed in Table 4.1, the λ-policy iteration

method of Bertsekas and Tsitsiklis (1996), a VF method, clears 3,000–5,000

lines. Using exactly the same features, the noisy cross-entropy method of Szita

and Lőrincz (2006), a PS method, clears nearly 350,000 lines. It is unlikely

that this “orders of magnitude” gap in the performance of the methods can

be attributed solely to evaluation noise and variations in implementation.

In the next section, we carry out experiments to examine the limits im-

posed by the representation scheme on the accuracy with which value functions

can be represented. Using the representation scheme of Bertsekas and Tsit-

siklis (1996), we find evidence of the phenomenon illustrated by Baxter and

Bartlett: that the greedy policy resulting from an approximate value function

performs much worse than the policy whose value function is being approxi-

mated. As a result, the “policy improvement” step that is crucial to control

is likely to become counter-productive. We proceed to our experiments.
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Table 4.2: List of learning methods applied to Tetris. All the methods use a
linear representation for the evaluation function, but the features they employ
vary. The performance reported is rounded to a nearby multiple of a power of
10, with ranges provided when multiple variants of the learning method have
been tested. The natural policy gradient algorithm due to Kakade (2001)
is an actor-critic approach, wherein a parameterized policy is optimized by
following a gradient that is itself obtained from a stored value function (rather
than solely from observed rewards).

Method Class Mean lines per episode

λ-policy iteration
VF 3,000–5,000

(Bertsekas and Tsitsiklis, 1996)

Least-squares policy iteration
VF 1,000-3,000

(Lagoudakis et al., 2002)

Relational RL with Gaussian Process
VF 50

regression (Ramon and Driessens, 2004)

Approximate dynamic programming
VF 3,500–5,000

(Farias and Van Roy, 2006)

Approximate dynamic programming
VF 20,000–25,000

(Petrik and Scherrer, 2009)

Natural policy gradient with compatible
VF/PS 5,000–7,000

function approximation (Kakade, 2001)

Dellacherie’s controller from 2003 Manual
660,000

(Thierry and Scherrer, 2010a) design

Evolutionary algorithm
PS 1,400,000

(Böhm et al., 2005)

Noisy cross-entropy method
PS 350,000

(Szita and Lőrincz, 2006)

CMA-ES
PS 36,000,000

(Boumaza, 2009)

Noisy cross-entropy method
PS 36,000,000

(Thierry and Scherrer, 2010b)
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4.3 Experiments and Results

In this section, we present the experimental analysis that constitutes

the core of this chapter. Let us take a moment to recall the observations that

bring us here, and the agenda we set ourselves.

1. As evidenced by Table 4.2, in general, VF methods perform significantly

worse than PS methods on the Tetris task.

2. We aim to investigate to what extent the poor performance of VF meth-

ods owes to the phenomenon illustrated by Baxter and Bartlett (2001),

of approximate policy iteration leading to a deterioration of the policy

(also depicted in Figure 4.1).

3. Specifically for our experiments, we adopt the representation introduced

by Bertsekas and Tsitsiklis (1996) (a linear combination of 22 features,

described in Table 4.1).

The sequence of experiments to follow in this section essentially paral-

lels the demonstration provided by Baxter and Bartlett (2001, see Appendix

A). In both cases, the purpose is to compare a policy π with another policy π′,

which is a greedy policy with respect to an approximate value function of π.

However, several aspects of our work distinguish it from Baxter and Bartlett’s

concise illustration. Below we list four important differences.

Size and nature of task. Baxter and Bartlett carefully design a “toy” MDP

with two states and two actions to establish that approximate value functions

can induce inferior policies. Assuming a complementary stance, we set out to
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ascertain to what extent this phenomenon pervades existing large-scale, com-

plex sequential decision decision making tasks. In particular we carry out our

tests on Tetris, an MDP with nearly 1061 states and 34 actions.

Solution versus estimation. The simplicity of their MDP allows Baxter

and Bartlett to perform exact calculations and “solve for” the best approxi-

mation of the value function. The complexity of Tetris forces us to estimate

this best approximation itself using Monte Carlo simulation.

Policy being evaluated. In Baxter and Bartlett’s example, π, the policy

being evaluated, is an optimal policy. By contrast, we restrict ourselves to

picking a “good” policy for Tetris and examining the consequences of approxi-

mating its value function. One obvious reason for our choice is that we do not

know of any optimal policies for Tetris. However, even if we did, it would be

impractical for us to deal with policies that clear more than a few thousands

of lines, simply due to the time it would take to get reliable estimates from our

Monte Carlo estimation. For our experiments, we hand-code a policy, πHC ,

that clears about 1,000 lines per episode. Despite running Monte Carlo eval-

uations on roughly 100 computers for close to a week, even with this policy, a

small amount of error remains in our estimation of the “best approximation”

value function (see Section 4.3.2).

Definition of approximation error. If we are attempting to approximate

V π, the value function of a policy π, and we are limited to working with

functions from a certain parameterized class F (such as the class of linear

functions in this chapter), how must we define the “best approximation” V̂ π
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contained in F ? One natural definition would be based on the squared error

norm weighted by D1, the stationary distribution of states under π.3 In other

words, V̂ π def

= minf∈F

∑
s∈S D1(s) (V π(s)− f(s))2. This definition of “best ap-

proximation” is indeed the one that Baxter and Bartlett invoke; it is also the

approximation to which methods such as TD(1) and LSTD(1) would converge

when using a linear function approximator (Tsitsiklis and Van Roy, 1997;

Boyan, 2002).

Koller and Parr (2000) observe that while the definition of V̂ π above

is appropriate for policy evaluation purposes, in practice, other choices could

result in better success for the subsequent policy improvement step. In par-

ticular, minimizing a max-norm (L∞ norm) error instead of the weighted L2

norm error defined above can lead to better bounds on the sub-optimality of

policy improvement (Guestrin et al., 2001a). Unfortunately, general methods

for efficiently minimizing the max-norm remain unknown.

Yet another crucial element in defining the error term is the weighting

distribution: above we use D1, the stationary distribution induced by π. Koller

and Parr (2000) suggest that the use of alternative weighting distributions,

even if in tandem with the L2 norm, could potentially yield better results

for policy improvement. Correspondingly they construct a policy iteration

framework that can be instantiated with arbitrary weighting distributions.

While this framework becomes very useful once we know which weighting

distribution to use, most often it is unclear which weighting distributions would

3In our general commentary, often we refer to value functions and distributions that are
functions over state spaces. In a formal sense, recall that we learn these functions over the
afterstate space in Tetris. The distinction between states and afterstates does not have any
significant implications on learning; for the rest of this chapter, the reader may think of
states and afterstates as “essentially the same.”
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be the most successful for policy improvement. Further, commonly used policy

evaluation algorithms such as TD(λ) are known to be unstable when sampling

is performed using distributions other than D1 (Tsitsiklis and Van Roy, 1997).

In our experiments, we define approximation error through the weighted

L2 norm, and consider three choices for the weighting distribution: D1, D2,

and D3. These distributions over the afterstate space are described in Ta-

ble 4.3. Our experiments show that under each of the resulting definitions

of approximation error, the best approximation of the value function of πHC

induces a policy that is substantially inferior to πHC .

Table 4.3: Distributions used for for weighting the L2 norm.

Distribution To obtain sample:

D1: Stationary distribution of afterstates
under hand-coded policy πHC (described in
Section 4.3.1).

Record afterstates along a trajectory, start-
ing with the empty wall, following πHC ,
and until episode termination. Of the af-
terstates recorded, pick one uniformly at
random.

D2: Stationary distribution of afterstates
under πRandom, which selects an afterstate
s̄ uniformly at random from among the dis-
tinct afterstates reachable from the current
state, and picks an action that reaches s̄.

Record afterstates along a trajectory, start-
ing with the empty wall, following πRandom,
and until episode termination. Of the after-
states recorded, pick one uniformly at ran-
dom.

D3: Uniform distribution over set of after-
states.

Generate a 200-bit string corresponding to
a wall, setting each bit to 0 or 1 with equal
probability. If no row in the wall is fully
filled, pick the wall as the sample afterstate.
Otherwise repeat. (This procedure is ap-
proximate: at present we are unaware of a
concise necessary and sufficient condition
for the reachability of Tetris afterstates.)
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The remainder of this section is in three parts. In Section 4.3.1, we

describe our hand-coded policy, πHC . Section 4.3.2 provides the details of

our Monte Carlo simulation to estimate wHC−vf
(D1) , wHC−vf

(D2) , and wHC−vf
(D3) , the

coefficients best approximating V πHC
with respect to corresponding weighting

distributions. In Section 4.3.3, we examine the greedy policies that these co-

efficients induce (when combined linearly with the features given by Bertsekas

and Tsitsiklis).

4.3.1 Hand-coding a “Good” Policy

We hand-code a policy for Tetris by directly manipulating the 22 coef-

ficients in the linear combination for the evaluation function. We hypothesize

that the better our policy performs, the starker its contrast would be with a

greedy policy obtained from approximating its value function. On the other

hand, policies that clear more than a few thousand lines per episode are un-

suitable for our experiments, owing to the sheer time it would take to obtain

a reliable Monte Carlo estimate of their approximate value functions. As an

intermediate choice, we seek to hand-tune a policy that can clear about 1,000

lines per episode. We find it relatively straightforward to identify such a pol-

icy by tuning a small subset of the 22 coefficients after fixing the others to be

either 0 or -1. Our tuning procedure is detailed in Figure 4.6.

In order to gain some familiarity with the nature of Tetris policies, we

isolate four policies encountered during our tuning process. These policies, π1

through π4, are indicated in the bottom left plot of Figure 4.6. The policies

are indexed in the order of their values; it is π3 that clears close to 1,000 lines

per episode, and which we take as our hand-coded policy πHC .

In Figure 4.7, we plot the distributions of the episodic reward (lines
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|hi − hi+1|,∀i ∈ {1, 2, . . . , 9} -1
maxHeight (πHC) 0.32
numHoles (πHC) -5.88
bias 0

Figure 4.6: Procedure to determine a suitable hand-coded policy πHC . As shown at

bottom right, we set the 10 coefficients corresponding to column heights to 0, and the 9

coefficients corresponding to differences in the heights of successive columns to -1. We

then search over a grid for the coefficients corresponding to the numHoles and maxHeight

features. The bias coefficient does not affect the policy, which is greedy with respect to the

evaluation function over afterstates. At each setting of w(numHoles) and w(maxHeight),

the graphs show the value of the corresponding policy, estimated from 10,000 independent

episodic runs. For illustration, we highlight four policies in the bottom left plot, whose

values (with one standard error) are: V (π1) = 182±1, V (π2) = 600±5, V (π3) = 1009±10,

and V (π4) = 1527± 15. Of these policies, we pick π3 to be our hand-coded policy πHC .
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cleared in an episode) under policies π1 through π4. Note that the value of a

policy is its mean episodic reward. Thierry and Scherrer (2010a) conjecture

that the distribution of episodic rewards for a fixed Tetris policy closely re-

sembles a geometric distribution. However, our plots in Figure 4.7 appear to

suggest that a negative binomial distribution would be a more appropriate fit.

The negative binomial distribution is a generalization of the geometric dis-

tribution.4 If episodic rewards indeed followed a geometric distribution, the

most probable episodic reward would be 0, and the probability distribution

function would monotonically decrease. However, under a negative binomial

distribution, the mode lies between 0 and the mean, as it does in all our plots.

The formal characterization of the distribution of episodic rewards in Tetris

is an interesting challenge for future scholarship. However, the more relevant

concern with respect to learning Tetris is that policies with higher values also

have higher variances in the episodic reward. In the plots in Figure 4.7, we find

that the standard deviations of the distributions are of the same magnitude

as their means.

Before proceeding, we leave the reader with a few illustrations of Tetris

afterstates and their values under πHC . Figure 4.8 presents four examples.

From the figure, we do observe an inverse correlation between the maxHeight

feature and the value of afterstates. However, it does not appear easy to

pinpoint how other features influence the afterstate value. Under approximate

policy evaluation, the objective is to approximate afterstate values using a

linear combination of the 22 features.

4The geometric and negative binomial distributions, which are discrete probability dis-
tributions, can be construed as analogues of corresponding continuous probability distribu-
tions: respectively, the exponential and gamma distributions.

124



 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

 0  200  400  600  800  1000

F
re

q
u

en
cy

π1: Episodic reward (mean = 182; std. dev. = 115)
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π3: Episodic reward (mean = 1,009; std. dev. = 970)
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π4: Episodic reward (mean = 1,527; std. dev. = 1,490)

Figure 4.7: Distribution of episodic reward in the four policies highlighted in
Figure 4.6. The x axis in each plot shows the episodic reward, and the y axis
the frequency of occurrence (obtained by binning episodic rewards into 100
equal-length intervals). Note that the x axis scales on the plots are different,
and that the means of the distributions (shown as T’s) progressively increase
from π1 through π4. From the plots, it appears that the episodic rewards from
a fixed Tetris policy follow a negative binomial distribution.
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s̄ :

VπHC

(̄s) : 76± 40 230± 60 626± 92 983± 101

Figure 4.8: Four wall configurations (afterstates) and their values (and one
standard error) under πHC . The estimates are based on 100 independent
evaluations.

4.3.2 Limit of Approximate Policy Evaluation

Given πHC , the objective of policy evaluation is to determine its value

function V πHC
. Since our representation is not fully expressive, value function

learning has to make do with approximating V πHC
. The objective of approx-

imate policy evaluation, therefore, is to learn V̂ πHC . As we have discussed

earlier in this section, V̂ πHC can be defined based on multiple error norms.

In this work, we consider the L2 norm weighted by the distribution D over

afterstates, giving:

V̂ πHC

(D) = min
V

∑

s̄∈S̄

D(s){V πHC

(s̄)− V (s̄)}2,

where S̄ is the set of all afterstates. In particular the set of functions from

which we select V̂ πHC

(D) here is those that linearly combine the feature vector φ.

Thus, equivalently, the objective of approximate policy evaluation is to find a
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coefficient vector wHC−vf
(D) such that:

wHC−vf
(D) = min

w∈R22

∑

s̄∈S̄

D(s̄){V πHC

(s̄)−wT φ(s̄)}2.

Figure 4.9 provides a geometric illustration of wHC−vf
(D) , which leads

to the best approximation of the value function of πHC when weighted by

distribution D. If D = D1, policy evaluation methods such as TD(1) and

LSTD(1) indeed converge to wHC−vf
(D) , while TD(λ) and LSTD(λ), for λ ∈

[0, 1), converge to points whose distance from wHC−vf
(D) can be bounded in

terms of λ (Tsitsiklis and Van Roy, 1997).

The method we adopt for estimating wHC−vf
(D) , for D ∈ {D1, D2, D3},

is akin to LSTD(1): we collect a large number of afterstates, estimate their

values under πHC , and use linear regression to determine the best coefficients.

Algorithm 4.1 describes our estimation method, which takes three parameters.

V
π HC

(D)

V
π HC

T
φHC−vf

D||  ||.

(D)
w = (        )

Figure 4.9: Best approximation of V πHC
under weighted L2 norm. In particu-

lar if the weighting distribution is D, then wHC−vf
(D) corresponds to the weight

vector of the best approximation value function V̂ πHC

(D)

def

=(wHC−vf
(D) )T φ.
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The first parameter, D, determines the distribution from which afterstates are

sampled. The other parameters are N , the number of afterstates to sample,

and M , the number of trials for estimating the long-term return from each

afterstate. Access to a forward model allows us to set M > 1 and revisit

afterstates, thereby reducing the variance in their value estimates. Regardless

of the setting of M , our estimate of wHC−vf
(D) remains unbiased; the higher we

set N , the smaller the estimation error.

For our experiments, under each of D1, D2, and D3, we collect N =

1, 000, 000 afterstates, each of whose values we average based on M = 100

roll-outs. In total, this process takes us roughly 10-12 days on a computing

cluster with close to 100 nodes. Are the estimates we make based on the

collected data reliable estimates of wHC−vf
(D1) , wHC−vf

(D2) , and wHC−vf
(D3) ? We have

no independent way to estimate these vectors, and therefore, we adopt a cross-

validation approach to ascertain the reliability of our estimates. Below we

Algorithm 4.1 Estimation of wHC−vf
(D)

Input: D (distribution of afterstates), N (number of states to record), M
(number of roll-outs from each state).
Output: Estimate of wHC−vf

(D) .

for i = 1, 2, . . . , N do

Draw afterstate s̄i based on the distribution D (independently).

Simulate M independent trajectories starting from s̄i, and following
policy πHC , until a terminate state is reached. Let the mean long-term
reward accrued along these trajectories be vi.

Let X denote the N × 22 matrix [φ(s̄i)]
N
i=1.

Let Y denote the N × 1 matrix [vi]
N
i=1.

Return
(
XT X

)−1
XT Y as an estimate of wHC−vf

(D) .
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describe this approach.

Suppose we have a data set Z with N pairs of the form (afterstate

features, afterstate value under πHC). Our main operation is to perform lin-

ear regression on this data to obtain a 22-dimensional weight vector w. Now

consider splitting Z into two halves, Z1 and Z2, performing linear regression in-

dependently on each, and obtaining corresponding vectors w1 and w2. Surely

we may conclude that we have not collected a sufficient amount of data—

that is, N is not large enough—if we find that w1 and w2 are “substantially

different”. On the other hand, if w1 and w2 are “close enough”, we can be

confident that N is large enough. To improve our confidence that w1 and w2

are not close enough merely due to a lucky split of Z, we can perform several

independent splits of Z, and average the similarity between the w1 and w2

arising from each split. Straightforward indicators of the similarity between

w1 and w2 could be, for instance, the angle between these vectors, or some

norm of w1−w2. However, the more appropriate similarity index should com-

pare not w1 and w2 by themselves, but the predictions that result from them.

We define two such similarity measures, which we describe next.

Mean Split Prediction Difference: We define the “prediction difference”

between vectors w1 and w2 as:

√
1

|Z|
∑

s̄∈Z

{(w1)T φ(s̄)− (w2)T φ(s̄)}2.

This formulation leads to a natural scaling of the elements of w1 and w2

by the feature vector φ, before the weighted L2 norm of the resulting difference

vector is computed. In our experiments, we average the prediction difference
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over 100 independent splits of our data, and denote the resulting average the

Mean Split Prediction Difference (MSPD). As we collect more data—that is,

as the size of Z increases—we expect the MSPD of Z to converge to 0.

Mean Split Policy Similarity: Recall that ultimately we want to evaluate

the performance of the greedy policy that wHC−vf
(D) induces. Correspondingly

we define a second measure to compare the policies that result from splitting

Z and performing linear regression on the splits. Let w1 and w1 be the co-

efficients obtained from the split, and let π1 and π2 be greedy policies with

respect to (w1)
T φ and (w2)

T φ, respectively. Let us say that policies π1 and

π2 agree on some state s iff π1(s) = π2(s). To assess the similarity between π1

and π2, we measure the fraction of states on which they agree. Naturally, this

measurement would be most meaningful when we weight individual states by

the probability π1 or π2 would visit them. Formally we define sim(π1, π2) to be

the expected fraction of states on which π1 and π2 agree, among the states en-

countered while following π1 through an entire episode. We define sim(π2, π1)

similarly, and take the “policy similarity” of π1 and π2 to be sim(π1,π2)+sim(π2,π1)
2

.

We compute the Mean Split Policy Similarity (MSPS) of a data set Z by aver-

aging the policy similarity resulting from 100 random splits. We expect that

as more data get collected in Z, its MSPS will tend towards 1.

Despite collecting 1,000,000 data points under each of our distributions,

unfortunately we do not observe perfect scores either for the MSPD or MSPS of

our data. Figure 4.10 plots these measurements as a function of the amount of

data used in our Monte Carlo simulations. In all cases, while we do find steady

improvement in the measurements as we train on more data, we also find that

there is significant room for further improvement. Unless we exceed machine
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precision, it is unlikely that we will get an MSPD score of zero. However, we

do expect that weight vectors in some small neighborhood of wHC−vf
(D) will all

induce the same policy, and so, indeed MSPS can converge to 1 in practice.

Based on the trends in the graphs, one might conjecture that about ten times

as much data would be needed for such convergence to occur.

In summary our Monte Carlo estimate of wHC−vf
(D) , and specifically of

πHC−vf−greedy
(D) , the greedy policy thereby induced, remains imperfect as a con-

sequence of the high stochasticity in Tetris. Nevertheless, note that the MSPS

under all distributions is still greater than 90%. For the remainder of this chap-

ter, we treat our Monte Carlo estimates of wHC−vf
(D1) , wHC−vf

(D2) , and wHC−vf
(D3) as

though they are perfect. We believe that this concession does not alter the

nature of the results to follow.

4.3.3 Greedy Policy Induced by Approximate Value Function

Having estimated wHC−vf
(D1) , wHC−vf

(D2) , and wHC−vf
(D3) to a reasonable de-

gree of precision, we confront the question that this chapter set out to answer:

how well do the greedy policies resulting from these weight vectors perform?

Table 4.4 records the mean lines per episode cleared by policies πHC−vf−greedy
(D1) ,

πHC−vf−greedy
(D2) , and πHC−vf−greedy

(D3) . In all three cases, the performance is sig-

nificantly lower than that of πHC . Taken together, these results establish that

Tetris, when considered with the representation introduced by Bertsekas and

Tsitsiklis, suffers the same fate of Baxter and Bartlett’s example. That approx-

imate policy improvement fails under three distinct weighting distributions is

an indication of the primacy of representation in determining its success.

It must be noted that practical constraints on time prevent us from

replicating our experiments on policies other than πHC . Even so, we consider
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Figure 4.10: Convergence of Monte Carlo simulation. Under each of three
weighting distributions, the Mean Split Prediction Difference (MSPD) and
the Mean Split Policy Similarity (MSPS) (explained in Section 4.3.2) as a
function of training data size.
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Table 4.4: Results of approximate policy improvement.

Policy Mean lines per episode

πHC−vf−greedy
(D1) 70± 1

πHC−vf−greedy
(D2) 28± 1

πHC−vf−greedy
(D3) 29± 1

πHC 1009± 10

it unlikely that approximate policy improvement would succeed when applied

to other well-performing Tetris policies. In fact, in their experiments applying

the λ-policy iteration algorithm to this task, Bertsekas and Tsitsiklis (1996,

see page 438) report a gradual degradation in performance beyond a certain

number of iterations. Based on the experiments in this chapter, we hypothesize

that the reason for such degradation is the incapacity of the representation to

consistently support successful policy improvement.

We conclude this section with a series of graphs that visually depict the

mismatch between the objectives of (1) approximating some value function

well, as defined through a suitable norm, and (2) realizing policies with high

values. These graphs are displayed in figures 4.11, 4.12, and 4.13. Below

we describe Figure 4.11, which shows the value function approximation error

under the D1-weighted norm at different weight settings in the vicinity of

wHC−vf
(D1) , and also the performance of the policies induced by the same weight

settings. Figures 4.12 and 4.13 follow the same scheme as Figure 4.11, but
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corresponding to weighting distributions D2 and D3, respectively.

Figure 4.11 comprises two sets of plots: the top two plots provide al-

ternate views of the same data, and likewise, the bottom two plots display

the same data. The top plots show the approximation error (the L2 norm

weighted by D1) associated with different weight vectors. The center of the

plots corresponds to wHC−vf
(D1) ; the other weight vectors shown in the graphs

vary from wHC−vf
(D1) only along the dimensions corresponding to numHoles and

maxHeight. As we might expect, the approximation error achieves its lowest

value at the setting corresponding to wHC−vf
(D1) , and gradually increases as we

move away from the minimum.

The x and y axes in the two bottom plots in Figure 4.11 exactly match

those of the top plots. However, while the top plots show the value func-

tion approximation error, the bottom plots show the mean lines per episode

achieved by policies that are greedy with respect to the corresponding weight

vectors. As reported in Table 4.4, we observe that πHC−vf−greedy
(D1) , the policy

induced by wHC−vf
(D1)

, clears about 70 lines per episode.

An interesting phenomenon becomes apparent as we view the neigh-

borhood of wHC−vf
(D1) in the bottom plots. In particular as the numHoles and

maxHeight coefficients are both decreased, we observe a dramatic increase in

the value of the resulting policies. It is rather ironic that in such close prox-

imity of wHC−vf
(D1) , which approximates V πHC

well but clears only 70 lines per

episode, there exists a weight configuration that does not approximate V πHC

nearly as well, but clears more than 7,000 lines per episode! The plots in

figures 4.12 and 4.12 also display a similar pattern. In all these cases, it ap-

pears that it would be a profitable strategy to search for weight configurations

in the proximity of wHC−vf
(D) with the aim of maximizing the performance of
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Figure 4.11: Plots showing the value function approximation error (above) and the value

of the induced policy (below) for a range of weight vectors in the vicinity of wHC−vf

(D1)
. In

all the plots, the x and y axis vary the coefficients corresponding to the numHoles and

maxHeight features, respectively. The 20 elements of the weight vector not shown in the

plots correspond to those under wHC−vf

(D1)
. Detailed explanations are provided in the text.
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Figure 4.12: Similar plots as those in Figure 4.11, but with D2 as the weighting
distribution.
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Figure 4.13: Similar plots as those in Figure 4.11, but with D3 as the weighting
distribution.
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the resulting policy. In Chapter 6, we develop a method wherein VF and PS

methods are applied in sequence, and which indeed proves fairly successful.

4.4 Summary and Discussion

This chapter, like the previous one, investigates the relationship be-

tween representations and learning methods. In Chapter 3, the performance

of VF and PS methods was compared on an abstract problem class, in which

representation could be systematically varied. A clear result that emerged

from these experiments was that VF methods do not perform as well as PS

methods when the representation (in particular the expressiveness of the gen-

eralization scheme) is deficient. In this chapter, we have gone a step further to

analyze why VF methods are affected more adversely by poor representations

than are PS methods. Rather than study this phenomenon in a general and

simplified context, we have focused on an existing benchmark task, on which

previous work points to a significant gap between the performance of VF and

PS methods. Specifically we consider Tetris, the popular video game, which

has been used as a benchmarking task for over a decade.

In their early work outlining the limitations of value function-learning

with imperfect representations, Baxter and Bartlett (2001) provide a concise

illustration of an MDP and a representation scheme under which the best

approximation of the optimal value function gives rise to a sub-optimal policy.

In this chapter, our aim is to verify whether a similar phenomenon is behind

the failure of VF methods in Tetris.

Several attributes of the Tetris MDP make it a hard problem for learn-

ing. These attributes include the large number of actions that can be taken

from each state, the high stochasticity in transitions, and importantly, that

138



“better performance” implies “longer episodes”. Rather than testing the ac-

tual performance of a VF learning method that has to deal with these prob-

lematic factors, we directly test the limit that such a method can achieve for

a given choice of representation. Specifically we use a linear representation

introduced by Bertsekas and Tsitsiklis (1996) in our evaluations. Under the

resulting architecture, the large number of actions from each state is not a con-

cern (except for a computational overhead) since a forward model is available,

and we can learn an evaluation function over afterstates. To cope with the

high stochasticity in transitions, we perform extensive Monte Carlo simulations

(for several days on a computing cluster). Also, conceding the impracticality

of evaluating policies that clear more than a few thousands of lines per episode,

we hand-code a policy, πHC , that clears roughly 1,000 lines per episode.

It appears unlikely that VF learning algorithms—without access to

restarts and to the sheer scale of Monte Carlo simulations we undertake in

our experiments—can converge in a reasonable amount of time to V̂ πHC , the

best approximation of the value function of πHC . However, our philosophy

is to grant such methods the improbable concession that indeed they will

converge to V̂ πHC , and then consider the consequences of having done so. We

note that V̂ πHC could be defined based on multiple weighing distributions,

and therefore examine three natural choices: D1, the stationary distribution

of afterstates under πHC ; D2, the stationary distribution of afterstates under

a random policy; and D3, a uniform distribution over the afterstate space.

For each of these weighting distributions, we estimate the best approximation

value functions: V̂ πHC

(D1) , V̂ πHC

(D2) , and V̂ πHC

(D3) , respectively. Next we consider greedy

policies resulting from these approximate value functions, and find that they

clear 70, 28, and 29 lines per episode, respectively. In short our experiments
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demonstrate that approximate policy improvement starting with πHC results

in policies that are significantly inferior. The implication is that the linear

generalization scheme employed is incapable of delivering policy improvement,

which is a key element of value function-based learning of control.5

The work reported in this chapter is predated by a similar line of re-

search undertaken by Szita and Szepesvári (2010b). Unfortunately this author

remained unaware of their work until after completing the experiments for this

chapter. Szita and Szepesvári introduce “SZ-Tetris”, a simplified form of the

game in which only S and Z tetrominoes are generated (with equal probabil-

ity). These tetrominoes are the most “unwieldy” among the standard seven,

and consequently, even well-tuned policies for SZ-Tetris do not clear more

than a few hundred lines. The authors argue that the short episodes and the

reduced stochasticity make SZ-Tetris a useful benchmark for understanding

the limitations of value function-based methods for RL. Using the benchmark,

they conduct experiments with different features, learning methods, and ex-

ploration techniques. The fundamental difference between the experiments

reported in this chapter and those of Szita and Szepesvári is that rather than

evaluate learning methods, we directly test the limit of the best results a VF

method might achieve (in terms of approximating the value function). We

demonstrate that subsequent approximate policy improvement could indeed

degrade performance. Our conclusion concurs with Szita’s succinct summing-

up in a presentation on the subject: “with lame features, good approximation

6= good control.”6 Had we conducted the experiments reported in this chap-

5Note that we classify LSTD(1) as a batch method (under the category “MB”) in Ap-
pendix C. With the linear architecture used in our experiments, MB methods could be
expected to suffer the same fate as VF methods.

6See: http://barbados2011.rl-community.org/program/SzitaTalk.pdf.
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ter on SZ-Tetris, rather than on (standard) Tetris, it is likely that we would

have obtained more reliable Monte Carlo estimates of the best value func-

tion approximation (as measured using quantities MSPS and MSPD defined

in 4.3.2).

We view Tetris as a fairly extreme example of a task in which im-

perfect representations thwart VF methods from learning effective policies.

Nevertheless, anywhere VF methods are applied in practice, they are likely to

be affected, to varying degrees, by the phenomenon isolated here. We hope

that our illustration draws the attention of researchers to the important role

representations play within the overall architecture of a learning agent.

One important line of research to extend our work is that of developing

representations for Tetris that can enable VF methods to learn much better

policies than they current are able. We hope that our descriptions in this

chapter of the task, learning architectures, and related work, will aid interested

researchers in pursuing such research. For a start, it would be useful to examine

whether intuitive features other than the 22 that we have considered here might

improve the performance of approximate policy improvement. The interested

reader is encouraged to review the summary of features provided by Thierry

and Scherrer (2010a, see Table 1). We think of it as an open challenge to

demonstrate that given a reasonable representation, VF methods can learn

policies that clear millions of lines per episode in Tetris. To this end, it might

be convenient to first experiment within a more constrained environment such

as SZ-Tetris.

The results in this chapter also lend support to a complementary per-

spective that constitutes the basis of this dissertation. If a researcher imple-

menting, say, a VF method on some problem, fails to make progress, then how
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might he/she proceed? Working on improving the representation is one pos-

sibility; the other option is to change the learning algorithm itself. Surely the

spectacular results achieved by Szita and Lőrincz (2006) by using the cross-

entropy method on the same representation used by Bertsekas and Tsitsiklis

validate the merit in the latter alternative. We hope that our work in this

chapter prompts further research on intelligently picking learning methods

when provided a representation.

Our experiments in this chapter provide some insight on how repre-

sentation handicaps VF methods in Tetris. It would be equally interesting

to probe more deeply into the properties of Tetris that allow PS methods to

succeed even with fairly simple representations.

Along with Chapter 3, this chapter has presented experiments and anal-

ysis to understand the role of representations in learning. The next two chap-

ters in the dissertation act on the lessons we have thereby learned. One of the

observations we made in Chapter 3 was that even if PS methods are able to

perform well with poor representations, they are relatively sample-inefficient.

In Chapter 5, we investigate a mechanism for improving the sample-efficiency

of PS methods such as CMA-ES, which rely only on identifying the best sub-

set among a population of policies in order to determine the next generation.

We formalize subset selection in a multi-armed bandit setting, devise sampling

algorithms for this setting, and derive theoretical bounds on the sample com-

plexity. In Chapter 6, we explore possibilities for integrating the strengths of

VF and PS methods. We proceed by way of two case studies, and demonstrate

the effectiveness of our learning strategies both on the suite of parameterized

learning problems developed in Chapter 3, and on the more complex task of

robot soccer Keepaway (Stone et al., 2005).
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Chapter 5

Subset Selection and Efficient Policy Search

This chapter presents the first of the two major algorithmic contributions of

this dissertation, which were introduced in Section 1.3.3. Specifically this chap-

ter considers the general, widely applicable problem of selecting, from n real-

valued random variables, a subset of size m of those with the highest means,

based on efficiently sampling the random variables. This “subset selection”

problem is relevant as a subroutine within ranking-based policy search methods

such as CMA-ES and the cross-entropy method (CEM). Recall from Chapter 3

that these methods tend to be less sample-efficient than value function-based

methods. When fitness evaluations are noisy (as they are while evaluating poli-

cies in stochastic MDPs), efficient subset selection can significantly improve

the sample-efficiency of policy search. Subset selection also finds application

independently in a variety of other areas, such as simulation, industrial engi-

neering, and on-line advertising.

In this chapter, we present a detailed study of the subset selection problem. We

formalize the problem using stochastic multi-armed bandits, where each arm

corresponds to a random variable (sections 5.1 and 5.2). We consider three

relevant operational settings: probably approximately correct (PAC) selection

(Section 5.3), simple regret (SR) minimization (Section 5.4), and cumulative

regret (CR) minimization (Section 5.5). Under all three settings, we generalize

existing problem formulations that focus on the selection of a single arm (that
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is, m = 1) to instead select a subset of arms. In the PAC setting, we intro-

duce a new algorithmic framework, using which we derive sample complexity

bounds that improve existing ones when instantiated with m = 1. In the SR

and CR settings, our algorithms and regret bounds essentially generalize ex-

isting algorithms and bounds. We demonstrate that our algorithm for the SR

setting indeed improves the performance of CMA-ES and CEM on the suite

of parameterized learning problems introduced in Chapter 3. The algorithms

developed in this chapter apply well beyond the realm of this dissertation.

In chapters 3 and 4, we presented experimental studies investigating

the effect of representations on VF and PS methods. In this chapter, we

present an algorithmic contribution that is directly motivated by the results

from the previous chapters. Specifically we noticed in Chapter 3 that PS

methods tend to be significantly less sample-efficient than VF methods, even

if they are relatively more robust towards severely deficient representations.

Can PS methods such as CMA-ES and the cross-entropy method (CEM) be

made more sample-efficient?

A main source of inefficiency in ranking-based PS methods such as

CMA-ES and CEM is in their selection routines. Recall that these methods,

and several other evolutionary strategies, loop over the following steps:

1. Generate a population of individuals.

2. Evaluate the fitness of each individual.

3. Select a fixed-size subset of individuals with the highest fitness, and use

the selected individuals to seed the next generation.
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In the context of RL, each “individual” corresponds to a policy, and

“fitness” equates with the expected long-term reward accrued by policies. In

general since there is stochasticity in MDPs, fitness estimation requires aver-

aging over a sufficient number of rollouts (or episodes) to reduce noise. Herein

arises the question of how many rollouts must be performed with each policy in

order to achieve reliable selection of the best subset of policies. In Chapter 3,

under all the PS methods we implemented, we performed the same number

of rollouts on each individual in every generation. However, surely we could

be more judicious in allocating fitness evaluations. Suppose we notice after

only a few evaluations that some individuals are clearly superior (or inferior)

to others, it seems natural that we must devote fewer evaluations (or samples)

to such individuals in the future, when compared to individuals whose rank

appears more uncertain.

This chapter presents an extensive investigation into the subset selec-

tion problem. While our motivations stem from the relevance of the problem to

policy search, we treat the problem in isolation and study it within the formal

framework of multi-armed bandits. In particular we consider three problem

settings: probably approximately correct (PAC) subset selection, simple regret

(SR) minimization, and cumulative regret (CR) minimization. Under each of

these settings, we design algorithms for subset selection that generalize pre-

vious work devoted to identifying just the single best arm (a subset of size

m = 1) in a an n-armed bandit. Our algorithms under the PAC setting are

qualitatively distinct from the “elimination”-based approaches pursued in pre-

vious work, and indeed achieve better bounds when instantiated in the m = 1

case. Under the SR and CR settings, we generalize previous work. When

we deploy our algorithm for the SR setting as a selection subroutine within
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CMA-ES and CEM, we find that the performance of these PS methods indeed

improves on the parameterized learning problems introduced in Chapter 3.

The remainder of this chapter is organized as follows. In Section 5.1, we

provide a brief background of the subset selection problem and its formulation

within the PAC, SR, and CR frameworks. In Section 5.2, we provide formal

definitions of the PAC-m, SR-m, and CR-m problems. Each of sections 5.3,

5.4, and 5.5 is devoted to one of these settings, presenting our algorithms along

with accompanying analysis. Additionally Section 5.4 includes experimental

results applying our algorithms for SR-m within CMA-ES and CEM. While we

present the statements of our main formal results in sections 5.3, 5.4, and 5.5,

we defer the proofs to Section 5.6, where we present the proofs in aggregate.

We conclude the chapter with a summary and discussion in Section 5.7.

5.1 Subset Selection: Background

The problem of efficient subset selection is as follows: given n real-

valued random variables, identify m among them with the highest means,

based on efficiently sampling the random variables. This basic problem finds

application in a variety of contexts, and over the years, has been studied un-

der various guises. In an early study, Becker (1961) considers the problem of

confidently identifying the stocks of poultry laying the highest-quality eggs,

based on samples of eggs. Dalal and Srinivasan (1977) devise sampling strate-

gies for advertising “pretests”, to help determine which subset among a pool

of advertisements would be the most profitable to ultimately publish in some

magazine or newspaper. The advent of the Internet has resulted in a similar

interest within on-line advertising (Kale et al., 2010). Owing to these and other

applications in systems simulation, the subset selection problem has received a
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significant amount of attention from the operations research and industrial en-

gineering community (Koenig and Law, 1985; Sullivan and Wilson, 1989; Kim

and Nelson, 2007). As mentioned earlier, our study of subset selection within

this dissertation is motivated by its occurrence as a crucial subroutine within

certain evolutionary (policy search) algorithms, in which the fittest individuals

in a population must be identified based on noisy samples of fitness (Schmidt

et al., 2006).

In this chapter, we adopt the framework of stochastic multi-armed ban-

dits (Robbins, 1952; Berry and Fristedt, 1985) to ground our pursuit of algo-

rithms for subset selection. Multi-armed bandits are concise abstractions of

the problem of sequentially exploring a number of alternatives and picking

desirable ones. A classical example is the case of a physician who has several

drugs for treating a certain illness. Over time spent testing the effects of these

drugs on patients, the physician must learn to administer the more effective

ones (Chernoff, 1967). Whereas this physician might ultimately identify the

single best drug for the illness, in our applications of interest, the final solution

corresponds to a fixed-size subset from the set of alternatives. To model subset

selection, we consider an n-armed bandit (each of whose arms corresponds to a

random variable), in which our task is to select m arms that yield the highest

expected rewards. Now, suppose indeed we design an algorithm for this sub-

set selection task, how might we evaluate it? Depending on the application,

several natural alternatives arise in terms of defining the precise objectives

for efficient subset selection. We consider three such objectives: probably ap-

proximately correct (PAC) selection, simple regret (SR) minimization, and

cumulative regret (CR) minimization. We proceed to introduce these settings

against a backdrop of related work.
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5.1.1 PAC Setting

Under the PAC setting, an algorithm is expected to return a subset of

m arms that, with high probability, is of a high quality. For given specifications

of the (mistake) probability and the quality, we desire algorithms that satisfy

the specifications based on a minimal amount of sampling. The theoretical

basis for our work in this setting is provided by recent research from Even-Dar

et al. (2006). In their formulation, the aim is to minimize the total number

of samples needed to reliably identify an arm with an expected reward that is

within ǫ of the maximum achievable (an “ǫ-optimal” arm). The parameter ǫ

serves to specify tolerance. Casting the problem into a PAC framework, Even-

Dar et al. (2006) provide an algorithm that identifies an ǫ-optimal arm in an

n-armed bandit with probability at least 1− δ, incurring a sample complexity

that is O( n
ǫ2

log(1
δ
)). This sample complexity matches, up to constants, a lower

bound derived by Mannor and Tsitsiklis (2004).

In this chapter, we generalize the problem formulated by Even-Dar

et al. (2006): our aim is to identify m arms of an n-armed bandit such that

the expected reward of each chosen arm is at least pm− ǫ, where pm is the mth

highest expected reward among the bandit’s arms. We denote this problem

“PAC-m” (thus, the special case studied by Even-Dar et al. (2006) is PAC-1).

We devise algorithms for PAC-m and analyze their sample complexity. First

we consider “fixed-sample-complexity” (FSC) algorithms, whose sample com-

plexity is determined by n, m, and relevant PAC parameters ǫ and δ. Among

such algorithms, we show that our “Halving” algorithm enjoys a sample com-

plexity that is O( n
ǫ2

log(m
δ
)). The main practical drawback of FSC algorithms

is that they are designed for the worst case: their expected sample complexity

on a problem does not reduce even if the actual “degree of separation” be-
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tween the highest m and the lowest n−m arms is large. In response we design

“variable-sample-complexity” (VSC) algorithms for PAC-m, whose termina-

tion depends on the actual rewards obtained during the sampling procedure.

We show that the expected sample complexity of these “fully sequential” algo-

rithms (Girshick, 1946a,b; Wald, 1947) can be bounded in terms of a natural

parameter measuring problem hardness. Indeed the sample complexity bounds

of our VSC algorithms for PAC-1 improve the best ones existing in the liter-

ature (Even-Dar et al., 2006). Another novel feature of our VSC algorithms

is that unlike elimination-based algorithms, they have a clear decoupling be-

tween the sampling strategy and the stopping criterion. Consequently we can

apply our stopping criterion with any arbitrary sampling strategy in order to

yield a PAC algorithm.

Among the settings we consider in this chapter, the PAC setting is

philosophically the closest to the study of subset selection within the opera-

tions research community. “Ranking and selection” is today an established

area of study within operations research, as evinced by the existence of several

textbooks on the topic (Bechhofer et al., 1995; Gibbons et al., 1999; Gupta

and Panchapakesan, 2002). As with our PAC setting, typical problem for-

mulations in the ranking and selection literature involve specifying quality

requirements on the returned solution, and attempting to minimize the num-

ber of samples needed to achieve the desired quality. The “indifference zone”

formulation (Bechhofer et al., 1995, see chapter 2) is very similar to our PAC

setting: solutions are deemed correct if the worst among the selected arms do

not fall below some indifference range relative to the best (as determined by ǫ

in PAC-m). The objective is to maximize the probability of selecting correct

solutions. Under the “subset selection” framework (Bechhofer et al., 1995, see
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chapter 3), the size of the subset returned is itself a random variable: the ob-

jective is to return a “small” subset that has a high probability of containing

the best arms.1 A third problem formulation involves “multiple comparison”

approaches (Bechhofer et al., 1995, see chapter 4), wherein confidence intervals

are obtained at a specified level of significance to simultaneously cover, say,

pairwise differences between the means of the arms.

Predominantly, the ranking and selection literature has focused on de-

vising rules to set sample sizes under specific assumptions on the distributions

of the bandit arms. For example, the textbook by Gibbons et al. (1999) pro-

vides tables for normal, multinomial, and gamma distributions. By contrast,

in this chapter, we remain agnostic towards the specific parametric form of the

arms’ distributions: we only assume that the distributions have a bounded sup-

port, in order that we may apply Hoeffding’s inequality. Our approach is in line

with the objective of obtaining fundamental distribution-independent bounds

on the sample complexity. In practice we believe that it could be profitable

to meld the distribution-dependent rules devised in the ranking and selection

literature with the economical sampling strategies in our VSC algorithms. We

hope to investigate this possibility in future research.

5.1.2 Simple Regret Setting

Obtaining samples from bandit arms is typically expensive, and in some

situations, we may not be able to afford enough samples to achieve a preset

PAC criterion. Rather, the more meaningful modeling approach in some cases

1Thus, our use of the term “subset selection” to describe the work in this chapter (in
which we always assume that the size of the returned subset is fixed to be m) is not to be
confused with the technical interpretation of the term in the ranking and selection literature
(in which the size of the returned subset is random).
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would be to assume that we are given a fixed number of samples, T , and con-

sider how we may best allocate these samples to the arms such that Selected,

the m-sized subset returned after T rounds, is as close as possible to optimal. If

pa is the mean of the distribution corresponding to arm a in a bandit instance,

and Top is an m-sized subset containing the arms with the m highest means,

then a natural measure of the sub-optimality of an algorithm on the bandit

instance is its “simple regret”, defined as: E

[∑
i∈Top pi −

∑
a∈Selected pa

]
.

The simple regret setting is an instance of budgeted learning, wherein

sampling each arm is associated with a cost, and there is a predefined limit for

the total sampling cost. Certain computational problems associated with bud-

geted learning—such as computing sampling strategies for identifying the best

arm, when prior distributions on the means of the arms are known—have been

shown to be hard (Madani et al., 2004). Nevertheless, recent work has come

up with approximate strategies for such computational problems (Guha and

Munagala, 2007) and heuristic treatments for related learning problems (Tran-

Thanh et al., 2010).

The definition of simple regret we have provided above generalizes an

existing definition for m = 1 (Bubeck et al., 2009; Audibert et al., 2010).

Indeed, in this chapter, we generalize the problem formulation introduced by

Audibert et al. (2010) for the case of m = 1, referring to our generalized prob-

lem as SR-m. Correspondingly we also generalize their sampling algorithms,

definitions of problem hardness, analyses, and bounds on the simple regret.

We then apply the generalized algorithm as a subset selection routine within

CMA-ES and CEM.
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5.1.3 Cumulative Regret Setting

Under both PAC-m and SR-m settings, algorithms are evaluated solely

based on the subset of arms they ultimately return—the actual sequence of

payoffs an algorithm receives during the course of its run is ignored by the

performance measures. In this sense, PAC-m and SR-m can be considered

“off-line” settings. Now, consider an advertising agency that has a pool of ad-

vertisements to display on a web page, but can only display a small subset of

them on any given day. The profits earned by the agency depend on the num-

ber of clicks being generated through the advertisements. In such a scenario,

it would not be in the agency’s interest to ignore the rewards (clicks) that

are being accrued as the algorithm is learning. Rather, the most appropriate

evaluation measure of algorithms would be the amount of clicks they generate

even while they adapt.

To formalize the above requirement, let us consider a bandit instance

that will be sampled for T rounds. Unlike in the PAC-m and SR-m settings,

now we assume that an m-sized subset of arms, At, will be sampled during

every round t. If so, the expected rewards that will be accrued by the al-

gorithm, through round T , would amount to E

[∑T
t=1

∑
a∈At pa

]
. Maximizing

this quantity becomes equivalent to minimizing the “cumulative regret”, which

is defined to be E

[∑T
t=1

(∑
i∈Top pi −

∑
a∈At pa

)]
(note that the variable m is

implicit in this definition, as the size of the sets Top and At).

Traditionally, cumulative regret has been the focus of studies involving

multi-armed bandits (Robbins, 1952): in order to minimize cumulative regret,

algorithms have to achieve an optimal balance between exploration (sampling

those arms about whose means there is uncertainty) and exploitation (sampling

seemingly optimal arms to accumulate greater payoffs). By contrast note that
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our PAC-m and SR-m problems are akin to “pure exploration” settings, where

the rewards earned while learning are inconsequential (Bubeck et al., 2009).

For the case of m = 1, Lai and Robbins (1985) provide sampling al-

gorithms that asymptotically achieve the optimal cumulative regret. Auer

et al. (2002a) show that optimal cumulative regret can be achieved in finite

time using the UCB algorithm. In this chapter, we generalize the UCB algo-

rithm appropriately for the CR-m setting. Thereby we obtain bounds on the

cumulative regret that generalize the bounds for the m = 1 case.

It is worth noting here that in this chapter, our attention is restricted to

stochastic bandits; that is, the rewards from each arm are assumed to be drawn

i.i.d. from a fixed distribution. By contrast, several studies consider adversarial

settings, in which no such statistical assumptions are made (Auer et al., 2002b).

Specifically relevant to our focus on subset selection is the “non-stochastic

bandit slate” formulation of Kale et al. (2010), wherein a slate (a fixed number

of distinct arms) must be selected at every time step. The authors consider

both ordered slate problems (under which the selected arms must be ordered)

and unordered slate problems (like our setting, where the selected arms are

unordered). In turn, they devise algorithms for these problems both under the

“bandit” assumption (every round, only the reward from the sampled arm is

seen) and the “experts” assumption (rewards corresponding to all the arms

recommended by a set of experts are visible). In all cases, cumulative regret

is defined with respect to having taken the best action(s) in hindsight against

some adversary.

In most bandit formulations (including ours and that of Kale et al.

(2010)), an arbitrary arm (or subset of arms) may be sampled during every

round. However, in the “sleeping experts and bandits” setting Kleinberg et al.
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(2010), an adversary determines a subset of arms at every round—only arms

from this subset may be sampled. Technically, this setting has little in common

with CR-m, where it is the learning agent that has to select a subset of arms

every round.

5.2 Problem Definitions and Related Terminology

In this section, we provide a formal definition of stochastic multi-armed

bandits, and specify templates for algorithms under each of our three problem

settings. We also introduce useful notation and define terms related to problem

hardness.

5.2.1 Stochastic Multi-armed Bandits

We consider an arbitrary instance of an n-armed bandit, n ≥ 2; let

its arms be numbered 1, 2, . . . , n. Each sample (or “pull”) of arm a yields a

reward of either 0 or 1, generated randomly from a fixed Bernoulli distribution

with mean pa ∈ [0, 1]. Indeed each bandit instance is completely determined

by the distributions corresponding to its arms. Without loss of generality, we

assume that the indices of the arms are in non-increasing order of their means,

with ties broken deterministically using some fixed rule. Thus:

p1 ≥ p2 ≥ . . . ≥ pn. (5.1)

The random variables generating rewards for the arms are mutually

independent.2 Arm a is defined to be (ǫ, m)-optimal, ∀ǫ ∈ (0, 1), ∀m ∈

2The algorithms and analysis in this paper easily extend to the case where the distribu-
tions of the arms have bounded ranges with width not exceeding some fixed, known quantity.
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{1, 2, . . . , n− 1}, iff

pa ≥ pm − ǫ. (5.2)

We find it convenient to denote as Arms the set of all arms in our

n-armed bandit instance:

Arms
def

= {1, 2, . . . , n}.

We also define two sets, Top and Bot, as follows:

Top
def

= {1, 2, . . . , m}, and

Bot
def

= {m + 1, m + 2, . . . , n}.

We see from (5.1) and (5.2) that every arm in Top is (ǫ, m)-optimal.3

Hence, there are at least m (ǫ, m)-optimal arms. Let Good be the set of all

(ǫ, m)-optimal arms, and let the set Bad contain all the remaining arms. In

general: m ≤ |Good| ≤ n and 0 ≤ |Bad| ≤ (n−m).

3Note that the set Arms depends on n, the set Top depends on m, and the set Bot

depends on both n and m. Many other variables we subsequently define in this chapter
also depend on n and m, which are the primary inputs in our subset selection problem.
To reduce notational burden, we leave these dependencies on n and m implicit unless the
context demands otherwise. Thus, we stick with Arms, Top, and Bot rather than use, say,
Arms(n), Top(m), and Bot(n, m). However, we find it appropriate to denote our problem
settings PAC-m, SR-m, and CR-m (rather than PAC, SR, and CR), as we specifically
compare these problem settings with PAC-1, SR-1, and CR-1, respectively.
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5.2.2 Algorithms

A bandit instance may be sampled sequentially in rounds. Under PAC-

m and SR-m, during each round t ∈ {1, 2, . . .}, some arm, at, is selected to be

sampled. By contrast, under CR-m, during each round t ∈ {1, 2, . . .}, some

m-sized subset of arms, At, is selected to be sampled. The outcome of the

sampling is a pair of the form (arm, reward) under PAC-m and SR-m, and

m pairs of the form (arm, reward) under CR-m. In each case, the reward

is drawn as an independent sample from the distribution associated with the

arm. We refer to the sequence of outcomes up to (and excluding) round t

as the history at round t. Below we provide full specifications of algorithms

under the PAC-m, SR-m, and CR-m settings.

PAC-m. Under PAC-m, on each round t, an algorithm must either (1) select

an arm at to sample, or (2) terminate and return an m-sized subset of Arms.

Problem parameters n, m, ǫ, and δ are provided as input to the algorithm;

also, during round t, the history at round t is available to the algorithm. Note

that we do not require the m arms returned by the algorithm to be in any

particular order.

For δ ∈ (0, 1), an algorithm A is defined to be (ǫ, m, δ)-optimal, iff for

every bandit instance: (1) every run of A terminates with probability 1, and

(2) with probability at least 1− δ, every arm returned by A is (ǫ, m)-optimal.

Note that the PAC-1 setting (for which (ǫ, 1, δ)-optimal algorithms are to be

designed) matches the problem formulation of Even-Dar et al. (2006).

The sample complexity of algorithm A during a terminating run is the

total number of pulls it performs before termination. Our objective in this

chapter is to design (ǫ, m, δ)-optimal algorithms and to bound the sample
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complexity of their runs. First, in Section 5.3.1, we propose “fixed-sample-

complexity” (FSC) algorithms, which, for given problem parameters (n, m, ǫ,

and δ), incur exactly the same sample complexity on every run of every bandit

instance. Thus, in the context of FSC algorithms, we may refer to the sample

complexity of each run as the sample complexity of the algorithm itself; we

bound this sample complexity in terms of n, m, ǫ, and δ. In Section 5.3.2,

we design “variable-sample-complexity” (VSC) algorithms for PAC-m, which,

for given problem parameters and a given bandit instance B, can lead to runs

with different sample complexities. Thus, for a given bandit instance B, a VSC

algorithm may have different expected and worst case sample complexities. In

this case, again we bound the worst case complexity in terms of n, m, ǫ, and

δ, but importantly, we bound the expected sample complexity by a smaller

quantity that depends on the hardness of B. We also obtain high-probability

bounds on the sample complexity of runs on B.

Algorithms under PAC-m are governed by four parameters: n, m, ǫ,

and δ. In our problem definition above, we have purposefully set the ranges for

these parameters—n ≥ 2, m ∈ {1, 2, . . . n−1}, ǫ ∈ (0, 1), and δ ∈ (0, 1)—such

that they do not lead to trivial or impractical solutions. In particular, setting

n = 1; m = n; ǫ = 1; or δ = 1 would facilitate (ǫ, m, δ)-optimal algorithms

that do not need to sample the arms at all. Setting ǫ = 0 or δ = 0 would not

allow for (ǫ, m, δ)-optimal algorithms that can always terminate after a finite

number of samples.4

4If we only consider bandit instances in which pm > pm+1 (strict inequality), termination
can indeed be achieved in finite time while meeting the relevant PAC requirement even with
ǫ = 0. A similar possibility arises with δ = 0 for the set of bandit instances in which every
arm a is such that pa = 0 or pa = 1.
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SR-m. Under SR-m, on each round t, an algorithm must select an arm at to

sample. The algorithm is run for T rounds, where T ≥ n. After T rounds, the

algorithm must return a subset of size m; let us denote this subset Selected.

Problem parameters n, m, and T are provided as input to the algorithm, and

as under PAC-m, the history is available at each round. For a given bandit

instance, the simple regret of an algorithm is defined to be

E

[
∑

i∈Top

pi −
∑

a∈Selected

pa

]
,

where the expectation is over the probability space of the distributions of its

arms, and possible randomization of the algorithm. We aim to develop algo-

rithms that will have a low simple regret on every bandit instance.

CR-m. Under CR-m, algorithms are run for T rounds, where T ≥
⌈

n
m

⌉
. On

each round t ∈ {1, 2, . . . , T}, an algorithm must select an m-sized subset of

arms At to sample (however, the algorithm itself does not know T ). Observe

that under CR-m, the total number of samples will therefore be mT , whereas

under SR-m, it is T . To start with, the algorithm is provided n and m as in-

put parameters, and at each round t, it can use the current history to inform

its selection of At. Unlike in PAC-m and SR-m, the algorithm is evaluated

continuously, rather than solely based on the subset of arms selected at termi-

nation. The cumulative regret of an algorithm for a given bandit instance is

defined as

E

[
T∑

t=1

(
∑

i∈Top

pi −
∑

a∈At

pa

)]
, (5.3)
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where the expectation is over the probability space of the distribution of the

arms and possible randomization of the algorithm. We aim to develop algo-

rithms that have minimal cumulative regret on every bandit instance.

The three settings above share the ultimate goal of identifying m-sized

subsets of arms with high rewards. The main distinction between PAC-m and

SR-m on the one hand, and CR-m on the other, is that the latter needs to

achieve a profitable balance between exploration and exploitation, whereas the

former may focus solely on exploration. PAC-m and SR-m are philosophically

complementary: under PAC-m, algorithms must try to minimize the number

of samples needed to achieve a desired quality of selection, whereas under SR-

m, algorithms must maximize the quality of selection when specified a quota

of samples. These contrasts among the various settings lead to significant

technical differences in the algorithms we develop for them. Table 5.1 summa-

rizes the characteristics of the three problem settings and algorithm definitions

under each.

5.2.3 Hardness Quantities

Whereas the input parameters to our various algorithms are n, m, ǫ,

δ, and T , the performance bounds we obtain for the algorithms additionally

depend on the “hardness” of the specific bandit instances on which they are

applied. The one exception is that the sample complexity of our FSC algo-

rithms for PAC-m only depend on n, m, ǫ, and δ. A bandit instance is fixed by

the means corresponding to its arms (p1, p2, . . . , pn); recall from (5.1) that the

means are in non-increasing order. Below we define additional problem-specific

constants that occur in our bounds.
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Table 5.1: Summary of problem settings and associated algorithms. Under
LUCB, which is one of our algorithms for PAC-m, two arms get sampled
every round, rather than one.

Property PAC-m SR-m CR-m

Generalizes:
PAC-1 SR-1 CR-1
(Even-Dar (Audibert (Auer
et al., 2006) et al., 2010) et al. 2002)

Input n, m, ǫ, δ n, m, T n, m

Number of arms
1 1 m

sampled per round

Termination
Determined by

After T rounds After T rounds
algorithm

Requirement of Must be
None None

algorithm (ǫ, m, δ)-optimal

To minimize:
Sample

Simple regret Cumulative regret
complexity

We denote by ∆i,j the separation between the means of arms i and j:

∆i,j
def

= pi − pj .

In all three of our problem settings, note that it would be optimal to

select arms 1 through m (and discard arms m + 1 through n). Hence, arms m

and m + 1 assume a special significance in our analysis. We find it convenient

to use shorthand for the separation of arms in Top from arm m + 1, and the
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separation of arms in Bot from arm m. The quantity ∆a defines this separation

for arm a:

∆a
def

=

{
∆a,m+1 if 1 ≤ a ≤ m,

∆m,a if m + 1 ≤ a ≤ n.

Observe that ∆m = ∆m+1 = pm − pm+1. Let c denote the mid-point of

the means of arms m and m + 1:

c =
pm + pm+1

2
.

We have:

∀a ∈ Arms :
∆a

2
≤ |pa − c| ≤ ∆a. (5.4)

To see the inequality above, consider, without loss of generality, that

arm a is in Top. Then,

∆a = pa − pm+1 ≥ pa − c = pa −
pm + pm+1

2
=

∆a

2
+

pa − pm

2
≥ ∆a

2
.

For γ ∈ [0, 1], we denote the larger of ∆a and γ as [∆a ∨ γ] (the term

[∆a ∨ ǫ
2
] occurs in our bounds for PAC-m).

[∆a ∨ γ]
def

= max{∆a, γ}.

Larger values of ∆a in a bandit instance indicate a higher degree of

separation between the highest m and lowest n −m means corresponding to
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the arms; the quantities H1 and Hγ
1 defined below aggregate the individual ∆a

values to yield natural measures of problem hardness.

H1
def

=

n∑

a=1

1

∆2
a

.

Hγ
1

def

=

n∑

a=1

1

[∆a ∨ γ]2
.

Note that our definitions of ∆a and H1 generalize the same terms em-

ployed by Audibert et al. (2010) for the case of m = 1. The quantity Hγ
1 arises

in our analysis of VSC algorithms for PAC-m: note that Hγ
1 is well-defined for

γ > 0, and is upper-bounded by n
γ2 . Also note that H1 and Hγ

1 are at least n.

Audibert et al. introduce a second hardness quantity, H2 in their anal-

ysis of SR-1. For general m, let us define H2(i), for every arm i ∈ Top, as

follows:

H2(i)
def

= max
j∈Bot

j −m + 1

∆2
i,j

.

Notice that unlike H1, which is defined for the whole bandit instance,

H2 is defined only for arms i in Top. We may view H2(i) as an indicator of

the hardness of separating arm i from arms in Bot. The simple regret bounds

we derive in Section 5.4 contain terms of the form H2(i) for all i ∈ Top. Apart

from its occurrence as a term in our analysis, it is not clear whether H2(i) has

any independent significance. For m = 1, the quantity H2(1) is the same as

the quantity H2 defined by Audibert et al.

Observe that ∀i1, i2 ∈ Top : i1 < i2 =⇒ H2(i1) ≤ H2(i2); thus, H2(m)

is the largest among these terms. It it useful to bear in mind that H1 and

162



H2(m) are within only a small factor of each other. In particular the following

relationship between H1 and H2(m) generalizes a result shown for m = 1 by

Audibert et al. (2010); we include a proof in Appendix B.1.

H2(m) ≤ H1 ≤
(

m

2
+

n−m+1∑

k=2

1

k

)
H2(m). (5.5)

Note that
∑n−m+1

k=2
1
k
≤ ln(n−m + 1).5 In the next section, we present

algorithms for PAC-m. Sections 5.4 and 5.5 respectively address SR-m and

CR-m.

5.3 PAC Setting

In this section, we propose and analyze algorithms for PAC-m. First,

in Section 5.3.1, we consider FSC algorithms. In Section 5.3.2.1, we propose

“stopping rules” as a novel mechanism to decouple the sampling strategy of an

algorithm from the analysis of the algorithm’s mistake probability. Using this

principle, we can apply our stopping rules to any sampling strategy and derive

an (ǫ, m, δ)-optimal algorithm. This insight about stopping rules motivates our

VSC algorithms for PAC-m, which we present in sections 5.3.2.2 and 5.3.2.3.

5.3.1 Fixed-Sample-Complexity Algorithms

Recall that fixed-sample-complexity (FSC) algorithms are those whose

sample complexity (on every run on every n-armed bandit instance) is de-

termined by problem parameters n, m, ǫ, and δ. Even-Dar et al. (2006)

5Throughout this chapter, we use ln to denote the natural logarithm and log to denote
the logarithm to the base 2.
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present two FSC, (ǫ, 1, δ)-optimal algorithms for PAC-1: a näıve algorithm

that achieves a sample complexity of O
(

n
ǫ2

log
(

n
δ

))
, and a “median elimina-

tion” algorithm that improves the sample complexity to O
(

n
ǫ2

log
(

1
δ

))
. We

generalize these existing algorithms to construct three (ǫ, m, δ)-optimal algo-

rithms for PAC-m. Our first algorithm, Direct, essentially implements the

näıve strategy of pulling each arm a fixed number of times. The second algo-

rithm, Incremental, uses the median elimination algorithm as a subroutine.

The sample complexities of both methods are improved by our third algorithm,

Halving, which modifies the median elimination algorithm to account for m

arms instead of 1.

5.3.1.1 DIRECT Algorithm

Under Direct (Algorithm 5.1), arms are sampled for a fixed number

of rounds (line 2) such that with high probability, the m arms with the highest

empirical averages (denoted p̂a for arm a) are all (ǫ, m)-optimal.

Algorithm 5.1 Direct(n, m, ǫ, δ)

1: for all a ∈ Arms do
2: Sample arm a for

⌈
2
ǫ2

ln
(

n
δ

)⌉
rounds; let p̂a be its average reward.

3: Find S ⊂ Arms such that |S| = m, and ∀a1 ∈ S ∀a2 ∈ Arms \ S:
p̂a1
≥ p̂a2

.
4: Return S.

Theorem 5.1. Direct(n, m, ǫ, δ) is (ǫ, m, δ)-optimal with sample complexity

O
(

n
ǫ2

log
(

n
δ

))
.

Proof. See page 184.
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5.3.1.2 INCREMENTAL Algorithm

Unlike the Direct algorithm, Incremental (Algorithm 5.2) proceeds

through m phases, attempting to select an (ǫ, m)-optimal arm in each phase

with high probability. At the beginning of phase l, Sl is the set of arms that

have been selected, and Rl the set of arms remaining (line 1). During phase

l, an (ǫ, 1)-optimal arm in Rl is selected with high probability by invoking the

median elimination algorithm (Even-Dar et al., 2006) (line 3). We can show

that an (ǫ, 1)-optimal arm in Rl is necessarily (ǫ, m)-optimal in Arms.

Algorithm 5.2 Incremental(n, m, ǫ, δ)

1: S1 ← {}; R1 ← Arms.
2: for l = 1 to m do
3: a′ ←Median-Elimination

(
Rl, ǫ,

δ
m

)
.

4: Sl+1 ← Sl ∪ {a′}; Rl+1 ← Rl \ {a′}.
5: Return Sm+1.

Theorem 5.2. Incremental(n, m, ǫ, δ) is (ǫ, m, δ)-optimal with sample com-

plexity O
(

mn
ǫ2

log
(

m
δ

))
.

Proof. See page 185.

5.3.1.3 HALVING Algorithm

While Incremental selects an arm during every phase, Halving (Al-

gorithm 5.3) eliminates multiple arms every phase based on their inferior em-

pirical averages. From Rl, the set of arms remaining at the beginning of phase

l, half proceed to phase l +1 (except that m proceed to the last phase). Arms

are sampled for enough rounds during each phase (line 5) such that at least

m (ǫ, m)-optimal arms are likely to survive elimination. Specifically, phase l is
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associated with parameters ǫl and δl, and we ensure that with probability at

least 1−δl, the mth highest true mean in Rl+1 is not lower than the mth highest

true mean in Rl by more than ǫl. The sequences (ǫl) and (δl) (lines 2 and 9)

are designed such that Halving is (ǫ, m, δ)-optimal with sample complexity

O
(

n
ǫ2

log
(

m
δ

))
.

Algorithm 5.3 Halving(n, m, ǫ, δ)

1: R1 ← Arms.
2: ǫ1 ← ǫ

4
; δ1 ← δ

2
.

3: for l = 1 to
⌈
log
(

n
m

)⌉
do

4: for all a ∈ Rl do

5: Sample arm a for
⌈

2
ǫ2l

ln
(

3m
δl

)⌉
rounds; let p̂a be its average re-

ward.
6: Find R′

l ⊂ Rl such that |R′
l| = max

(⌈
|Rl|
2

⌉
, m
)
, and ∀a1 ∈ Rl ∀a2 ∈

Rl \R′
l: p̂a1

≥ p̂a2
.

7: Rl+1 ← R′
l.

8: ǫl+1 ← 3
4
ǫl; δl+1 ← 1

2
δl.

9: Return R⌈log( n
m)⌉+1.

Theorem 5.3. Halving(n, m, ǫ, δ) is (ǫ, m, δ)-optimal with sample complexity

O
(

n
ǫ2

log
(

m
δ

))
.

Proof. See page 185.

Let THalving(n, m, ǫ, δ) denote the exact sample complexity of the Halv-

ing algorithm, when run with parameters n, m, ǫ, and δ. Our proof shows

that THalving(n, m, ǫ, δ) is O
(

n
ǫ2

log
(

m
δ

))
. We conjecture that this sample com-

plexity is indeed the lowest (up to a constant factor) that an (ǫ, m, δ)-optimal

algorithm can achieve.
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Conjecture 5.4. There exist constants C > 0, ǫ0 ∈ (0, 1), δ0 ∈ (0, 1), m0 > 0,

and f > 1, such that ∀ǫ ∈ (0, ǫ0), ∀δ ∈ (0, δ0), ∀m > m0, ∀n > fm, and for

every (ǫ, m, δ)-optimal algorithm A, there exists an n-armed bandit instance B

on which the worst case sample complexity of A is at least C n
ǫ2

log
(

m
δ

)
.

Note that Mannor and Tsitsiklis (2004) prove such a sample complexity

lower bound for the m = 1 case. We believe that their proof can be generalized

to prove Conjecture 5.4.

5.3.2 Variable-Sample-Complexity Algorithms

Intuition would suggest that in bandit instances where the highest m

and the lowest n −m means of the arms are separated by a relatively large

margin, or when arm distributions have low variances, fewer samples should

suffice to reliably identify m (ǫ, m)-optimal arms. However, for given n, m, ǫ,

and δ, note that each of the algorithms presented in Section 5.3.1 will perform

exactly the same number of pulls, regardless of the arm distributions. These

algorithms are designed to be sufficient for achieving a PAC guarantee in the

worst case (when p1 − pn is in the order of ǫ). Can we devise algorithms that

incur fewer samples on “easy” bandit instances?

The situation we confront is akin to the one addressed by Schuurmans

and Greiner (1995) in the general context of PAC learning. Correctness and

efficiency are the two main requirements of a PAC algorithm. Schuurmans and

Greiner show that while preserving the correctness guarantee over an entire

class of problems, often it is possible to improve efficiency on a given problem

instance by sequentially adapting based on the samples observed. Specifically

they derive algorithms with such a property for the PAC-learning of concept

classes, where a problem instance is defined by the distribution from which
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samples are drawn. In this setting, which involves supervised learning, the

primary question facing the algorithm at every stage is whether to stop or to

sample further. The authors apply the sequential probability ratio test (Wald,

1947) to inform this choice.

In our bandit setting, too, an algorithm has to decide whether or not

to terminate after seeing some number of samples. However, if the algorithm

decides to continue sampling, an additional question it faces is: “which arm

to sample next?” Naturally, both the stopping criterion and the sampling

strategy would affect the sample complexity of the algorithm. In this section,

we design an algorithm for subset selection in the spirit of Schuurmans and

Greiner. Our algorithm enjoys the following properties:

1. It meets the PAC correctness requirement.

2. It has the best-known worst case sample complexity.

3. Its expected sample complexity on a bandit instance depends on the

hardness of that instance, and can be substantially lower than the worst

case sample complexity. In particular when we instantiate our “high-

probability bound” on the sample complexity for m = 1, the resulting

bound improves the previously best one provided by Even-Dar et al.

(2006) for PAC-1.

Interestingly our algorithm indeed maintains a clear separation between

its stopping rule and sampling strategy. This approach contrasts with previous

elimination-based algorithms for exploration problems (Even-Dar et al., 2006;

Mnih et al., 2008), wherein these aspects are conflated. Maintaining a clear

distinction allows us to develop a proof of correctness solely based on the
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stopping rule: this proof does not depend on the sampling strategy. The

stopping rule itself assumes an intuitive form: (1) at every stage, we draw lower

confidence bounds on the means of the m arms with the highest empirical

averages, and upper confidence bounds on the n − m arms with the lowest

empirical averages; (2) the algorithm terminates if the difference between the

highest upper confidence bound and the the lowest lower confidence bounds is

less than ǫ. While this stopping rule can be coupled with any sampling strategy

to realize an (ǫ, m, δ)-optimal algorithm, we show that it is economical to use

a sampling strategy that is greedy with respect to the stopping rule. Under

such a greedy sampling strategy, two arms are sampled at every stage: one

with the lowest lower confidence bound (among the m arms with the highest

empirical means), and one with the highest upper confidence bound (among

the n−m arms with the lowest empirical means).

Given the centrality of lower and upper confidence bounds in our stop-

ping rule and sampling strategy, we denote our family of algorithms LUCB.

After showing the correctness of using our stopping rule, we analyze the ex-

pected sample complexity of LUCB1, an algorithm that samples arms greedily

for a specific choice of confidence bound. We conjecture that a small modifica-

tion to this confidence bound can result in a more efficient sampling algorithm

LUCB2. It is interesting to note the similarity between our LUCB algo-

rithms, which achieve the best-known PAC sample complexity bounds, and

the UCB algorithm (Auer et al., 2002a), which achieves optimal regret. Our

proofs for the sample complexity bounds for LUCB involve many of the same

techniques used by Auer et al. (2002a). In particular we bound the probability

of events specific to each arm, and show that the sampling strategy induces a

logical relationship between events corresponding to different arms.
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5.3.2.1 Stopping Rule

Let us assume that there is some sampling strategy S according to which

arms are being sampled: S is therefore a mapping from the set of histories to

the set of arms. Our stopping rule does not depend on S; rather, it is a

mapping from the set of histories to the set {STOP, CONTINUE}.

The specific stopping rule we consider below does not need to maintain

the entire history at every stage, but rather, only the number of times each

arm has been sampled, and the arms’ empirical means. During round t, let

ut
a denote the number of times arm a has been sampled, and let p̂t

a be the

empirical mean of the rewards from arm a. The key element of our stopping

rule is a confidence bound β(ut
a, t), which is a positive number interpreted to

be a bound on the deviation of the empirical mean of arm a from its true

mean, for some given probability. In particular the lower confidence bound

for arm a during round t is given by p̂t
a − β(ut

a, t), and the upper confidence

bound is given by p̂t
a + β(ut

a, t).

During round t, let Hight be the set of m arms with the highest em-

pirical averages, and Lowt be the set of n−m arms with the lowest empirical

averages. Among the arms in Hight, let ht
∗ be the arm with the lowest lower

confidence bound; among the arms in Lowt, let lt∗ be the arm with the highest

upper confidence bound (with ties broken arbitrarily):

ht
∗

def

= argmin
h∈Hight

p̂t
h − β(ut

h, t), and

lt∗
def

= argmin
l∈Lowt

p̂t
l + β(ut

l, t).

Our stopping rule is to terminate iff
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(
p̂t

lt
∗

+ β(ut
lt
∗

, t)
)
−
(
p̂t

ht
∗

− β(ut
ht
∗

, t)
)

< ǫ.

Figure 5.1 provides an illustration. Together, the sampling strategy S

and our stopping rule (determined by the confidence bound β) give rise to an

algorithm for the PAC-m problem. We denote this algorithm LUCB (specified

in Algorithm 5.4). Whereas the idea behind our stopping rule is to terminate

early on easy problem instances, the stopping rule by itself does not ensure

that every run on every bandit instance will terminate after a finite number

of rounds. To achieve this latter requirement, we run an outer loop within

LUCB to ensure that it will never perform more than O( n
ǫ2

log
(

m
δ

)
) rounds

of sampling.

p
(7)

t

p
(7)

t

l
t

*
t

h
*

0

1
Hight tLow

(1) (2) (3) (4) (5) (6) (7) (8)

+ β
(7)
t

(u     , t)

Figure 5.1: Illustration of stopping rule, with n = 8 and m = 3. In the figure,
the arms are sorted in non-increasing order of the empirical means during
round t. Hight is the set of three arms with the highest empirical means, and
Lowt the set of five arms with the lowest empirical means. In the example,
arm (2) has the lowest lower confidence bound (LLCB) among arms in Hight,
and arm (5) has the highest upper confidence bound (HUCB) among the arms
in Lowt. The rule is to stop iff HUCB − LLCB < ǫ.
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Algorithm 5.4 LUCB(n, m, ǫ, δ, S, β)

1: // Initialization.
2: Sample each arm once.

3: // Adaptive monitoring of returns; possible early termination.
4: for t = n + 1 to THALVING(n, m, ǫ, δ

2
) + 1 do

5: ht
∗ ← argminh∈Hight p̂t

h − β (ut
h, t).

6: lt∗ ← argmaxl∈Lowt p̂t
h + β (ut

l, t).

7: if
(
p̂t

lt
∗

+ β
(
ut

lt
∗

, t
))
−
(
p̂t

ht
∗

− β
(
ut

ht
∗

, t
))

< ǫ then

8: Return Hight and terminate.

9: Sample using sampling strategy S.

10: // Safeguard: worst case solution strategy.
11: Clear the history of pulls. Execute Halving(n, m, ǫ, δ

2
); return its output

and terminate.

Theorem 5.5 shows that if β(u, t) is sufficiently large, then LUCB nec-

essarily achieves the PAC correctness guarantee. Theorem 5.6 then formally

bounds the worst case sample complexity of the algorithm. Note that these re-

sults apply for a large number of choices of β, and for every sampling strategy

S. We provide specific choices for β and S later in this section.

Theorem 5.5 (Correctness). Let

1. S : Set of histories→ Arms be an arbitrary sampling strategy, and

2. β : {1, 2, 3, . . .} × {1, 2, 3, . . .} → (0,∞) be a function such that

∞∑

t=1

t∑

u=1

exp
(
−2uβ (u, t)2) ≤ δ

2n
. (5.6)

Then, LUCB(n, m, ǫ, δ, S, β) is (ǫ, m, δ)-optimal.
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Proof. See page 187.

Theorem 5.6 (Worst case sample complexity). For every sampling strategy S :

Set of histories→ Arms and every function β : {1, 2, 3, . . .}× {1, 2, 3, . . .} →
(0,∞), LUCB(n, m, ǫ, δ, S, β) has a worst case sample complexity of

O
(

n
ǫ2

log
(

m
δ

))
.

Proof. See page 191.

5.3.2.2 Greedy Sampling Strategy

During round t, the arms h∗
t and l∗t can be construed as the arms that

are most likely to lead to a mistake: naturally it would then be advisable

to sample these arms instead of others. Indeed our greedy sampling strategy

implements this very intuition. Our sampling strategy is as follows.

During round t: sample arms ht
∗ and lt∗.

Since we sample two arms every round (from rounds n + 1 through

THalving(n, m, ǫ, δ
2
)), note that the sample complexity of our algorithm is at

most twice the number of rounds. If we couple our greedy sampling strategy

with the stopping rule described in Section 5.3.2.1, how sample-efficient is the

resulting algorithm? In Section 5.3.2.3, we analyze the sample complexity

of LUCB1, which uses a specific confidence bound β1. First we show that

regardless of the confidence bound β, our choice to sample arms h∗
t and l∗t

achieves the intended effect of sampling “deserving” arms. Below we introduce

the infrastructure used for our analysis.

Recall that c is the mid-point of the true means of arms m and m + 1.

During round t, let us partition the set of arms into three sets: Abovet, which
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comprises arms whose lower confidence bounds fall above c; Belowt, which

comprises arms whose upper confidence bounds fall below c; and Middlet, the

remaining set of arms. Thus, c lies between the lower and upper confidence

bounds of every arm in Middlet, as visible in the illustration in Figure 5.2.

Abovet def

= {a ∈ Arms : p̂t
a − β(ut

a, t) > c}.

Belowt def

= {a ∈ Arms : p̂t
a + β(ut

a, t) < c}.

Middlet def

= Arms \
(
Abovet ∪ Belowt

)
.

Note that Abovet, Belowt and Middlet are sets we have defined for the

purpose of analysis: the algorithm itself does not know the value of c and the

contents of these sets. We expect that by and large, arms in Top must stay

in Abovet or Middlet, while arms in Bot must stay in Belowt or Middlet.

However, let CROSSt
a denote the event that arm a does not obey such an

expectation (and let CROSSt denote the event that some arm has “crossed”).

CROSSt
a

def

=

{
a ∈ Belowt, if a ∈ Top,

a ∈ Abovet, if a ∈ Bot.

CROSSt def

= ∃a ∈ Arms : CROSSt
a.

Let us now define a “needy” arm as one that is in Middlet, and has a

confidence bound that is longer than ǫ
2
: let NEEDY t

a be the event that arm

a is needy during round t. As the name suggests, a needy arm is expected to

need additional rounds of sampling to subsequently force it into Abovet if it is

in Top, and into Belowt if it is in Bot.
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Figure 5.2: Illustration of sets Abovet, Belowt, and Middlet.

NEEDY t
a

def

=
(
a ∈Middlet

)
∧
(
β
(
ut

a, t
)

>
ǫ

2

)
.

Additionally let TERMINATEt denote the event that during round

t, the stopping rule will lead to termination:

TERMINATEt def

=
(
p̂t

lt
∗

+ β
(
ult

∗
, t
))
−
(
p̂t

ht
∗

− β
(
uht

∗
, t
))

< ǫ.

The following lemma shows that if CROSSt does not occur, and the

algorithm does not terminate during round t, then either ht
∗ or lt∗ is a needy

arm.

Lemma 5.7. ¬CROSSt ∧ ¬TERMINATEt =⇒ NEEDY t
ht
∗

∨NEEDY t
lt
∗

.

Proof. See page 191.

Observe that if no arm has crossed and no arm is needy, then the

LUCB algorithm must stop. In the remainder of this section, we consider a

specific confidence bound, β1, under which we bound the probability of arms
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crossing or staying needy for too long. Combining these probability bounds,

we arrive at a bound on the expected sample complexity of the algorithm.

5.3.2.3 LUCB1 Algorithm

Algorithm LUCB1 follows a greedy sampling strategy, and uses a stop-

ping rule based on the following confidence bound:

β1(u, t)
def

=

√
1

2u
ln

(
k1nt4

δ

)
,

where k1 = 2.5.

First, it is easy to verify that LUCB1 achieves the PAC correctness

requirement encapsulated in (5.6):

∞∑

t=1

t∑

u=1

exp
(
−2uβ1 (u, t)2

)
=

∞∑

t=1

δ

k1nt3
<

δ

2n
.

The following lemma establishes that the probability that arms cross

under LUCB1 is small.

Lemma 5.8. Under LUCB1:

P{CROSSt} ≤ δ

k1t3
.

Proof. See page 194.

How many rounds of sampling does an arm a need before it can stop

being needy with high probability? For sufficiently large t, we define u∗
1(a, t)

as a sufficient number of samples of arm a such that β(u∗
1(a, t), t) is guaranteed

to be smaller than [∆a ∨ ǫ
2
]:
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u∗
1(a, t)

def

=

⌈
1

2
[
∆a ∨ ǫ

2

]2 ln

(
k1nt4

δ

)⌉
.

The following lemma then shows that the probability that arm a re-

mains needy despite being sampled for more than 4u∗
1(a, t) rounds is small.

Lemma 5.9. Under LUCB1:

P{∃a ∈ Arms :
(
ut

a > 4u∗
1(a, t)

)
∧NEEDY t

a} ≤
3δH

ǫ
2

1

4k1nt4
.

Proof. See page 195.

We are now ready to combine the results of lemmas 5.8 and 5.9. Let

T be a number no less than

⌈
146H

ǫ/2
1 ln

(
H

ǫ/2

1

δ

)⌉
. We show that beyond

⌈
T
2

⌉
rounds of sampling, the probability that some arm crossed, or some arm

remained needy beyond a certain number of samples, is small, but nevertheless,

one of these events must occur for the algorithm to last more than T rounds.

Thereby we show that the probability of LUCB1 not terminating after T

rounds of sampling is small.

Lemma 5.10. Let T ∗
1 =

⌈
146H

ǫ/2
1 ln

(
H

ǫ/2

1

δ

)⌉
. For every T ≥ T ∗

1 , the proba-

bility that LUCB1 has not terminated after T rounds of sampling is at most

2δ
T 2 .

Proof. See page 197.

Lemma 5.10 directly leads to a bound on the expected sample com-

plexity, and a related high-probability bound.
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Theorem 5.11 (Expected sample complexity). The expected sample complex-

ity of LUCB1 is min

{
O

(
H

ǫ/2
1 log

(
H

ǫ/2

1

δ

))
, O
(

n
ǫ2

log
(

m
δ

))}
.

Corollary 5.12 (High-probability bound). With probability at least 1 − δ,

LUCB1 terminates after completing O

(
H

ǫ/2
1 log

(
1

δH
ǫ/2

1

))
rounds.

Proof. See page 199.

Observe that the high-probability bound improves upon the one pro-

vided by Even-Dar et al. (2006, see Remark 9). We conjecture that the ex-

pected sample complexity of LUCB1 can be further improved through a re-

finement to the confidence bound. In particular consider

β2(u, t)
def

=

√√√√ 1

2u
ln

(
k2ntk3∆̃2

δ

)
,

where ∆̃ is the smallest non-negative integer power of 1
2

such that β2(u, t) < ∆̃,

and k2 and k3 are suitably large constants. Indeed β2(u, t) is well-defined; the

design of the ∆̃ term within the log is such that it will quickly reach the

order of the true ∆a for each arm a. As a result, arms with higher ∆’s will

get sampled relatively fewer times than they do under LUCB1. The idea of

using ∆̃ as a guess of each arm’s true ∆ is borrowed from Auer and Ortner

(2010), who employ a similar scheme to reduce the cumulative regret of the

UCB algorithm.

Let LUCB2 be an algorithm that follows a greedy sampling strategy

with respect to β2, and also uses the corresponding stopping rule. We make

the following conjecture about LUCB2.
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Conjecture 5.13. LUCB2 is (ǫ, m, δ)-optimal, with an expected sample com-

plexity that is:

min

{
O

(
∑

a∈Arms

1
[
∆a ∨ ǫ

2

]2 log

(
H

ǫ/2
1

[
∆a ∨ ǫ

2

]

δ

))
, O
( n

ǫ2
log
(m

δ

))}
.

With probability at least 1− δ, LUCB2 terminates after completing

O

(
∑

a∈Arms

1
[
∆a ∨ ǫ

2

]2 log

([
∆a ∨ ǫ

2

]

δH
ǫ/2
1

))

rounds.

We leave the proof of this conjecture for future work. In the next

section, we consider subset selection under the simple regret setting.

5.4 Simple Regret Setting

Recall that the formulation of SR-m, the problem of simple regret min-

imization, is complementary to that of PAC-m. Under PAC-m, our aim is

to minimize the number of samples needed to achieve a desired probability of

correct selection. Under SR-m, the number of sample available, T , is fixed

beforehand: the problem is to use these T samples most judiciously in order

to minimize the simple regret, given by E

[∑
i∈Top pi −

∑
a∈Selected pa

]
, where

the set Selected is the m-sized subset returned after T rounds.

Audibert et al. (2010) consider SR-1, where one arm needs to be selected

after T rounds. They provide a lower bound on the simple regret in this setting,

and highlight the difficulty of devising an algorithm with a matching upper
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bound unless the algorithm is given the hardness of the problem, H1, as an

input.6 Indeed if H1 is known, a simple modification to LUCB1, our algorithm

for PAC-m, can yield an effective algorithm for SR-m. We could run LUCB1

with parameters ǫ = 0 and δ = H1 exp
(
− kT

H1

)
, for suitably small k, and (1)

if LUCB1 terminates by T rounds, return its solution, and (2) if it does not

terminate by T rounds, return a random m-sized subset. Such an algorithm

would yield a simple regret that is O
(
H1 exp

(
− T

H1

))
.

In general we may not assume knowledge of H1. Below we present a gen-

eralization of the “successive rejects” algorithm of Audibert et al. (2010); we

denote our algorithm Elimination. This algorithm comprises n−m phases;

at the end of each phase, one arm with the lowest empirical mean is elimi-

nated. The m arms remaining at the end of the n−m phases are returned as

the solution. Key to minimizing the simple regret of this scheme is properly

tuning the sequence (bl), ∀l = {1, 2, n−m}: bl is the number of times that an

arm eliminated at the end of phase l has been sampled. Algorithm 5.5 provides

a full specification of Elimination, and Theorem 5.14 provides a bound on

its simple regret.

Theorem 5.14. Elimination(n, m, T ) has a simple regret that is at most

(
m∑

i=1

∆i,n−i

)
min




1,
(n−m)(n−m + 1)

2

m∑

i=1

exp


− T − n

2
(

m
2 +

∑n−m+1
k=2

1
k

)
H2(i)







 .

Proof. See page 200.

Consider the selection subroutine within PS methods such as CMA-ES

and CEM. Given n policies and a total of T evaluation episodes, how might

6In the SR-m and CR-m settings, we assume that H1 is well-defined; that is, pm > pm+1.
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Algorithm 5.5 Elimination(n, m, T )

1: R1 ← Arms.
2: b0 ← 0.

3: for l = 1 to n−m do

4: bl ←
⌈

T−n

(m
2

+
Pn−m+1

k=2
1

k)(n−m+2−l)

⌉
.

5: for all a ∈ Rl do
6: Sample arm a for (bl − bl−1) additional rounds.
7: In the last phase (that is, when l = n − m), if the total number of

samples is less than T , arbitrarily sample arms for additional rounds
until the total number of samples is T .

8: Let p̂a be the average reward of arm a, ∀a ∈ Arms.
9: Let a′ = argmina∈Rl

p̂a (with ties broken arbitrarily).
10: Rl+1 ← Rl \ {a′}.

11: Selected
def

= Rn−m+1. Return Selected.

we allocate episodes to the policies in order to select a relatively high-fitness

m-sized subset of policies? Under our implementations of these methods in

Chapter 3, we allocated each policy the same number of allocations, T
n
. By

contrast, the Elimination algorithm provides us the means to achieve better

simple regret after T evaluations. In experiments in this chapter, we implement

the Elimination algorithm as the subset selection procedure within CMA-ES

and CEM; we refer to the resulting “optimized” versions of these PS methods

as OPT-CMA-ES and OPT-CEM, respectively.

Figure 5.3 compares the four methods on benchmark problem instances

considered in Chapter 3. Under each of problem instances I1, I2, and I3, we

find that the optimized versions of CMA-ES and CEM outperform their coun-

terparts after 50,000 episodes of training (p-value < 0.0005). Recall that these
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Figure 5.3: Performance of OPT-CMA-ES∗ and OPT-CEM∗ on problem in-
stances I1, I2, and I3 (see Table 3.4 on page 68).

methods are suffixed “∗” to indicate that their method-specific parameters

(number of generations, and total trials per generation) have themselves been

tuned for each problem instance. We do not observe any marked differences

between the optimized and non-optimized versions of the methods in terms of

the settings found by our search procedure for their method-specific parame-

ters. We posit that for similar population sizes and total trials in a generation,

the better quality of the subsets found by the optimized versions of the meth-

ods leads to their improved performance. A closer investigation is necessary to

obtain a more fine-grained understanding of the effect of better subset selection

on the dynamics of PS methods.

In our next section, we consider the CR setting, wherein unlike PAC

and SR, exploration must be balanced with exploitation in order to minimize

cumulative (on-line) regret.
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5.5 Cumulative Regret Setting

In this section, we present our algorithm for CR-m, wherein a subset

of m arms is selected to be sampled at every stage. We denote our algorithm

UCBS. Under UCBS, we draw upper confidence bounds on each arm based

on the number of times it has been sampled, and the total number of rounds

conducted so far. At every stage, the subset selected for sampling comprises m

arms with the highest upper confidence bounds. Algorithm 5.6 provides a de-

scription of UCBS, and Theorem 5.15 establishes a bound on the algorithm’s

cumulative regret. The algorithm and analysis are both generalizations of

those provided by Auer et al. (2002a) for CR-1.

Algorithm 5.6 UCBS(n, m)

1: //Initialization
2: For the first

⌈
n
m

⌉
rounds, select subsets of arms such that every arm gets

sampled at least once.

3: for t =
⌈

n
m

⌉
+ 1 onwards do

4: ∀a ∈ Arms, let ut
a be the number of times arm a has been sampled,

and let p̂t
a be the empirical mean of the rewards from that arm. Define

bt
a

def

= p̂t
a +

√
1

2ut
a
ln (t4).

5: Select At, an m-sized subset of arms such that

∀a1 ∈ At ∀a2 ∈ Arms \ At : p̂t
a1

+
√

1
2ut

a1

ln (t4) ≥ p̂t
a2

+
√

1
2ut

a2

ln (t4).

Theorem 5.15. The cumulative regret of UCBS(n, m) after T rounds of

sampling is at most

min

{(
m∑

i=1

∆i,n−i

)
T,

m∑

i=1

n∑

j=m+1

8 ln(T )

∆i,j
+

1 + π2

3

m∑

i=1

n∑

j=m+1

∆i,j

}
.

Proof. See page 203.
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5.6 Proofs

This section provides proofs for the various lemmas and theorems pre-

sented in the preceding three chapters. The reader may only peruse selected

proofs, or skip this section altogether, without missing any important details

in the chapter.

Theorem 5.1 (page 164)

Statement. Direct(n, m, ǫ, δ) is (ǫ, m, δ)-optimal with sample complexity

O
(

n
ǫ2

log
(

n
δ

))
.

Proof. Since each arm is pulled exactly
⌈

2
ǫ2

ln
(

n
δ

)⌉
times (line 2), every run of

Direct terminates, and the sample complexity of Direct is O
(

n
ǫ2

log
(

n
δ

))
.

To show that Direct achieves the PAC guarantee, recall that Bad is the set

of arms that are not (ǫ, m)-optimal. From (5.1) and (5.2), we can relate Top

and Bad as follows:

∀i ∈ Top ∀b ∈ Bad : pi − pb > ǫ. (5.7)

Since |S| = m, an arm b in Bad can occur in S only if there is some

arm i in Top such that p̂i ≤ p̂b (line 4). In turn, (5.7) implies that the latter

event can only occur if p̂i ≤ pi − ǫ
2

or p̂b ≥ pb + ǫ
2
. Switching to probabilities,

applying the union bound and Hoeffding’s inequality, we get:

P {∃b ∈ Bad : b ∈ S}

≤ P

{
∃i ∈ Top :

(
p̂i ≤ pi −

ǫ

2

)}
+ P

{
∃b ∈ Bad :

(
p̂b ≥ pb +

ǫ

2

)}

≤
∑

i∈Top

P

{
p̂i ≤ pi −

ǫ

2

}
+
∑

b∈Bad

P

{
p̂b ≥ pb +

ǫ

2

}
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≤ |Top| exp

(
−ǫ2

2

⌈
2

ǫ2
ln
(n

δ

)⌉)
+ |Bad| exp

(
−ǫ2

2

⌈
2

ǫ2
ln
(n

δ

)⌉)

≤ (|Top|+ |Bad|)
(

δ

n

)
≤ δ.

Theorem 5.2 (page 165)

Statement. Incremental(n, m, ǫ, δ) is (ǫ, m, δ)-optimal with sample complex-

ity O
(

mn
ǫ2

log
(

m
δ

))
.

Proof. Incremental makes a call to the Median-Elimination algorithm

during each phase l, in order to select a single (ǫ, 1)-optimal arm in Rl with

probability at least δ
m

. Since |Rl| ≤ n, each such call performs at most

O

(
n
ǫ2

log

(
1

( δ
m)

))
pulls (Even-Dar et al., 2006, see Lemma 12). Thus, af-

ter m phases, Incremental will terminate with a sample complexity that is

O
(

mn
ǫ2

log
(

m
δ

))
.

Since |Rl| = n− l + 1, and l ≤ m, Rl necessarily contains an arm a in

Top. Among the true means of the arms in Rl, let p∗ be the highest. It follows

from (5.1) and (5.2) that for any arm a′ that is (ǫ, 1)-optimal with respect to

Rl, pa′ ≥ p∗− ǫ ≥ pa− ǫ ≥ pm− ǫ: that is, a′ is (ǫ, m)-optimal with respect to

Arms. On phase l, since Median-Elimination (line 3) returns an arm that

is not (ǫ, 1)-optimal in Rl with probability at most δ
m

, the probability that

Incremental selects an arm that is not (ǫ, m)-optimal is at most δ.

Theorem 5.3 (page 166)

Statement. Halving(n, m, ǫ, δ) is (ǫ, m, δ)-optimal with sample complexity

O
(

n
ǫ2

log
(

m
δ

))
.
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Proof. In Algorithm 5.3 (lines 3–5), we can see that the number of pulls in

phase l is |Rl|
⌈

2
ǫ2l

ln
(

3m
δl

)⌉
. Thus, the total number of pulls across all phases

is
∑⌈log( n

m)⌉
l=1 |Rl|

⌈
2
ǫ2l

ln
(

3m
δl

)⌉
def

= THalving(n, m, ǫ, δ). Observe that this sum,

THalving(n, m, ǫ, δ), can be computed exactly for given n, m, ǫ, and δ. Indeed we

will use THalving(n, m, ǫ, δ) in designing the termination condition for our VSC

algorithms in Section 5.3.2. Slightly modifying the calculation for the m = 1

case (Even-Dar et al., 2006, see Lemma 12), we obtain that THalving(n, m, ǫ, δ)

is O( n
ǫ2

log(m
δ
)).

Our proof that Halving achieves the PAC requirement also closely

follows that of Even-Dar et al. (2006) for the case of m = 1. Let us sort the

arms in Rl in non-increasing order of their true means, breaking ties using the

same deterministic rule applied in (5.1). Let al
i be the ith arm in the sorted list

and let pl
i be its true mean. We say a “mistake” is made in phase l iff pl

m−pl+1
m >

ǫl. Note that (1) p1
m = pm, (2)

∑⌈log( n
m)⌉

l=1 ǫl < ǫ, and (3)
∑⌈log( n

m)⌉
l=1 δl < δ. In

effect, it suffices to show that the probability of making a mistake in phase l

is at most δl: this would establish that P

{
pm − p

⌈log( n
m)⌉+1

m > ǫ

}
< δ, or in

other words, that Halving is (ǫ, m, δ)-optimal. Our proof strategy is to show

that for a mistake to occur on phase l, at least one of two events, E1 and E2,

must occur; however, P{E1}+ P{E2|¬E1} ≤ δl.

Let Topl = {al
i, i ∈ 1, 2, . . . , m}: Topl contains the m arms from Rl

with the highest true means (after deterministic tie-breaking as in (5.1)). E1

denotes the event ∃a ∈ Topl : p̂a ≤ pa− ǫl

2
. By applying Hoeffding’s inequality

and the union bound, we obtain:

P{E1} ≤ m exp

(
−ǫ2

l

2

⌈
2

ǫ2
l

ln

(
3m

δl

)⌉)
≤ δl

3
. (5.8)
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Let Badl = {b ∈ Rl, pb < pl
m − ǫl}; that is, Badl is the set of arms

that are not (ǫl, m)-optimal in Rl. We call an arm b in Badl “deceptive” if its

empirical average equals or exceeds that of some arm in Topl. If E1 does not

occur, note that b can be deceptive only if p̂b ≥ pb + ǫl

2
; a similar application of

Hoeffding’s inequality shows that the probability of the latter event is at most

δl

3m
. Let the number of deceptive arms in Badl be #deceptive; we obtain that

E[#deceptive|¬E1] is at most |Badl| δl

3m
.

E2 denotes the event that #deceptive ≥ |Rl+1| −m + 1. A moment’s

reflection informs us that if E1 does not occur, a mistake can be made in phase

l only if E2 occurs. Markov’s inequality establishes that

P{E2|¬E1} = P{#deceptive ≥ (|Rl+1| −m + 1)|¬E1}

≤ E[#deceptive|¬E1]

|Rl+1| −m + 1

≤ |Badl|
|Rl+1| −m + 1

(
δl

3m

)

≤ |Rl| −m

|Rl+1| −m + 1

(
δl

3m

)

≤ 2

3
δl. (5.9)

The inequality in the last step follows from the observation that |Rl| ≤
2|Rl+1| (lines 7 and 8). Together, (5.8) and (5.9) complete our proof.

Theorem 5.5 (page 172)

Statement. Let

1. S : Set of histories→ Arms be an arbitrary sampling strategy, and
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2. β : {1, 2, 3, . . .} × {1, 2, 3, . . .} → (0,∞) be a function such that

∞∑

t=1

t∑

u=1

exp
(
−2uβ (u, t)2) ≤ δ

2n
.

Then, LUCB(n, m, ǫ, δ, S, β) is (ǫ, m, δ)-optimal.

Proof. LUCB necessarily terminates in one of two ways. In the first case,

termination during round n + 1 ≤ t ≤ THalving

(
n, m, ǫ, δ

2

)
+ 1, if the upper

confidence bound of lt∗ does not exceed the lower confidence bound of ht
∗ by

more than ǫ (line 7). In the second case, termination occurs at the end of a

call to the Halving algorithm (line 11). If the second case occurs, the mistake

probability of LUCB is equal to the mistake probability of Halving(n, m,

ǫ, δ
2
), which is at most δ

2
(see Theorem 5.3). It suffices to show that in the

first case, the probability that a non-(ǫ, m)-optimal arm is returned is at most

δ
2
. The remainder of this proof considers this first case: that is, when the

algorithm terminates during round n + 1 ≤ t ≤ THalving

(
n, m, ǫ, δ

2

)
+ 1.

Our proof involves a standard argument using confidence bounds. We

show that with high probability, the true means of arms stay within their

respective confidence bounds; in other words, that the arms remain “well-

behaved”. We then show that if all the arms are well-behaved, then a mistake

cannot occur. Specifically let WBt
a denote the event that arm a is well-behaved

during round t:

WBt
a

def

=

{
p̂t

a ≥ pa − β (ut
a, t) , if a ∈ Top, and

p̂t
a ≤ pa + β (ut

a, t) , if a ∈ Bot.

Note that ut
a (the number of rounds for which arm a has been sampled

before round t) is a random variable. The notation used in defining WBt
a
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above (and also adopted in subsequent derivations) is a convenient shorthand

for quantifying the union of events corresponding to every value of ut
a. Re-

gardless of the sampling strategy used, note that ut
a has to be between 1 and

t − 1. Applying the union bound and Hoeffding’s inequality, we bound the

probability that arm a is not well-behaved during round t:

P{¬WBt
a} ≤

t−1∑

u=1

exp
(
−2uβ (u, t)2) . (5.10)

This union bound is the key step allowing us to keep our correctness

proof independent of the sampling strategy. The bound allows us to think in

terms of “the state of arm a during round t,” without worrying about how

many times the arm has been sampled in that state. Indeed our subsequent

proofs define other events whose probabilities are bounded in a similar manner.

Let MISTAKEt denote the event that LUCB terminates during rounds

t and returns a non-(ǫ, m)-optimal arm. In the case we are considering, the

mistake event corresponds to ∪THalving+1

t=n+1 (MISTAKEt).

MISTAKEt def

= (Algorithm reaches round t)

∧
((

p̂t
lt
∗

+ β
(
ut

lt
∗

, t
))
−
(
p̂t

ht
∗

− β
(
ut

ht
∗

, t
))

< ǫ
)

∧
(
∃b ∈ Bad : b ∈ Hight

)
.

Hight is of size m: if it contains an arm b ∈ Bad, then there must be

some arm i ∈ Top that falls into Lowt. Further, the upper confidence bound

of i cannot exceed the lower confidence bound of b by ǫ or more. We get

(bounding ǫ by applying (5.1)):
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MISTAKEt

=⇒ ∃i ∈ Top ∃b ∈ Bad :
(
p̂t

i + β
(
ut

i, t
))
−
(
p̂t

b − β
(
ut

b, t
))

< ǫ

=⇒ ∃i ∈ Top ∃b ∈ Bad :
(
p̂t

i + β
(
ut

i, t
))
−
(
p̂t

b − β
(
ut

b, t
))

< (pi − pb)

=⇒
(
∃i ∈ Top : p̂t

i < pi − β(ut
i, t)
)
∨
(
∃b ∈ Bot : p̂t

b > pb + β(ut
b, t)
)

=⇒ ∃a ∈ Arms : ¬WBt
a. (5.11)

Thus, a mistake occurs during round t only if some arm is not well-

behaved during round t. For a mistake never to occur, there must be no round

t and no arm a such that a is not well-behaved during round t. The second

important step in this proof is to invert the order between rounds and arms,

as below, where we apply (5.11) to get:

∪THalving

t=1

(
MISTAKEt

)
=⇒ ∪THalving

t=1

(
∃a ∈ Arms : ¬WBt

a

)

⇐⇒ ∪THalving

t=1 ∪a∈Arms

(
¬WBt

a

)

⇐⇒ ∪a∈Arms ∪THalving

t=1

(
¬WBt

a

)
. (5.12)

We complete our proof by switching to probabilities and invoking (5.12),

(5.10), and (5.6):

P{∪THalving

t=1

(
MISTAKEt

)
} ≤ P{∪a∈Arms ∪THalving

t=1

(
¬WBt

a

)
}

≤
∑

a∈Arms

THalving∑

t=1

P{¬WBt
a}

≤
∑

a∈Arms

THalving∑

t=1

t∑

u=1

exp
(
−2uβ (u, t)2)
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≤ n
∞∑

t=1

t∑

u=1

exp
(
−2uβ (u, t)2

)

≤ δ

2
.

Theorem 5.6 (page 173)

Statement. For every sampling strategy S : Set of histories→ Arms and every

function β : {1, 2, 3, . . .}×{1, 2, 3, . . .} → (0,∞), LUCB(n, m, ǫ, δ, S, β) has

a worst case sample complexity of O
(

n
ǫ2

log
(

m
δ

))
.

Proof. Regardless of the sampling strategy S and the confidence bound β,

LUCB(n, m, ǫ, δ, S, β) samples for at most 1 + 2THalving

(
n, m, ǫ, δ

2

)
rounds.

Recall from Theorem 5.3 that THalving (n, m, ǫ, δ) is O
(

n
ǫ2

log
(

m
δ

))
. It follows

that the worst case sample complexity of LUCB(n, m, ǫ, δ, S, β) is also

O
(

n
ǫ2

log
(

m
δ

))
.

Lemma 5.7 (page 175)

Statement. ¬CROSSt ∧ ¬TERMINATEt =⇒ NEEDY t
ht
∗

∨NEEDY t
lt
∗

.

Proof. In our proof below, we reduce notational clutter by dropping the suffix

t in our variables. Additionally we use the shorthand β[a] for β(ut
a, t). To

prove the lemma, we prove the following statements.

¬CROSS ∧ ¬TERMINATE =⇒ (h∗ ∈Middle) ∨ (l∗ ∈ Middle) . (5.13)
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¬TERMINATE ∧ (h∗ ∈Middle) ∧ (l∗ /∈Middle) =⇒ β[h∗] >
ǫ

2
. (5.14)

¬TERMINATE ∧ (h∗ /∈Middle) ∧ (l∗ ∈Middle) =⇒ β[l∗] >
ǫ

2
. (5.15)

¬TERMINATE ∧ (h∗ ∈ Middle) ∧ (l∗ ∈Middle)

=⇒
(
β[h∗] >

ǫ

2

)
∨
(
β[l∗] >

ǫ

2

)
. (5.16)

We prove (5.13) by proving

¬CROSS =⇒ (h∗ ∈Middle) ∨ (l∗ ∈Middle) ∨ TERMINATE.

If neither of h∗ and l∗ is in Middle, then these arms have to be in Above

or Below. Thus, the contrapositive of the statement above can be written as

a disjunction of four mutually exclusive cases. Below we consider each of these

cases. Recall that (1) h∗ has the lowest lower confidence bound among arms

in High, (2) l∗ has the highest upper confidence bound among arms in Low,

and (3) p̂h∗
≥ p̂l∗ .

(Case 1) (h∗ ∈ Above) ∧ (l∗ ∈ Above) ∧ ¬TERMINATE

=⇒ (h∗ ∈ Above) ∧ (l∗ ∈ Above)

=⇒ (∀h ∈ High : h ∈ Above) ∧ (l∗ ∈ Above)
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=⇒ |{a ∈ Arms : a ∈ Above}| ≥ m + 1

=⇒ ∃j ∈ Bot : j ∈ Above

⇐⇒ ∃j ∈ Bot : CROSSj

=⇒ CROSS.

(Case 2) (h∗ ∈ Above) ∧ (l∗ ∈ Below) ∧ ¬TERMINATE

=⇒ (p̂h∗
− β[h∗] > c) ∧ (p̂l∗ + β[l∗] < c)

∧ (p̂l∗ + β[l∗]− p̂h∗
+ β[h∗] > ǫ)

=⇒ (p̂l∗ + β[l∗]− p̂h∗
+ β[h∗] < 0) ∧ (p̂l∗ + β[l∗]− p̂h∗

+ β[h∗] > ǫ)

⇐⇒ φ.

(Case 3) (h∗ ∈ Below) ∧ (l∗ ∈ Above) ∧ ¬TERMINATE

=⇒ (h∗ ∈ Below) ∧ (l∗ ∈ Above)

=⇒ (p̂h∗
+ β[h∗] < c) ∧ (p̂l∗ − β[l∗] > c)

=⇒ p̂h∗
< p̂l∗

⇐⇒ φ.

(Case 4) (h∗ ∈ Below) ∧ (l∗ ∈ Below) ∧ ¬TERMINATE

=⇒ CROSS. {Similar to Case 1.}

Similarly, we prove (5.14) by proving two disjoint cases.

(Case 1) ¬TERMINATE ∧ (h∗ ∈Middle) ∧ (l∗ ∈ Above)
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=⇒ (p̂l∗ + β[l∗]− p̂h∗
+ β[h∗] > ǫ) ∧ (p̂h∗

− β[h∗] < c)

∧ (p̂l∗ − β[l∗] > c)

=⇒ (p̂h∗
− β[h∗] < c) ∧ (p̂h∗

+ β[h∗] > c + ǫ)

=⇒ β[h∗] >
ǫ

2
.

(Case 2) ¬TERMINATE ∧ (h∗ ∈Middle) ∧ (l∗ ∈ Below)

=⇒ (p̂l∗ + β[l∗]− p̂h∗
+ β[h∗] > ǫ) ∧ (p̂h∗

+ β[h∗] > c)

∧ (p̂l∗ + β[l∗] < c)

=⇒ (p̂h∗
+ β[h∗] > c) ∧ (p̂h∗

− β[h∗] < c− ǫ)

=⇒ β[h∗] >
ǫ

2
.

(5.15) can be proven similarly. To complete our proof of the lemma,

we prove (5.16):

¬TERMINATE ∧ (h∗ ∈Middle) ∧ (l∗ ∈Middle)

=⇒ ¬TERMINATE

=⇒ p̂l∗ + β[l∗]− p̂h∗
+ β[h∗] > ǫ

=⇒ β[h∗] + β[l∗] > ǫ.

=⇒
(
β[h∗] >

ǫ

2

)
∨
(
β[l∗] >

ǫ

2

)
.

Lemma 5.8 (page 176)

Statement. Under LUCB1:

P{CROSSt} ≤ δ

k1t3
.
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Proof. For every arm i in Top, we get:

P{CROSSt
i} = P

{
p̂t

i + β1

(
ut

i, t
)

< c
}

≤
t∑

u=1

exp
(
−2u (p− c + β1)

2)

≤
t∑

u=1

exp
(
−2uβ2

1

)

=

t∑

u=1

δ

k1nt4

=
δ

k1nt3
.

The same bound applies for every arm j in Bot. In aggregate, we get:

P{CROSSt} ≤
∑

a∈Arms

P{CROSSt
a} ≤ n

δ

k1nt3
=

δ

k1t3
.

Lemma 5.9 (page 177)

Statement. Under LUCB1:

P{∃a ∈ Arms :
(
ut

a > 4u∗
1(a, t)

)
∧NEEDY t

a} ≤
3δH

ǫ
2

1

4k1nt4
.

Proof. Consider an arm a in Arms. If ∆a ≤ ǫ
2
, we obtain:

P{
(
ut

a > 4u∗
1(a, t)

)
∧NEEDY t

a}

= P

{(
ut

a > 4u∗
1(a, t)

)
∧
(
a ∈Middlet

)
∧
(
β
(
ut

a, t
)

>
ǫ

2

)}
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≤ P

{
(
ut

a > 4u∗
1(a, t)

)
∧
(√

1

2ut
a

ln

(
k1nt4

δ

)
>

ǫ

2

)}

≤
∞∑

u=4u∗

1
(a,t)+1

P

{√
1

8u∗
1(a, t)

ln

(
k1nt4

δ

)
>

ǫ

2

}

≤
∞∑

u=4u∗

1
(a,t)+1

P

{ ǫ

4
>

ǫ

2

}
= 0. (5.17)

Now, consider the case that ∆a > ǫ
2
. Without loss of generality, we

may assume that a ∈ Top. Then, we have:

P{
(
ut

a > 4u∗
1(a, t)

)
∧NEEDY t

a}

= P

{(
ut

a > 4u∗
1(a, t)

)
∧
(
a ∈Middlet

)
∧
(
β
(
ut

a, t
)

>
ǫ

2

)}

≤ P
{(

ut
a > 4u∗

1(a, t)
)
∧
(
a ∈ Middlet

)}

≤ P
{(

ut
a > 4u∗

1(a, t)
)
∧
(
p̂t

a − βa

(
ut

a, t
)

< c
)}

≤
∞∑

u=4u∗

1
(a,t)+1

exp
(
−2u

(
pa − c− β1

(
ut

a, t
))2)

.

Substituting for β1, and using (5.4), we get

P{
(
ut

a > 4u∗
1(a, t)

)
∧NEEDY t

a}

≤
∞∑

u=4u∗

1
(a,t)+1

exp


−2u

(
∆a

2
−
√

1

2u
ln

(
k1nt4

δ

))2



=

∞∑

u=4u∗

1
(a,t)+1

exp



−2∆2
a

(
√

u−
√

1

2∆2
a

ln

(
k1nt4

δ

))2




≤
∞∑

u=4u∗

1
(a,t)+1

exp

(
−2∆2

a

(√
u−

√
u∗

1(a, t)
)2
)
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≤ 3δ

4∆2
ak1nt4

. (5.18)

The derivation for the last step is shown in Appendix B.2. From (5.17)

and (5.18), we get

P{∃a ∈ Arms :
(
ut

a > 4u∗
1(a, t)

)
∧NEEDY t

a}

≤
∑

a∈Arms

P{
(
ut

a > 4u∗
1(a, t)

)
∧NEEDY t

a}

≤ 3δ

4k1nt4

∑

a∈Arms,∆a> ǫ
2

1

∆2
a

≤ 3δH
ǫ
2

1

4k1nt4
.

Lemma 5.10 (page 177)

Statement. Let T ∗
1 =

⌈
146H

ǫ/2
1 ln

(
H

ǫ/2

1

δ

)⌉
. For every T ≥ T ∗

1 , the probability

that LUCB1 has not terminated after T rounds of sampling is at most 2δ
T 2 .

Proof. Let T =
⌈

T
2

⌉
. We define two events, E1 and E2, over the interval

{T , T + 1, . . . , T − 1}:

E1
def

= ∃t ∈ {T , T + 1, . . . , T − 1} : CROSSt, and

E2
def

= ∃t ∈ {T , T + 1, . . . , T − 1} ∃a ∈ Arms :
(
ut

a ≥ 4u∗
1(a, t)

)
∧NEEDY t

a .
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We show that if neither E1 nor E2 occurs, then LUCB1 must necessar-

ily terminate after at most T rounds of sampling. If the algorithm terminates

after some t ≤ T rounds of sampling, there is nothing left to prove. On the

other hand, consider the case that the algorithm has not terminated after T

rounds of sampling, and neither E1 nor E2 occurs. In this case, let #rounds

be the number of additional rounds for which sampling occurs, up to round

T . Applying Lemma 5.7, we get:

#rounds =

T−1∑

t=T

1
[
NEEDY t

ht
∗

∨NEEDY t
lt
∗

]

≤
T−1∑

t=T

∑

a∈Arms

1
[(

a = ht
∗ ∨ a = lt∗

)
∧NEEDY t

a

]

=
T−1∑

t=T

∑

a∈Arms

1
[(

a = ht
∗ ∨ a = lt∗

)
∧
(
ut

a ≤ 4u∗
1(a, t)

)]

≤
T−1∑

t=T

∑

a∈Arms

1
[(

a = ht
∗ ∨ a = lt∗

)
∧
(
ut

a ≤ 4u∗
1(a, T )

)]

=
∑

a∈Arms

T−1∑

t=T

1
[(

a = ht
∗ ∨ a = lt∗

)
∧
(
ut

a ≤ 4u∗
1(a, T )

)]

≤
∑

a∈Arms

4u∗
1(a, T ).

Appendix B.3 verifies that T ≥ T ∗
1 =⇒ T > 2 + 8

∑
a∈Arms u∗

1(a, T ).

Thus, if neither E1 nor E2 occurs, the total number of rounds for which

LUCB1 lasts is at most

T + #rounds ≤
⌈

T

2

⌉
+

∑

a∈Arms

4u∗
1(a, T ) <

⌈
T

2

⌉
+

T − 2

2
≤ T.
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Consequently the probability that LUCB1 has not terminated after T

rounds can be upper-bounded by P{E1 ∨ E2}.

P{E1 ∨ E2}
≤ P{E1}+ P{E2}
≤ P

{
∃t ∈ {T, T + 1, . . . , T − 1} : CROSSt

}

+P
{
∃t ∈ {T , T + 1, . . . , T − 1} ∃a ∈ Arms :

(
ut

a > 4u∗
1(a, T )

)
∧NEEDY t

a

}

≤
T−1∑

t=T

(
P
{
CROSSt

}
+ P

{
∃a ∈ Arms :

(
ut

a > 4u∗
1(a, T )

)
∧NEEDY t

a

})
.

Applying lemmas 5.8 and 5.9, we obtain:

P{E1 ∨E2} ≤
T−1∑

t=T1

(
δ

k1t3
+

3δH
ǫ/2
1

4k1nt4

)

≤
T−1∑

t=T1

δ

k1T
3
1

(
1 +

3H
ǫ/2
1

4nT1

)

≤
(

T

2

)(
8δ

k1T 3

)(
1 +

3H
ǫ/2
1

2nT

)

<
2δ

T 2
.

Theorem 5.11 and Corollary 5.12 (page 178)

Statement of theorem. The expected sample complexity of LUCB1 is

min

{
O

(
H

ǫ/2
1 log

(
H

ǫ/2
1

δ

))
, O
( n

ǫ2
log
(m

δ

))}
.

Statement of corollary. With probability at least 1 − δ, LUCB1 terminates

after completing O

(
H

ǫ/2
1 log

(
1

δH
ǫ/2

1

))
rounds.
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Proof. From Lemma 5.10, it follows that the expected sample complexity of

LUCB1 is at most

2


T ∗

1 +
∞∑

t=T ∗

1
+1

2δ

t2


 < 292H

ǫ/2
1 ln

(
H

ǫ/2
1

δ

)
+ 10.

The expected sample complexity cannot exceed the worst case sample

complexity, which we know from Theorem 5.11 to be O
(

n
ǫ2

log
(

m
δ

))
.

To prove the corollary, let us take T = 2T ∗
1 , and let δ′ = 2δ

T 2 . From

Lemma 5.10, we see that with probability at least 1− δ
′

, LUCB1 terminates

before

⌈
292H

ǫ/2
1 ln

(
2H

ǫ/2

1

δ′T 2

)⌉
rounds. Since T > H

ǫ/2
1 , we obtain that with

probability at least 1−δ
′

, LUCB1 terminates in O

(
H

ǫ/2
1 ln

(
1

δ′H
ǫ/2

1

))
rounds.

Theorem 5.14 (page 180)

Statement. Elimination(n, m, T ) has a simple regret that is at most

(
m∑

i=1

∆i,n−i

)
min



1,

(n−m)(n−m + 1)

2

m∑

i=1

exp


− T − n

2
(

m
2 +

∑n−m+1
k=2

1
k

)
H2(i)






 .

Proof. First observe that our allocation of samples to the n−m phases in the

Elimination algorithm are such that they will not exceed T . An arm that is

eliminated at the end of phase l (line 11) would have been sampled for exactly

bl rounds, ∀l ∈ {1, 2, . . . , n−m}. The m arms that remain after n−m phases

would have been sampled for exactly bn−m rounds before line 8 is encountered
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and any additional rounds are conducted, if necessary, to use up all T of the

available samples.

n−m∑

l=1

bl + mbn−m

=
n−m∑

l=1

⌈
T − n(

m
2

+
∑n−m+1

k=2
1
k

)
(n−m + 2− l)

⌉
+ m

⌈
T − n(

m
2

+
∑n−m+1

k=2
1
k

)
(2)

⌉

≤ n +

n−m∑

l=1

T − n(
m
2

+
∑n−m+1

k=2
1
k

)
(n−m + 2− l)

+
m(T − n)(

m
2

+
∑n−m+1

k=2
1
k

)
(2)

= n +
T − n

m
2

+
∑n−m+1

k=2
1
k

(
m

2
+

n−m∑

l=1

1

n−m + 2− l

)
= T.

First we upper-bound the simple regret in terms of the probability that

Selected is different from Top. In the following, let M denote the set of all

m-sized subsets of Arms. We have:

E

[
∑

i∈Top

pi −
∑

a∈Selected

pa

]

=
∑

S∈M

P{Selected = S}
(
∑

i∈Top

pi −
∑

a∈S

pa

)

=
∑

S∈M\Top

P{Selected = S}
(
∑

i∈Top

pi −
∑

a∈S

pa

)

≤
∑

S∈M\Top

P{Selected = S}
(
∑

i∈Top

pi −
n∑

a=n−m+1

pa

)

= P{Selected 6= Top}
(

m∑

i=1

∆i,n−i

)
. (5.19)
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If indeed Selected 6= Top, then some arm i ∈ Top must have been

eliminated; therefore:

P{Selected 6= Top}

≤
∑

i∈Top

P{i /∈ Selected}

=
∑

i∈Top

n−m∑

l=1

P{Arm i is eliminated in phase l}. (5.20)

Since exactly one arm is eliminated in each phase, at least one of the

l arms in the set {n − l + 1, n − l + 2, . . . , n} reaches phase l (that is, is

present in Rl), for 1 ≤ l ≤ n − m. If arm i is eliminated in phase l, it im-

plies that (1) arm i and some arm l′ in the set above reach phase l, and (2)

at the end of phase l, p̂l′ ≥ p̂i. If indeed (1) is true, note that arms i and

k would each have been sampled at least for bl rounds before their empir-

ical means are compared. Applying Hoeffding’s inequality to the difference

between the Bernoulli random variables corresponding to arms i and l′, we

would get: P{p̂l′ ≥ p̂i| arms l′ and i reach phase l} ≤ exp
(
−2bl

(pi−pl′)
2

4

)
=

exp

(
−bl

∆2

i,l′

2

)
. As a consequence,

P{Arm i is eliminated in phase l}

≤
n∑

l′=n−l+1

exp

(
−bl

∆2
i,l′

2

)

≤
n∑

l′=n−l+1

exp

(
−bl

∆2
i,n−l+1

2

)

= l exp

(
−
⌈

T − n(
m
2

+
∑n−m+1

k=2
1
k

)
(n−m + 2− l)

⌉
∆2

i,n−l+1

2

)
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≤ l exp

(
− T − n

2
(

m
2

+
∑n−m+1

k=2
1
k

)
H2(i)

)
. (5.21)

Combining (5.19), (5.20), and (5.21) yields the required bound on the

simple regret. A further simplified bound based on the first-order terms is
m2(n−m)(n−m+1)

2
exp

(
− T−n

2(m
2

+
Pn−m+1

k=2
1

k)H2(m)

)
. This bound essentially general-

izes the bound provided for m = 1 by Audibert et al. (2010).

Theorem 5.15 (page 183)

Statement. The cumulative regret of UCBS(n, m) after T rounds of sampling

is at most

min

{(
m∑

i=1

∆i,n−i

)
T,

m∑

i=1

n∑

j=m+1

8 ln(T )

∆i,j

+
1 + π2

3

m∑

i=1

n∑

j=m+1

∆i,j

}
.

Proof. The cumulative regret after T rounds is given by

E

[
T∑

t=1

Rt

]
, where

Rt def

=
∑

i∈Top

pi −
∑

a∈At

pa.

We bound Rt in terms of the number of times some arm i from Top is

not selected, but some arm j in Bot is selected:

Rt =
∑

i∈Top

pi −
∑

a∈At

pa
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=
∑

i∈Top\At

pi −
∑

a∈At\Top

pa

= 1
[
Top 6= At

]



∑

i∈Top\At

pi −
∑

a∈At\Top

pa




=
1

|Top \ At|
∑

i∈Top\At

∑

a∈At\Top

(pi − pa)

≤
∑

i∈Top\At

∑

a∈At\Top

(pi − pa)

≤
∑

i∈Top

∑

j∈Bot

∆i,j1
[
i /∈ At, j ∈ At

]
.

This bound is necessarily loose if At contains more than one arm from

Bot. Now, let us define, ∀i ∈ Top, ∀j ∈ Bot:

Ti,j
def

=
T∑

t=1

1
[
i /∈ At, j ∈ At

]
.

Thus, the cumulative regret can be bounded as:

E

[
T∑

t=1

Rt

]
≤
∑

i∈Top

∑

j∈Bot

∆i,jE[Ti,j ]. (5.22)

We will show that E[Ti,j ] does not substantially exceed T ∗
i,j , where

T ∗
i,j

def

=

⌈
2

∆2
i,j

ln(T 4)

⌉
.

Consider arm i in Top, and arm j in Bot. Under UCBS, after t rounds,

j can be selected and i not selected only if p̂t
i +
√

1
2ut

i
ln (t4) ≤ p̂t

j +
√

1
2ut

j
ln (t4).

Consider two cases:
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1.
∑t−1

τ=1 1 [i /∈ Aτ , j ∈ Aτ ] < T ∗
i,j, and

2.
∑t−1

τ=1 1 [i /∈ Aτ , j ∈ Aτ ] ≥ T ∗
i,j.

In the first case, we simply bound P

{
p̂t

i +
√

1
2ut

i

ln (t4) ≤ p̂t
j +

√
1

2ut
j

ln (t4)

}

by 1. In the second case, observe that each of ut
i and ut

j must be at least T ∗
i,j,

and so, the lengths of the confidence bounds of arms i and j cannot exceed
∆i,j

2
.

Thus, in this case, the event i /∈ Aτ , j ∈ Aτ implies that either p̂t
i ≤ pi − ∆i,j

2
,

or p̂t
j ≥ pj +

∆i,j

2
. By Hoeffding’s inequality, the probabilities of these events

are at most exp
(
−ut

i∆
2
i,j

2

)
and exp

(
−ut

j∆
2
i,j

2

)
, respectively. We can therefore

bound E[Ti,j ] as follows.

E[Ti,j ] ≤ T ∗
i,j +

T−1∑

t=T ∗

i,j

t∑

u=T ∗

i,j

t∑

u2=T ∗

i,j

(
exp

(
−

u1∆
2
i,j

2

)
+ exp

(
−

u2∆
2
i,j

2

))

≤ T ∗
i,j +

T−1∑

t=T ∗

i,j

2t2 exp

(
−

T ∗
i,j∆

2
i,j

2

)

≤ T ∗
i,j +

T−1∑

t=T ∗

i,j

2T 2

T 4

≤ T ∗
i,j +

π2

3
.

Substituting the bound for E[Ti,j] into (5.22) completes our proof.

5.7 Summary and Discussion

In this chapter, we have undertaken a detailed investigation into the

problem of subset selection, wherein the objective is to select, from n real-

valued random variables, a subset of size m of those with relatively high
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means, based on efficiently sampling the random variables. This problem,

which finds application in numerous areas, is particularly relevant to this dis-

sertation through its connection with the selection routines of ranking-based

PS methods such as CMA-ES and CEM. We have formalized subset selection

using the framework of stochastic multi-armed bandits, specifically considering

three operational settings: probably approximately correct (PAC) selection,

simple regret (SR) minimization, and cumulative regret (CR) minimization.

Under each of these settings, we have generalized previous work devoted to

identifying just the single best arm in an n-armed bandit.

Our most novel results are under the PAC framework, where, in addi-

tion to generalizing the formulation of Even-Dar et al. (2006), we improve their

high-probability sample complexity bounds. Indeed our LUCB algorithm for

the PAC setting is qualitatively novel, and analogous to the well-known UCB

algorithm for regret minimization. Additionally the algorithm is naturally de-

coupled into a stopping rule and a sampling strategy, of which the stopping

rule alone is shown to determine the correctness of the algorithm. Under the

SR and CR settings, our algorithms and analyses generalize previous work.

Table 5.2 provides a summary of our results.

A recent line of work related to subset selection involves the OCBA-m

algorithm (Chen et al., 2008), which is devised under a Bayesian framework.

Indeed this method has been applied for subset selection within CEM (He

et al., 2010). An important direction for future work is to experimentally com-

pare our Elimination method with OCBA-m and related methods. Another

related family of methods are racing algorithms (Mnih et al., 2008; Heidrich-

Meisner and Igel, 2009a). Racing algorithms trace back to the seminal work

of Maron and Moore (1997), which was originally developed to address model
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Table 5.2: Subset selection: summary of results (see Section 5.2.3 for defini-
tions of terms).

Setting Our result and its relation to previous work

PAC-m
Expected sample complexity = O

(
H

ǫ/2
1 ln

(
H

ǫ/2

1

δ

))
;

generalizes and improves results of Even-Dar et al. (2006).

SR-m
Simple regret ≤ m2(n−m)(n−m+1)

2
exp

(
− T−n

2(m
2

+
Pn−m+1

k=2
1

k)H2(m)

)
;

generalizes results of Audibert et al. (2010).

CR-m
Cumulative regret ≤

∑m
i=1

∑n
j=m+1

(
8 ln(T )
∆i,j

+ 1+π2

3
∆i,j

)
;

generalizes results of Auer et al. (2002a).

selection in machine learning. Racing algorithms fall in between our PAC and

SR settings. In these algorithms, the number of available samples, T , and the

mistake probability, δ, are both specified beforehand. Given these constraints,

the objective is to identify the best individuals (or subset of individuals), if

at all possible. Thus, if T or δ is relatively small, racing algorithms could

terminate without returning a feasible subset.

Several improvements can be made to the algorithms we have pre-

sented in this chapter. Foremost, our algorithms and bounds are distribution-

agnostic, depending only on the means of the bandit arms. In general further

efficiency can be obtained by also keeping track of the empirical variances of

arms (Mnih et al., 2008; Audibert et al., 2009), or entire empirical distribu-

tions (Honda and Takemura, 2010). Yet another fundamental assumption we
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might revisit concerns (the lack of) dependencies between bandit arms. In

several practical applications, it would be profitable to explicitly model de-

pendencies across arms (Frazier et al., 2009) and even across populations of

bandit instances (Li et al., 2010).

Whereas we have only focused in this chapter on subset selection, in

practice, several other selection schemes, such as tournament selection and

proportionate selection (Miller and Goldberg, 1996), are used in tandem with

evolutionary methods. Also, some evolutionary algorithms seek to maintain

good on-line performance (Whiteson and Stone, 2006b), which the “pure ex-

ploration” nature of PAC-m and SR-m does not match. It would be useful

to investigate whether our UCBS algorithm (under CR-m) could be used

effectively in tandem with on-line evolutionary algorithms.

The subset selection algorithms developed in this chapter apply beyond

the ambit of this dissertation. Yet, they are specifically relevant to this disser-

tation as we have shown them to improve the sample-efficiency of certain PS

methods. In the next chapter, we consider developing hybrid learning methods

for sequential decision making, wherein VF and PS methods are combined in

effective ways.
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Chapter 6

Hybrid Learning Methods: Two Case Studies

Experimental results from Chapter 3 indicate a strong advantage in favor of

VF methods with respect to learning speed; yet it is PS methods that perform

better when working with significantly deficient representations. As introduced

in Section 1.3.3, this chapter presents two case studies wherein we synthesize

the strengths of VF and PS methods via hybrid learning architectures.

Case Study 1 involves a conceptually simple, yet surprisingly effective algo-

rithmic contribution arising from this dissertation. We show that the straight-

forward scheme of applying VF and PS methods in sequence—initially VF for

some duration, followed by a transfer of the learned weights to be refined us-

ing PS—indeed inherits the strengths of its VF and PS constituents, and is

often more successful than either of them taken in isolation. We arrive at

this conclusion based on results both from the suite of parameterized learning

problems introduced in Chapter 3, and from the more complex and realistic RL

benchmark task of robot soccer Keepaway.

Case Study 2 undertakes a deeper investigation involving the Keepaway task.

Whereas Case Study 1, and indeed most previous work on Keepaway, limit

learning in the task to an isolated, infrequent decision that amounts to a turn-

taking behavior (“Pass” behavior), here we expand the agents’ learning ca-

pability to include a much more ubiquitous action (moving without the ball,

or “GetOpen” behavior). We introduce a policy search method for learning
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GetOpen; policy search is indeed more aptly suited for learning GetOpen

than the TD learning approach previous studies have employed for learning

Pass. Results establish the success of learning GetOpen both separately and

together with Pass. We consider our demonstration of the autonomous learn-

ing of a fairly substantial fraction of a complex task, achieved only by putting

together distinct learning techniques, a relatively novel and crucial element in

scaling RL to even more complex problems.

The two case studies presented in this chapter both contribute to learning

methodology oriented towards practical applications. After providing a detailed

description of the Keepaway task in Section 6.1, we present the two case stud-

ies in Sections 6.2 and 6.3. A discussion of related work follows in Section 6.4.

This chapter, like the previous one, draws inspiration from the exper-

iments and analyses in chapters 3 and 4 in order to design learning methods

that are effective in practice. Whereas the previous chapter undertook a fo-

cused, theoretical study of subset selection and its application to policy search,

this chapter examines the possibility of developing hybrid learning methods

that combine the strengths of VF and PS methods.

Results from chapters 3 and 4 highlight that VF methods display su-

perior sample efficiency when compared with PS methods; on the other hand,

VF methods are affected to a greater degree by poor representations than are

PS methods. Problems encountered in practice are bound to have represen-

tations varying from “very good” to “very poor”. Ideally, we desire learning

methods that for any given representation, are able to quickly learn the best

policies achievable. Can we devise such learning methods? In this chapter, we

consider two promising learning frameworks, each through a case study.
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Under Case Study 1, we introduce a sequencing algorithm under which

a VF method is applied for an initial phase during learning, following which

the learned behavior is refined using a PS method. Experiments show that this

conceptually simple scheme is quite successful on the suite of parameterized

learning problems designed in Chapter 3. Indeed its success also extends to the

more complex RL benchmark of robot soccer Keepaway (Stone et al., 2005),

which becomes the focus of our second case study.

Keepaway is a subtask of robot soccer in which one team of players

must keep possession of the ball, while resisting the attempts of an opposing

team. Whereas successful ball possession depends both on (1) the strategy of

the player with the ball (in deciding whether and where to pass) and (2) of its

teammates (in deciding where to position themselves), prior work in Keepaway

has focused only on learning the former behavior, treating the latter behavior

as fixed and manually programmed. Under Case Study 1, too, we only learn

the former behavior, “Pass”, while following a standard hand-coded policy

for the latter behavior, “GetOpen”.

Under Case Study 2, we show that the complementary behaviors of

Pass and GetOpen can indeed be learned together. Incidentally the structure

of these tasks is such that whereas Pass is well-suited to be learned using

a VF method, it is far more effective to set up a parameterized policy for

GetOpen and to optimize it using policy search. In effect, if we consider

“Pass+GetOpen” as a compound sequential decision making problem, we

find that it can be learned most efficiently by decomposing it into interrelated

subtasks, which are themselves learned in tandem using qualitatively different

learning methods.

The contrasting learning approaches under case studies 1 and 2 are
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summarized in Figure 6.1. Whereas VF and PS methods are applied in se-

quence under Case Study 1, and in parallel under Case Study 2, importantly,

both schemes are instances of multiple learning methods being applied to the

same task. We believe that such integrated approaches are necessary to ex-

tend the reach of RL to more complex applications, and that the case studies

presented here can offer useful guidance for future research in this area.

The remainder of this chapter is organized as follows. First, in Sec-

tion 6.1, we give a detailed description of the Keepaway task, which is used as

a testbed in both the case studies that follow. Section 6.2 is devoted to Case

Study 1, and Section 6.3 to Case Study 2. A discussion of related work follows

in Section 6.4, and finally, Section 6.5 summarizes the chapter.

Initial weights Intermediate weights Final, learned weights
VF PS

(a) Case Study 1

VF

PS

Subtask 1 learned weights

Subtask 2 learned weightsSubtask 2 initial weights

Subtask 1 initial weights

(b) Case Study 2

Figure 6.1: Summary of learning schemes under (a) Case Study 1 and (b) Case
Study 2. In Case Study 1, the weights to be learned are first adapted using
a VF method, such that they approximate the value function being learned.
Once learning begins to plateau, a PS method is employed to tune the weights
such that the value of the resulting policy is increased. Under Case Study
2, the task is itself decomposed into subtasks (Pass and GetOpen), each
with its own policy structure and weights. The weights of the different sub-
tasks are worked upon by different learning methods. In our implementation
(see Section 6.3.1), the weights under Pass and GetOpen are adapted in an
interleaved manner.
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6.1 Task Description: Robot Soccer Keepaway

This section provides a detailed description of the Keepaway task,

specifically its decomposition into the Pass and GetOpen behaviors. Re-

call that the learning methodology developed in Case Study 1 is evaluated on

the Pass subtask, while keeping GetOpen fixed. However, learning Pass

and GetOpen in tandem becomes the focus of Case Study 2.

The RoboCup 2D simulation soccer domain (Chen et al., 2003) models

several difficulties that agents must cope with in the real world. Soccer is

necessarily a multiagent enterprise, in which agents have both teammates and

opponents. The RoboCup 2D simulation platform only provides agents partial

and noisy perceptions; the agents have noisy actuators. The agents’ sensing

and acting routines are not synchronized, and in the interest of keeping real

time, do not admit extensive deliberation. The atomic actions available to

an agent are Turn, Turn-Neck, Dash, Kick, and Catch; skills such as passing to

a teammate or going to a point must be composed of a string of these low-

level actions executed in sequence. For all these reasons, RoboCup simulation

soccer becomes a challenging domain for machine learning.

Keepaway (Stone et al., 2005) is a subtask of soccer in which a team

of three keepers aims to keep possession of the ball1 away from the opposing

team of two takers. The game is played within a square region of side 20m.2

Each episode begins with some keeper having possession of the ball, and ends

when some taker claims possession or the ball overshoots the region of play. It

is the objective of the keepers to maximize the expected length of the episode,

1A player is deemed to have possession of the ball if the ball is close enough to be kicked.
2Keepaway can be generalized to varying numbers of keepers and takers, as well as

different field sizes (Stone et al., 2005).
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referred to as the episodic hold time. The keepers must cooperate with each

other in order to realize this objective; they compete with the team of takers,

which seeks to minimize the hold time. Figure 6.2 shows a snapshot of a

Keepaway episode in progress.

In order to make the Keepaway task amenable to learning, it becomes

necessary to constrain the scope of decision making by the keepers. Figure 6.3

outlines the policy followed by each keeper in the scheme employed by Stone

et al. (2005). The keeper closest to the ball intercepts the ball until it has

possession. Once it has possession, it must execute the Pass behavior (not to

be confused with a pass action), by way of which it may retain ball possession

or pass to a teammate. Keepers other than the one closest to the ball move

to a position conducive for receiving a pass by executing GetOpen behavior.

Pass and GetOpen, by offering a choice of high-level actions based on

the keeper’s state, are candidates for the application of learning. Most prior

work involving learning in Keepaway is only concerned with learning Pass (as

Keeper

Ball

Boundary

Taker
Center

Figure 6.2: A snapshot of Keepaway.
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I am closest

to ball

possession

I haveI do not have

possession

Intercept ball

Teammate is closest

to ball

P G OASS ET PEN

Figure 6.3: Policy followed by each keeper in Keepaway

we will be under Case Study 1 for testing a sequencing algorithm). In such

work, fixed, hand-coded strategies are assigned for GetOpen, and indeed for

the behavior followed by the takers. In other words, the teammates and op-

ponents of the keeper with the ball do not adapt to the specific characteristics

of that keeper, as they might in real soccer. As a step in the direction of

furthering team adaptation, under Case Study 2, we extend the frontier of

learning in Keepaway to include GetOpen. Thus, we treat Keepaway as a

composite of two distinct behaviors to be learned: Pass and GetOpen. As

in previous work (Stone et al., 2005), we restrict the takers to the fixed policy

of moving towards the ball.3 In the remainder of this section, we provide de-

tailed specifications of the Pass and GetOpen behaviors and describe how

they interact.

3Note that in recent work, Iscen and Erogul (2008) do explore learning taker behavior,
thereby complementing the work in this chapter. Section 6.4 includes a brief description of
their work.
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6.1.1 Keepaway PASS

Here we revisit the problem of Pass defined by Stone et al. (2005).

The keepers and takers assume roles that are indexed based on their distances

to the ball: Ki is the ith closest keeper to the ball, and Tj the jth closest

taker. From Figure 6.3, we see that the keeper executing Pass must be K1.

The three high-level actions available to K1 are HoldBall, which is composed

of a series of kicks close to itself, but away from any approaching takers; and

PassBall-i, i ∈ {2, 3}, a direct pass to Ki. Each player processes its low-

level perceptual information to construct a world model, which constitutes a

continuous state space. This space is represented through a vector of 13 state

variables, comprising distances and angles among the players and the center

C of the field. These state variables are marked in Figure 6.4, and enumerated

in Table 6.1.

A policy for Pass maps a 13-dimensional vector representing the state

variables to one of the high-level actions: HoldBall, PassBall-2, and PassBall-3.

K
1

K
2

K
3

T
2

T
1

C

Figure 6.4: Illustration of Pass state variables (as specified in Table 6.1).
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Table 6.1: Pass state variables.

dist(K1, K2) minj∈1,2 dist(K2, Tj) dist(K1, C)
dist(K1, K3) minj∈1,2 ang(K2, K1, Tj) dist(K2, C)
dist(K1, T1) minj∈1,2 dist(K3, Tj) dist(K3, C)
dist(K2, T2) minj∈1,2 ang(K3, K1, Tj) dist(T1, C)

dist(T2, C)

An example of such a policy is Pass:Hand-coded (Algorithm 6.1), which

implements a well-tuned manually programmed strategy (Stone et al., 2005).

Under this policy, K1 executes HoldBall until the takers get within a certain

range, after which distances and angles involving its teammates and opponents

are used to decide whether (and to which teammate) to pass. Yet another

policy for Pass is Pass:Random, under which K1 chooses one of the three

Algorithm 6.1 Pass:Hand-coded

Input: Pass state variables (13).
Output: Action ∈ {HoldBall, PassBall-2, PassBall-3}.

if dist(K1, T1) > C1 then
Return HoldBall.

for i ∈ {2, 3} do
valAngi ← minj∈{1,2} ang(Ki, K1, Tj).
valDisti ← minj∈{1,2} dist(Ki, Tj).
vali ← C2 · valAngi + valDisti.

if maxi∈{2,3} vali > C3 then
passIndex← argmaxi∈{2,3} vali.
Return PassBall-passIndex.

else
Return HoldBall.

{C1 = 5.0, C2 = 0.25, C3 = 22.5; distances are taken to be in meters and angles in
degrees.}
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available actions with equal likelihood. Pass:Learned denotes a learned

Pass policy, of which we will encounter examples in Section 6.2.2.2 (under

Case Study 1) and Section 6.3.1 (under Case Study 2).

6.1.2 Keepaway GETOPEN

Whereas learning Pass has been studied quite extensively in the litera-

ture (Jung and Polani, 2007; Metzen et al., 2008), predominantly, all previous

work has used the hand-coded GetOpen policy originally defined by Stone

et al. (2005), to which we refer here as GetOpen:Hand-coded. Thus, while

previous work on Keepaway has considered multiple agents learning, the agents

have never been executing their learned behaviors concurrently (only one

player executes Pass at any given time). By introducing a learned GetOpen

behavior in Case Study 2, we significantly expand the scope of multiagent

learning in Keepaway. Below we describe our formulation of GetOpen.

In principle there are infinitely many positions on the square playing

field that K2 and K3 can occupy. However, they only get a small amount

of time to pick a target. Since points close to each other are likely to be of

similar value, an effective strategy is to evaluate only a small, finite set of points

spread out across the field and choose the most promising. Figure 6.5(a) shows

a uniform grid of 25 points overlaid on the field, with a 15% margin on the

sides. GetOpen is implemented by evaluating each grid point P and moving

to the one with the highest value. Indeed we define the learning problem under

GetOpen to be that of learning an evaluation function assigning a value to

every target point P (given the configuration of the players).

As with Pass, it becomes necessary to define a set of state variables

for learning GetOpen. In Figure 6.5(b), K3 is shown seeking to evaluate a
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potential target point P at some instant of time t. The distances and angles

marked in the figure correspond to the GetOpen state variables used for the

purpose, which we identify based on informal experimentation. None of the

state variables involves K3, as K3 is examining a situation at time t′ in the

future when it would itself be at P . At time t′, K3 expects to have possession

of the ball, and re-orders the other players based on their distances to it. Thus

K3 becomes K ′
1, and in the configuration in Figure 6.5(b), K1 becomes K ′

2, T1

becomes T ′
1, and so on.

Conceptually the evaluation of the target point P should consider both

the likelihood of receiving a pass at P and the value of being at P with the

P

2
0
m

20m

3.5m

3
.5
m

(a)

P=K
1
’

K
3

K
2
=K

3
’

T
1
=T

1
’K

1
=K

2
’

T
2
=T

2
’

C

(b)

Figure 6.5: (a) Uniformly-spaced target points under GetOpen. Each point
is evaluated independently by K2 and K3, and one with the highest evaluation
is chosen by each of those keepers as its target point. (b) For example, if
some point P is being evaluated by K3, state variables (listed in Table 6.2) are
derived based on P and the positions of the players, and used in computing
P ’s evaluation. Dashed names (such as K ′

2 and T ′
1) index the players based

on their distances to P . In this example, state variables dist(K ′
1, K

′
2) and

dist(K1, K
′
1) (darkened) overlap.
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ball afterwards. This leads to two logical groups within the state variables

for GetOpen. One group contains two variables that influence the success

of a pass from K1 to K ′
1, the latter being at P . These variables are the

distance between K1 and K ′
1, and the minimum angle between K1, K ′

1, and

any taker. State variables in the other group bear direct correspondences with

those used for learning Pass, but computed under the re-ordering at t′. Of the

13 state variables used for Pass, we leave out the five distances between the

players and the center of the field, as they do not seem to benefit the learning

of GetOpen. The resulting ten state variables for GetOpen are listed in

Table 6.2.

In defining state variables for GetOpen, it is implicitly assumed that

players other than K ′
1 do not change their positions between instants t and t′.

This clearly imperfect assumption does not have too adverse an effect since

GetOpen is executed every cycle, always with the current positions of all

players. Revising the target point every cycle, however, has an interesting ef-

fect on a random GetOpen policy. In order to get from point A to point B, a

player must first turn towards B, which takes 1-2 cycles. When a random target

point is chosen each cycle, K ′
1 constantly keeps turning, achieving little net dis-

Table 6.2: GetOpen state variables.

dist(K ′
1, K

′
2) minj∈1,2 dist(K ′

2, T
′
j) dist(K1, K

′
1)

dist(K ′
1, K

′
3) minj∈1,2 ang(K ′

2, K
′
1, T

′
j) minj∈1,2 ang(K ′

1, K1, Tj)
dist(K ′

1, T
′
1) minj∈1,2 dist(K ′

3, T
′
j)

dist(K ′
2, T

′
2) minj∈1,2 ang(K ′

3, K
′
1, T

′
j)
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placement. To redress this effect, our implementation of GetOpen:Random

only allows K ′
1 to revise its target when it reaches its current target. Such a

measure is not necessary when the targets remain reasonably stable, as they

do for GetOpen:Learned, the learned GetOpen policy under Case Study

2, and GetOpen:Hand-coded, which we describe next.

Under GetOpen:Hand-coded (Stone et al., 2005), specified in Al-

gorithm 6.2, the value of a point P is inversely related to its congestion, a

measure of its distances to the keepers and takers. Additionally, assuming

that K1 will pass the ball from predictedBallPos, P is deemed an inadmissi-

ble target (given a value of −∞) if any taker comes within a threshold angle

of the line joining predictedBallPos and P . The effective use of variables such

as congestion and the predicted position of the ball make GetOpen:Hand-

coded a fairly sophisticated policy. These abstract variables are not among

the state variables used by GetOpen:Learned (listed in Table 6.2). In Sec-

tion 6.3.2.1, we compare GetOpen:Hand-coded with GetOpen:Learned

to verify if indeed the distances and angles used by the latter suffice for de-

scribing competent GetOpen behavior.

Algorithm 6.2 GetOpen:Hand-coded

Input: Evaluation point P , World State.
Output: Value at P .

teamCongestion←∑
i∈{1,2,3},i6=myIndex

1
dist(Ki,P ) .

oppCongestion←
∑

j∈{1,2}
1

dist(Tj ,P ) .

congestion← teamCongestion + oppCongestion.
value← −congestion.
safety ← minj∈{1,2} ang(P, predictedBallPos, Tj).
if safety < C1 then

value← −∞.
Return value.

{C1 = 18.4; angles are taken to be in degrees.}
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6.1.3 Keepaway PASS+GETOPEN

Pass and GetOpen are separate behaviors of the keepers, which, to-

gether, may be viewed as “distinct populations with coupled fitness land-

scapes” (Rosin and Belew, 1995). At any instant, there are two keepers ex-

ecuting GetOpen; their teammate, if it has intercepted the ball, executes

Pass. Specifically each keeper executes GetOpen when it assumes the role

of K2 or K3, and executes Pass when it has possession of the ball, as K1.

The extended sequence of actions that results as a combination each keeper’s

Pass and GetOpen policies determines the team’s performance. Indeed the

episodic hold time is precisely the temporal length of that sequence.

Pass has been the subject of many previous studies, in which it is

modeled as a semi-Markov Decision Problem (SMDP) (Puterman, 1994) and

tackled using TD learning methods (Stone et al., 2005; Jung and Polani, 2007).

In Pass, exactly one keeper takes an action at a time (one of HoldBall, PassBall-

1, and PassBall-2). Hence, only the keeper that takes an action needs to get

rewarded for it. Indeed if the reward is the time elapsed until the keeper takes

its next action (or the episode ends), the episodic hold time gets maximized if

each keeper maximizes its own long-term reward.

Unfortunately GetOpen does not admit a similar credit assignment

scheme, because at any instant, two keepers (K2 and K3) take GetOpen

actions to move to their target points. If K1 executes the HoldBall action,

neither K2 nor K3 will receive a pass. If K1 passes to K2, how must K3 be

rewarded? In principle the sequence of joint actions taken by K2 and K3 up

to the successful pass must be rewarded. Yet a joint action is taken every

cycle (in contrast with Pass actions, which last 4-5 cycles on average), and

the large number of atomic GetOpen actions (25, compared to 3 for Pass)
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leads to a very large joint action space for GetOpen. In short, GetOpen

induces a far more complex MDP than Pass, and clearly one that is quali-

tatively dissimilar. An additional obstacle to be surmounted while learning

Pass and GetOpen together is the non-stationarity introduced by each of

these behavioral components into the other’s environment. All these reasons,

combined with the inherent complexity of RoboCup 2D simulation soccer,

make Pass+GetOpen a demanding problem for machine learning.

Having specified Keepaway Pass and GetOpen in detail, we now pro-

ceed to describe the algorithmic contributions of this chapter. Case Study 1

uses the suite of parameterized learning problems from Chapter 3, along with

Keepaway Pass, in its experiments. Case Study 2 specifically investigates the

learning of Pass+GetOpen (after learning Pass and GetOpen separately).

6.2 Case Study 1: Sequencing Learning Methods

In our experiments in Chapter 3, we found that CMA-ES (and other PS

methods) are typically much slower to learn than Sarsa (and other VF meth-

ods). For example, the disparity between the sample-efficiency of VF and

PS methods is clearly visible in Figure 3.8 (page 74), in which their perfor-

mance on three separate problem instances is measured after various amounts

of training time. Over shorter training durations, Sarsa and Q-learning are

easily the most effective learning methods on all three problems. However,

as more training samples become available, we observe that on problem in-

stance I2, the most successful methods are PS methods such as CMA-ES and

CEM. Recall that I2 is characterized by its relatively low setting for χ (0.5),

corresponding to a generalization scheme with limited expressiveness.

In our parameterized learning problem from Chapter 3, the state alias-
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ing parameter σ is somewhat less regular than χ in separating the performance

of VF and PS methods. For example, in Figure 3.10 (page 80), we see that

for a given σ setting, the order between Sarsa∗ and CMA-ES∗ can differ based

on the setting of w, the generalization width. Nevertheless, under all three

settings of w in Figure 3.10, we still see that the difference between the per-

formance of Sarsa∗ and CMA-ES∗ diminishes as σ is increased. Under w = 5,

indeed we observe a threshold for σ (between 2 and 4) below which Sarsa∗

outperforms CMA-ES∗, and above which the opposite happens. In summary,

we might conclude based on Chapter 3 that

1. VF methods are more sample-efficient than PS methods, but

2. PS methods can often achieve better performance under deficient repre-

sentations (low χ and high σ settings).

Surely it is desirable that any practical learning method possess both

attributes: sample-efficient learning and robustness to poor representations.

In this case study, we devise one such a method, whose effectiveness we then

demonstrate both on the suite of parameterized learning problems from Chap-

ter 3, and on Keepaway Pass, which was described in Section 6.1.1.

6.2.1 Sequencing Algorithm

VF methods tend to “plateau” much earlier than PS methods: that is,

they approach close to their maximal performance based on far fewer samples.

Consider a task in which we have 50,000 episodes for training. Suppose a

VF method such as Sarsa begins to plateau on this task, say, after a mere

5,000 episodes; it then seems wasteful to devote the remaining 45,000 episodes

224



towards the very minor improvements Sarsa might yet achieve. Could we put

the remaining 45,000 episodes to better use?

In problems with poor representations, our results from Chapter 3 sug-

gest that the asymptote reached by Sarsa is often significantly inferior com-

pared to that of CMA-ES. A natural possibility for combining the strengths

of these methods is therefore to execute Sarsa for, say, 5000 episodes, and

then to use CMA-ES over the remaining 45,000 episodes to refine the policy

learned by Sarsa. One way to interpret such a scheme is that CMA-ES is

essentially used to improve the policy learned by Sarsa; another interpretation

is that we use Sarsa to quickly identify a better-than-random initial setting for

CMA-ES. Since in our parameterized learning problem, Sarsa and CMA-ES

are constrained to share a common representation (Section 3.1, page 40), a

straightforward way to initialize CMA-ES with a policy learned using Sarsa is

to set its initial weights to those learned by Sarsa. Although a raw transfer

of weights is not always applicable across different representations, we conjec-

ture that the resulting technique can still offer insights about synthesizing the

merits of VF and PS methods.

We refer to the resulting sequencing method—first running a VF method

until it plateaus, and then transferring weights to a PS method—as “Seq”,

which is summarized in Algorithm 6.3. Note that Seq is more akin to an al-

gorithmic framework where different constituent methods from the VF and

PS classes can be employed, and different mechanisms implemented for the

transfer of policy between them. In the next section, we discuss experimental

results with two different instantiations of Seq.
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Algorithm 6.3 Seq

1. Execute a VF method (such as Sarsa or Q-learning) until its performance
no longer improves significantly, or the total training time has been reached.
Save the resulting vector of weights wV F .

2. Execute a PS method (such as CMA-ES or CEM), starting with wV F

its initial weights, until the total training time has been reached. Save the
resulting vector of weights wPS.

3. Return wPS.

6.2.2 Results

We apply Seq both to the suite of parameterized learning problems

introduced in Section 3.1 (page 40), which facilitates extensive testing, and to

Keepaway Pass, which was described in Section 6.1.1. We find that Seq is

successful in both cases.

6.2.2.1 Parameterized Learning Problem

To test Seq in our parameterized learning problem, we use Sarsa and

CMA-ES as its constituent methods. Recall from Chapter 3 that these meth-

ods achieve the best performance among the VF and PS classes, respectively.

In principle, the method-specific parameters of Seq therefore include all of the

method-specific parameters of Sarsa (λ, α0, ǫ0, θ0) and CMA-ES (#trials,

#gens), along with the number of episodes at which the transfer of weights is

effected from Sarsa to CMA-ES.

For a given problem setting, we may conduct a search over all seven

of these method-specific parameters to find the most effective configuration of

Seq, and denote that configuration Seq∗. If we did so, it is clear that Seq∗

would always perform at least as well as the better of Sarsa∗ and CMA-ES∗
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(by running either Sarsa∗ or CMA-ES∗ for the entire training period). In the

experiments to follow, rather than search for and evaluate this best instance

of Seq, we constrain Seq to (1) use Sarsa∗ and CMA-ES∗, each optimized in-

dependently for 50,000 episodes, as its constituents; and (2) transfer weights

from Sarsa∗ to CMA-ES∗ after 2,500 episodes of training. Thus, Seq essentially

amounts to running CMA-ES∗, but starting from a potentially useful initial-

ization. Our choice of transferring weights after 2,500 episodes arises from

the judgment that when learning runs are conducted for 50,000 episodes, the

performance of Sarsa typically does not increase much after 2,500 episodes. Of

course, slightly better results could be achieved on a given problem instance

by tuning this “transfer point” between Sarsa and CMA-ES more carefully—

for our current experiments, we consider the fixed setting of 2,500 episodes a

reasonable choice. In our experiments, we set the initial variance correspond-

ing to each parameter to be optimized by CMA-ES∗ (after the switch) to the

overall variance of the weights themselves.

Figure 6.6 compares Seq with Sarsa∗ and CMA-ES∗ under problem set-

tings in which σ and χ are varied. Under all settings, we find that Seq performs

at least as well as CMA-ES, if not marginally better. Thorough “head-to-head”

comparisons between each pair of methods are plotted in the bottom row of

the figure. Each plot therein compares two of the methods. For specified set-

tings of σ and χ, the method registering higher performance is marked if the

evidence is statistically significant (p-value < 0.01). Figure 6.6(d) identifies re-

gions of the problem space suiting Sarsa∗ and CMA-ES∗. From Figure 6.6(e),

we observe that Seq marginally extends the territory claimed by CMA-ES∗.

Indeed Seq outperforms CMA-ES∗ in regions where σ is low and χ is high,

and performs at least as well in the remainder of the problem configurations
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Figure 6.6: [s = 10, p = 0.2, w = 5.] Top row (a, b, and c): Sarsa∗,
CMA-ES∗, and Seq compared at different settings of σ and χ in our suite of
parameterized learning problems from Chapter 3. The performance plotted
is based on 50,000 episodes of training. Sarsa∗ and CMA-ES∗ are optimized
independently at each problem setting; Seq combines the methods thus tuned
(with no further optimization), transferring weights from Sarsa to CMA-ES
after 2,500 training episodes. Bottom row (d, e, and f): Plots showing
pairwise comparisons between Sarsa∗, CMA-ES∗, and Seq at different settings
of σ and χ. At each reported setting, one of the methods is indicated if with
statistical significance (p < 0.01), it achieves a higher performance than the
other. At some settings, the methods cannot be thus separated; note that in
plot (f), CMA-ES∗ does not outperform Seq at any of the reported settings
of σ and χ.
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(Figure 6.6(f)). Thus, in summary we note that Seq consistently outperforms

CMA-ES∗ in the section of problems covered in Figure 6.6; on some of these

problems, Seq also outperforms Sarsa∗. We find further evidence in strong

support of Seq when we evaluate it on Keepaway Pass. On this more complex

task, Seq indeed outperforms both its VF and PS constituents.

6.2.2.2 Keepaway Pass

When we evaluate our learning methods on the Keepaway Pass task,

we pair it with GetOpen:Hand-coded (described earlier in Algorithm 6.2),

which is a well-tuned manually designed policy for GetOpen (Stone et al.,

2005). We consider learning GetOpen under Case Study 2 (in Section 6.3).

Unlike with our parameterized learning problem, a linear representation

with a small number of features is not sufficient for representing competent

Keepaway Pass policies, and nor is it clear if optimality is achievable. Note

that each keeper learns autonomously, using only its own stream of experiences:

this multiagent aspect of Keepaway Pass is another aspect distinguishing it

from the parameterized learning problems considered in Section 6.2.2.1.

In the experiments reported here, our Pass policy is represented through

three 13-20-1 neural networks, computing activations for each action. Such an

architecture has been used successfully in the past with Sarsa(0) as the learn-

ing method (Stone et al., 2006). Indeed we retain Sarsa(0) as the VF method

to work with our neural network architecture, using constant values of ǫ = 0.01

and α = 0.0001. We fix these exploration and learning rates based on manual

tuning; we do not find it necessary to anneal either of them.

Note that other function approximators have also been used successfully

in the literature for learning Pass: in particular, tile coding and radial basis
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functions. One of the reasons we employ neural networks here for representing

the value function and policy is their compactness (a total of 903 weights in

this case, rather than the tens of thousands needed with tile coding and radial

basis functions for obtaining good performance). The relatively small number

of weights to adapt makes the architecture readily usable by PS methods, and

indeed enables us to implement Seq using a direct transfer of weights from

VF to PS. Under Case Study 2, we adopt the tile coding scheme introduced

by Stone et al. (2005) for learning Pass using Sarsa(0): tile coding achieves

slightly better results than the present neural network implementation.

As a representative method from the PS class, we run the cross-entropy

method (CEM), earlier described in Section 3.2.2. We tune this method in

order to maximize performance after 40,000 episodes of training, which we

achieve by maintaining a population of 20 solutions, each evaluated for 125

episodes. The initial Gaussian distribution used for generating the weights of

the neural net is N(0, 1)903 (each neural net has 301 weights, including biases).

After each generation (2500 episodes), the 5 best performing policies are used

to determine the mean and variance for the subsequent generation.

Keepaway is significantly more complex than our parameterized learn-

ing problem. Owing to time constraints, we decide to stick with Sarsa(0)

and CEM as representative VF and PS methods to test on this task, rather

than conduct extensive within-class comparisons with other methods (as in

Section 3.3.2). To implement Seq, we combine Sarsa(0) and CEM, where we

transfer the weights of the neural networks after 15,000 episodes of Sarsa train-

ing (and set each variance to 1). Figure 6.7 shows that on Pass, Seq dominates

both Sarsa(0) and CEM beyond 20,000 episodes of training (p-value < 0.01).

The “Random” policy shown in the graph picks from the three actions in
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Figure 6.7: Learning curves corresponding to four methods on the Keepaway
Pass task: Random, Sarsa(0), CEM, and Seq. The x axis marks the number
of episodes of training, and the y axis shows the performance registered by the
learned policy, calculated by averaging at least 14 independent testing trials.
At each reported point, the learned policy is executed for 500 episodes with
learning switched off. Under Seq, the transfer of weights from Sarsa(0) to
CEM is effected after 15,000 episodes of training.

Pass uniformly at random. While we cannot “dissect” Keepaway like we do

our parameterized learning problem—in order to ascertain the quality of the

representation employed—it is clear that state aliasing and generalization af-

fect learning in Keepaway Pass to some degree. That Seq outperforms both

Sarsa and CEM on this task suggests that Seq might be a useful algorithmic

strategy to adopt in other realistic applications of RL.

While here we have applied VF and PS methods in sequence for learning

Pass, in our next case study, we apply a VF method to learn Pass and a PS

method to learn GetOpen in an interleaved manner. The next section is

devoted to Case Study 2. Section 6.4 discusses related work, and Section 6.5

summarizes the chapter.
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6.3 Case Study 2: Learning Multiple Task Components

Consider a team of robots that must learn to play soccer. Learn-

ing to play soccer can be framed quite elegantly as a multiagent RL prob-

lem, for example, using a construct such as a decentralized POMDP (DEC-

POMDP) (Bernstein et al., 2002). However, general learning algorithms proven

to work in DEC-POMDPs can scarcely be expected to cope in practice with

the demands of a task as complex and large. Rather, any successful learning

strategy would have to carefully exploit the inherent regularities in the do-

main. Towards expediting multiagent RL, a number of formal models have

been proposed to exploit task-specific regularities such as coordination of ac-

tions (Guestrin et al., 2002), state abstraction (Ghavamzadeh et al., 2006),

and information sharing (Rosin and Belew, 1995). While such formulations

all pave the way towards learning increasingly complex behavior, they still as-

sume that the task being considered is “monolithic”: capable of being learned

using a single learning algorithm. Yet complex tasks such as soccer comprise

multiple distinct skills and behaviors, the combination of which determines

the overall performance on the task. In order to surmount the challenge of

learning to play soccer, surely it is necessary to appropriately decompose the

task and tackle its components in specialized ways (Stone, 1998).

The possibility of applying different learning algorithms to various con-

junctive components within a task has not received much attention from a

theoretical standpoint; successful practical demonstrations of this strategy are

also few. We identify this aspect of learning as a crucial direction for research:

if a complex task naturally decomposes into qualitatively disparate compo-

nents, can we successfully learn policies for these components in conjunction?

In this section, we consider this question through a case study involving Keep-
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away (Stone et al., 2005), which was earlier described in Section 6.1. Keep-

away is significantly more complex than synthetic, discrete tasks that have

been used in the past for studying multiagent scenarios. For example, the

Predator-Prey task (Benda et al., 1986) has been used in early studies inves-

tigating agent cooperation (Haynes et al., 1995); small board games such as

Tic-Tac-Toe and Nim have pivoted studies involving agent competition (Rosin

and Belew, 1995). In contrast with these tasks, Keepaway has a continuous,

high-dimensional state space; noisy and asynchronous actions; and occluded,

noisy perception.

Even if Keepaway is realistic in several respects, previous studies related

to Keepaway have only considered learning the Pass behavior, assuming that

GetOpen is hand-coded and fixed (that is, the GetOpen:Hand-coded pol-

icy, specified in Algorithm 6.2, is followed). Indeed this was also our approach

under Case Study 1. In this section, under Case Study 2, we extend learning

in Keepaway from Pass to Pass+GetOpen. Consequently Keepaway be-

comes an instance of a learning problem composed of highly interdependent

behaviors executing simultaneously. Each player executes multiple behaviors

(Pass and GetOpen) that affect the outcome of its teammates’ behaviors,

and in the long run, also interact with one another. Such a scenario poses a

significant challenge for designing a credit assignment scheme that both re-

flects the intended objectives in the underlying task and guides learning in a

natural, incremental manner.

Although GetOpen can be described accurately as a sequential deci-

sion making problem, the presence of multiple agents, their large action spaces,

and the high frequency of decision making render GetOpen ill-suited to be

learned using model-based or value function-based methods. In response we
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devise a solution for learning GetOpen using policy search, which contrasts

with the TD approach used for learning Pass. Results show that our learned

GetOpen policy matches the best performing hand-coded policy for this task.

Further experiments illustrate that learning these complementary behaviors re-

sults in a tight coupling between them, and indeed that Pass and GetOpen

can be learned simultaneously. These results demonstrate the effectiveness of

applying separate learning algorithms to distinct components of a significantly

complex task. We provide detailed analyses to guide the design and evalua-

tion of similar solutions in the future, and hope that this exploratory research

will also motivate theoretical advances towards the methodology of combining

separately learned behaviors. As here, such behaviors might be learned using

very different learning algorithms.

The remainder of this section presents our learning framework (Sec-

tion 6.3.1) and relevant experimental results (Section 6.3.2).

6.3.1 Learning Framework

Each of the 3 keepers must learn one Pass and one GetOpen pol-

icy: an array of choices therefore arises in deciding whether the keepers learn

separate policies or learn policies in common. The total number of policies

learned may range from 2 (1 Pass, 1 GetOpen) to 6 (3 Pass, 3 GetOpen).

Different configurations have different advantages in terms of the size of the

overall search space, communication constraints, and the ability to learn spe-

cialized behaviors. It falls beyond the scope of this work to systematically

comb the space of possible solutions for learning Pass and GetOpen. As

an exploratory study, our emphasis in this chapter is rather on verifying the

feasibility of learning these behaviors, guided by intuition, trial and error. In
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the learning scheme we adopt, each keeper learns a unique Pass policy, while

the three keepers share a common GetOpen policy. We proceed to describe

the relevant learning schemes. As in Section 6.1, we furnish pseudo-code and

parameter settings to ensure that the presentation is complete and our exper-

iments are reproducible.

6.3.1.1 Learning PASS

For learning Pass, we apply the same algorithm and parameter values

employed by Stone et al. (2005), under which each keeper uses Sarsa(0) to

make TD learning updates. The reward for a keeper’s action is the time

elapsed until the next action is taken from the next state by that keeper (or

the episode ends). Assuming that the keepers follow stationary GetOpen

policies, this scheme seeks to directly maximize the episodic hold time by

separately improving each keeper’s Pass policy. A one-dimensional tile coding

scheme is used for function approximation; tile widths are 3.0m along state

variables corresponding to distances, and 10◦ along those representing angles.

An ǫ-greedy behavior policy is employed, with the exploration parameter ǫ set

to 0.01. The learning rate α is set to 0.125. As mentioned in Section 6.2.2.2,

tile coding leads to slightly better results on Keepaway Pass than neural

network-based function approximation.

6.3.1.2 Learning GETOPEN

Recall from Section 6.1.2 that the solution to be learned under Keep-

away GetOpen is an evaluation function over its ten state variables. As

described therein, a keeper executing GetOpen will apply this evaluation

function to each of 25 regularly spaced points on the field and head towards
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the one with the highest evaluation. We desire an evaluation function that

leads to maximization of the episodic hold time. Whereas TD learning is a

natural choice for learning Pass, difficulties in exploiting the sequential nature

of GetOpen (as outlined in Section 6.1.3) make direct policy search a more

promising alternative for tackling it. Thus, we represent the evaluation func-

tion as a parameterized function and search for parameter values that lead to

the highest episodic hold time.

Our learned GetOpen policy is implicitly represented through a neural

network that computes a value for a target location, given the 10-dimensional

feature vector. Note that unlike with Pass, these values do not have the same

semantics as action values computed through TD learning; rather, they merely

serve as action preferences, whose relative order determines which action is cho-

sen. After manually experimenting with roughly 20 different network topolo-

gies, we find that the best results are achieved using a 10-5-5-1 network, with a

total of 91 parameters (including biases at each hidden node). The parameters

are initialized to values drawn uniformly at random from the range [−0.5, 0.5];

each hidden node implements the sigmoid function f(x) = 1.7159 · tanh(2
3
x),

as recommended by Haykin (1998, see pages 179–181).

A variety of policy search methods are applicable for optimizing the

resulting 91-dimensional GetOpen policy. We verify informally that meth-

ods such as hill climbing, genetic algorithms, and policy gradient methods all

achieve qualitatively similar results. The experiments reported here are con-

ducted using the cross-entropy method (de Boer et al., 2005), which evaluates

a population of candidate solutions drawn from a distribution, and progres-

sively refines the distribution based on a selection the fittest candidates. We

use a population size of 20 drawn initially from N(0, 1)91, picking the fittest
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five candidates after each evaluation of the population. Each keeper follows

a fixed, stationary Pass policy across all evaluations in a generation; within

each evaluation, all the keepers follow that same GetOpen policy (the one

being evaluated). The fitness function used is the average hold time over 125

episodes, which blunts the high variance in the lengths of Keepaway episodes.

6.3.1.3 Learning PASS+GETOPEN

Algorithm 6.4 outlines our method for learning Pass+GetOpen. We

bootstrap the learning process by optimizing a GetOpen policy for a ran-

dom Pass policy. The best GetOpen policy found after two generations

(a total of 2 × 20 × 125 = 5000 episodes) is fixed, and followed while learn-

ing Pass using Sarsa(0) for the next 5000 episodes. The Pass policy is now

frozen, and GetOpen is improved once again. Thus, inside the outermost

loop, either Pass or GetOpen is fixed and stationary, while the other is im-

proved, starting from its current value. Note that πPass and πGetOpen are still

executed concurrently during each Keepaway episode when learnPass() and

learnGetOpen() are called.

Whereas Algorithm 6.4 describes a general learning routine for each

keeper to follow, in our specific implementation, the keepers execute the al-

Algorithm 6.4 Learning Pass+GetOpen

Output: Policies πPass and πGetOpen.

πPass ← Pass:Random.
πGetOpen ← GetOpen:Random.
repeat

πGetOpen ← learnGetOpen(πPass, πGetOpen).
πPass ← learnPass(πPass, πGetOpen).

until convergence
Return πPass, πGetOpen.
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gorithm in phase, and indeed share a common GetOpen policy (πGetOpen).

Also, we obtain slightly better performance in learning Pass+GetOpen by

spending more episodes on learning GetOpen than on learning Pass (the

next section provides details).

6.3.2 Results

In this section, we report the results of a systematic study pairing three

Pass policies: Pass:Random, Pass:Hand-coded, and Pass:Learned; with

three GetOpen policies: GetOpen:Random, GetOpen:Hand-coded, and

GetOpen:Learned. For the sake of notational convenience, we use ab-

breviations: thus, for example, Pass:Random is denoted P:R, GetOpen:

Learned is denoted GO:L, and their conjunction P:R-GO:L. Nine config-

urations arise in total. Figure 6.8 shows the performance of each Pass policy

when paired with different GetOpen policies, and vice versa.4 Policies in

which both Pass and GetOpen are either random or hand-coded are static,

while the others display learning.

6.3.2.1 Learning Performance

Figure 6.8(e) shows the performance of P:L. P:L-GO:HC corresponds

to the experiment conducted by Stone et al. (2005), and we see similar results.

After 30,000 episodes of training, the hold time achieved is about 14.9 sec-

onds, which falls well short of the 16.7 seconds registered by the static P:HC-

GO:HC policy (Figure 6.8(c)). Although P:L-GO:HC is trained in these

experiments with a constant learning rate of α = 0.125, we posit that anneal-

4Videos of policies are posted on the following web page: http://www.cs.utexas.edu/
~AustinVilla/sim/keepaway-getopen/.
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Figure 6.8: Learning curves corresponding to conjunctions of various Pass and
GetOpen policies. Each curve represents an average of at least 20 indepen-
dent trials. Each reported point corresponds to an evaluation (non-learning)
for 500 episodes; points are reported every 2500 episodes. Note that each of
the nine experiments appears once in the left column, where experiments are
grouped by common Pass policies, and once in the right column, where they
are grouped by GetOpen.
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ing α will improve its performance by avoiding the gradual dip in hold time we

observe between episodes 12,500 and 30,000. In the absence of any guarantees

about convergence to optimality, we consider the well-tuned P:HC-GO:HC

to serve as a near-optimal benchmark for the learning methods. Interestingly,

under the random GetOpen policy GO:R (Figure 6.8(b)), P:HC is over-

taken by P:L after 30,000 episodes (p < 0.0001). This result highlights the

ability of learning methods to adapt to different settings, for which hand-coded

approaches would demand tedious manual attention.

Figure 6.8(f) confirms the viability of our policy search method for

learning GetOpen, and its robustness in adapting to different Pass poli-

cies. Practical considerations force us to terminate experiments after 30,000

episodes of learning, which corresponds roughly to one day of real training

time. After 30,000 episodes, P:HC-GO:L achieves a hold time of 16.9 sec-

onds, which indeed exceeds the hold time of P:HC-GO:HC (Figure 6.8(c)).

Yet despite running 20 independent trials of each variant, this result is not

statistically significant. Thus, we may only conclude that when coupled with

P:HC, learning GetOpen, a novel contribution of this work, matches the

hand-coded GetOpen policy that has been used in all previous studies on

the Keepaway task. This result also highlights that well-crafted state variables

such as congestion and predictedBallPos, which are used by P:HC-GO:HC,

are not necessary for describing good GetOpen behavior. Interestingly the

hold time of P:HC-GO:L is significantly higher than that of P:L-GO:HC

(p < 0.001). In other words, our GetOpen learning approach outperforms

the previously studied Pass learning when each is paired with a hand-coded

counterpart, underscoring the relevance of learning GetOpen.

An important result we observe from Figures 6.8(e) and 6.8(f) is that
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not only can Pass and GetOpen be learned when paired with static policies,

they can indeed be learned in tandem. In our implementation of Algorithm 6.4,

we achieve the best results by first learning GetOpen using policy search for

5000 episodes, followed by 5000 episodes of learning Pass using Sarsa(0). Sub-

sequently we conduct six generations of learning GetOpen (episodes 10,000

to 25,000), followed by another 5000 episodes of Sarsa(0), as depicted along the

x axis in Figure 6.8(f). The hold time of P-L:GO-L (13.0 seconds after 30,000

episodes) is significantly lower than those of P:L-GO:HC, P:HC-GO:L, and

P:HC-GO:HC (p < 0.001), reflecting the additional challenges encountered

while learning Pass and GetOpen simultaneously.

Indeed we notice several negative results with other variant methods

for learning Pass+GetOpen. In one approach, we represent both Pass and

GetOpen as parameterized policies and evolve their weights concurrently to

maximize hold time. In another approach, GetOpen uses the value function

being learned by Pass as the evaluation function for target points. In both

these cases, the performance never rises significantly above random. We inter-

pret the failure of these relatively natural solution strategies as an indication of

the hardness of learning Pass+GetOpen. While the reported P:L-GO:L re-

sults confirm that Pass and GetOpen can indeed be learned in tandem (note

that the learning curve in Figure 6.8(f) is still rising after 30,000 episodes),

there appears to be significant room for improving this result. In Section 6.4,

we consider multiple channels of related work that may apply.

6.3.2.2 Specialization of Learned Policies

We conduct a further experiment in order to ascertain the degree of spe-

cialization achieved by learned Pass and GetOpen policies; that is, whether
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it is beneficial to learn Pass specifically for a given GetOpen policy (and

vice versa). In Table 6.3, we summarize the performances of learned Pass

and GetOpen policies trained and tested with different counterparts. Each

column corresponds to a test pairing. We notice that the best performing

Pass policy for a given GetOpen policy is one that was trained with the

same GetOpen policy (and vice versa); the maximal sample mean in each

column in Table 6.3 coincides with the diagonal. It must be noted, however,

that despite conducting at least 20 trials of each experiment, some compar-

isons are not statistically significant. A possible reason for this small number

of inconclusive comparisons is the high variance caused by the stochasticity

of the domain. Yet it is predominantly the case that learned behaviors adapt

to work best alongside the counterpart behavior with which they are trained.

Several practical problems demand specialized solutions for specific situations;

by automatically gravitating towards tightly-coupled behaviors that maximize

performance, learning can offer a significant advantage.

The results reported above conclude our technical description of Case

Study 2. In summary, both the case studies presented in this chapter provide

encouraging results for the strategy of combining different learning methods to

combat the complexity of tasks. With the experimental validation that they

have received, we hope that the ideas presented in the case studies will inspire

further research on developing hybrid learning algorithms. In the next section,

we discuss related work and possibilities for extending the work described in

this chapter.

242



Table 6.3: Performance of learned Pass and GetOpen policies when trained and
tested with different pairings. In the top table, Pass learned while paired with
different GetOpen policies is tested with different GetOpen pairings. Each en-
try shows the mean hold time and one standard error of at least 20 independent
runs, conducted for 500 episodes. Each column corresponds to a test GetOpen

policy. The largest entry in each column is in boldface; entries in the same column
are marked with “-” if not lower with statistical significance (p < 0.05). The cell
GO:L-GO:L shows two entries: when the learned Pass policy is tested against the
same (“s”) learned GetOpen policy as used in training, and when tested against a
different (“d”) learned GetOpen policy. The bottom table is constructed similarly
for GetOpen, and uses the same experiments as Pass for the cell P:L-P:L.

Pass:Learned

Train
Test

GO:R GO:HC GO:L

GO:R 6.37±.05 11.73±.25 10.54±.26

GO:HC 6.34±.06− 15.27±.26 12.25±.32

GO:L 5.96±.07 13.39±.35
13.08±.26 (s)
12.32±.32 (d)−

GetOpen:Learned

Train
Test

P:R P:HC P:L

P:R 5.89±.05 10.40±.39 11.15±.43

P:HC 5.48±.04 16.89±.39 12.99±.43−

P:L 5.57±.06 11.78±.56
13.08±.26 (s)
12.32±.32 (d)−
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6.4 Related Work and Discussion

Below we review literature within the overall context of hybrid learning

methods for sequential decision making, and also specifically discuss work that

is related to the case studies presented in this chapter.

6.4.1 Hybrid Learning Methods

Moriarty et al. (1999, see page 271) apply a suite of Evolutionary Algo-

rithms (EA) for Reinforcement Learning (EARL) to a simple grid-world MDP.

They reflect on their work as follows (by “TD” they imply temporal difference

learning methods):

“It is not useful to view the path towards practical RL systems as

a choice between EA and TD methods. We have tried to highlight

some of the strengths of the evolutionary approach, but we have

also shown that EARL and TD, while complementary approaches,

are by no means mutually exclusive. We have cited examples of

successful EARL systems such as SAMUEL and ALECSYS that

explicitly incorporate TD elements into their multi-level credit as-

signment methods. It is likely that many practical applications

will depend on these kinds of multi-strategy approaches to machine

learning.”

Of the multi-strategy approaches therein cited, SAMUEL (Grefenstette

et al., 1990), an evolutionary algorithm, stores a reserve of individual state

transitions, which is used to inform the genetic operations of specialization and

deletion of genes. ALECSYS (Dorigo and Colombetti, 1998) is yet another

evolutionary algorithm that allows a human programmer to specify problem
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subtasks. Whereas Moriarty et al. specifically comment on the combination of

evolutionary algorithms with TD learning, their perspective is equally relevant

to other possibilities for combining the strengths of various RL methods.

Actor-critic algorithms (Konda and Tsitsiklis, 2003; Bhatnagar et al.,

2008), a relatively old conceptual framework within RL, can be construed

as an instance of the strategy of integrating qualitatively different learning

methods. Under actor-critic methods, the actor is akin to a PS algorithm,

which directly optimizes policy parameters in order to reap high long-term

reward. Whereas the PS algorithms presented in this thesis use a Monte Carlo

estimate of the long-term return as the objective function to maximize, under

typical actor-critic architectures, it is the critic’s remit to provide the actor

an evaluation of its current policy. The critic usually does so by maintaining

a value function that tracks the actor’s policy: thus, the critic is akin to a

VF method. Evaluating the current policy based on the critic’s stored value

function, rather than through Monte Carlo estimates, has the advantage of

a reduced variance. Actor-critic architectures are an important algorithmic

class that this thesis does not evaluate. In Chapter 7, though, we formulate a

course for future work, in which they are considered (also see Appendix C).

“Value and Policy Search” (VAPS) (Baird and Moore, 1999) is a group

of methods that employ “general gradient descent” for RL. The gradient spec-

ified can vary from (1) a term based on the value function (which would lead

to a TD-like algorithm) to (2) an aggregate quantity such as the cumulative

reward (which would make the algorithm akin to a policy gradient method).

An attractive feature of VAPS is that a smooth balance can be achieved be-

tween these two extremes by setting a parameter β ∈ [0, 1]. As a gradient

descent algorithm, VAPS is guaranteed convergence even in POMDPs.
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The famous application of RL to helicopter control (Ng et al., 2004)

indeed involves an innovative combination of model learning with policy search.

To arrive at a good control policy, first a model of the reward and transition

dynamics is learned based on data logged during a human operator’s control

of the helicopter. Subsequently a parameterized policy is optimized using the

PEGASUS algorithm (Ng and Jordan, 2000), with trajectories simulated and

evaluated on the learned model.

6.4.2 Case Study 1

Recall that our Seq algorithm involves a transfer of weights from a VF

to a PS method after the former method’s performance begins to saturate.

Guestrin et al. (2002) design a closely related scheme in a multiagent learning

setting to transfer weights learned using LSPI to initialize a policy gradient

method. In their experiments—on the SysAdmin (Guestrin et al., 2001b) and

power grid (Schneider et al., 1999) tasks—the inherited policy is “softmax”

over the learned action values. In our experiments, the PS method (CMA-ES

or CEM) inherits a greedy policy.

In both our applications under Case Study 1 (parameterized learning

problems from Chapter 3 and Keepaway Pass), the number of episodes after

which the switch is made from the VF method to the PS method under Seq is

set based on our own (human) judgment of an effective transfer point. In future

work, we might attempt to determine this transfer point in an intelligent,

automated manner. Indicators such as the Bellman error could be used to

gauge whether the VF method has begun to plateau. Also, we note that in

general, VF and PS methods could achieve their best performance under very

different representations, and so, another consideration for future work is to
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enable a transfer of policies, rather than a transfer of weights, between the VF

and PS methods constituting Seq. Relevant work in transfer learning (Taylor

and Stone, 2007) addresses this issue. For example, Sarsa could learn using tile

coding as a function approximator, and a PS method could employ a neural

network-based representation of the policy to improve the policy learned by

Sarsa. The transfer itself might be effected by using supervised learning to

train the neural network based on samples from the policy learned by Sarsa.

6.4.3 Case Study 2

Multiple learning methods are used in the “layered learning” archi-

tecture applied by Stone (1998) to RoboCup 2D simulation soccer. These

methods include neural networks for learning to intercept the ball, decision

trees for evaluating passes, and TPOT-RL, a TD learning method, for high-

level strategy learning. The idea of layered learning shares our motivation that

different sub-problems in a complex multiagent learning problem can benefit

from specialized solutions. Yet a key difference is that in Stone’s architecture,

skills learned using supervised learning are employed in higher-level sequential

decision making, to which RL is then applied; in our work, the two learning

problems we consider, Pass and GetOpen, are themselves both sequential

decision making problems. Also, in our learning method for Pass+GetOpen,

the Pass and GetOpen behaviors are learned in an interleaved manner; un-

der the layered learning paradigm, lower behaviors are frozen before higher

ones are learned. In this respect, our interleaved learning approach better

matches the “concurrent layered learning” idea proposed by Whiteson et al.

(2005), under which learned behaviors are allowed to continually adapt. On a

relatively simple implementation of the Keepaway task, Whiteson et al. (2005)

247



demonstrate that by being able to fine-tune behaviors (such as interception,

passing, and getting open) towards each other, concurrent layered learning

indeed improves upon the performance of traditional layered learning.

In their survey of the field, Panait and Luke (2005) divide cooperative

multiagent learning into two broad categories: under team learning, a single

learner develops the behavior for the entire team; under concurrent learning,

each agent follows a separate learning processes. Interestingly our method

for learning Pass+GetOpen occupies both categories: GetOpen uses team

learning, while Pass uses concurrent learning. Further, these two processes

are themselves interleaved.

The policy search approach we use with GetOpen is similar in spirit

to the method used by Haynes et al. (1995) for evolving cooperative behav-

ior among four predators that must collude in order to catch a prey. The

predators share a common policy, represented as a strongly-typed LISP S-

expression, in contrast with the neural representation we engage for computing

a real-valued evaluation function. The Predator-Prey domain (Benda et al.,

1986) that they use, which is small and discrete, is much simpler compared

to Keepaway. Whereas we employ qualitatively different methods for learning

Pass and GetOpen in a cooperative setting, Rosin and Belew (1995) con-

sider evolving opponents in competitive scenarios using a genetic algorithm.

On games such as Tic-Tac-Toe and Nim, they demonstrate that coupled fit-

ness functions present opportunities for members of opposing populations to

share evaluations, thereby expediting learning.

Several learning methods that have been applied to Keepaway Pass

also find relevance in the context of GetOpen. For instance, Metzen et al.

(2008) introduce EANT, a method to evolve both the structure and the weights
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of a neural network representing a policy for Pass. While we use a fixed neural

network topology in this work for representing the GetOpen policy, EANT

can potentially evolve topologies that yield higher performance. Keepaway can

be extended to more keepers and takers: Taylor et al. (2007) study transferring

knowledge obtained in simpler configurations to more complex ones. Although

the experiments in this chapter all involve three keepers and two takers, a

promising idea for future work is to implement GetOpen with more players,

possibly incorporating the knowledge transfer methods of Taylor et al.

Iscen and Erogul (2008) consider applying TD learning to the behav-

ior of the takers. The actions available to the takers are ball interception

and player marking. Their experiments show that taker behavior can be

successfully learned to compete against a wide array of keepers. Whereas

Pass+GetOpen models cooperation, extending Keepaway to include taker

behavior would also incorporate agent competition.

6.5 Summary

This chapter continues in the vein of Chapter 5, making contributions

to learning methodology to address the practical needs of sequential decision

making tasks. The chapter is organized around two case studies involving

hybrid learning methods.

Under Case Study 1, we provide Seq, an algorithmic framework for

combining the strengths of VF and PS methods. Seq is motivated by the ob-

servation that whereas VF methods are able to learn relatively quickly to reach

their asymptotic performance, the performance thereby achieved on problems

with deficient representations falls short of the performance PS methods can

achieve on the same problems when provided enough training time. Seq com-
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bines the sample efficiency of VF methods with the robustness of PS methods

towards imperfect representations: under Seq, a VF method is executed until

it plateaus, and then the learned policy is transferred to the PS method for

further improvement. Experimental results affirm that this strategy is effec-

tive both on the parameterized learning problems introduced in this thesis (in

Chapter 3) and in the more complex task of Keepaway Pass.

Keepaway encapsulates the challenges faced in a large number of re-

alistic domains: high-dimensional spaces, noisy perceptions and actions, and

real-time constraints. The focus of Case Study 2 is the extension of learn-

ing within Keepaway from solely learning Pass, a turn-taking behavior, to

also learning GetOpen, which is executed by multiple players every cycle.

Pass+GetOpen is successfully learned through yet another scheme combin-

ing VF and PS methods. In particular we provide a policy search method

for learning GetOpen, which compares on par with the well-tuned hand-

coded GetOpen policy used in previous work, and indeed performs better

when paired with a random Pass policy. Learning GetOpen with a hand-

coded Pass policy outperforms results from earlier studies in which Pass is

learned and GetOpen is hand-coded. Our algorithm for learning Pass and

GetOpen in an interleaved manner confirms the feasibility of learning them

together, but also shows significant scope for improvement. We discuss several

ideas from related work that may aid progress in this direction. Our experi-

ments investigate the interdependence between learned Pass and GetOpen

policies, exposing their tightly-coupled nature. Our demonstration of the au-

tonomous learning of a significant fraction of a complex task extends the reach

of RL in practical applications. While this work showcases the richness of the

Pass+GetOpen learning problem, it also takes the important step of putting
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together distinct learning techniques that apply to sequential decision mak-

ing, which we consider a crucial element in scaling RL to even more complex

problems.

Chapters 5 and 6 have focused on specific methodological contributions

inspired by the experimental and analytical work undertaken in chapters 3

and 4. The next chapter (Chapter 7) reflects on the lessons learned from these

previous chapters, identifies a variety of avenues for future work, and concludes

the dissertation.
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Chapter 7

Conclusion and Future Work

In this final chapter, we reflect on the findings of the previous chapters. Sec-

tion 7.1 presents a summary of the dissertation. In Section 7.2, we identify

several directions for continuing the work presented in this dissertation. Sec-

tion 7.3 provides the conclusion.

In this final chapter, we review the main topics covered in this disserta-

tion. Section 7.1 summarizes the dissertation. In Section 7.2, we outline four

broad questions that emerge from the work presented in the preceding chap-

ters. With the hope that future work will address these questions, we discuss

relevant perspectives, provide references, and identify promising directions.

Section 7.3 concludes the dissertation.

7.1 Summary of Thesis

Finite MDPs have traditionally been at the heart of reasoning about se-

quential decision making tasks. The formulation of the RL problem in terms

of finite MDPs paves they way for developing learning algorithms with the

capacity to achieve optimality, to converge, and to be sample-efficient. Unfor-

tunately, RL methods seldom enjoy these attributes when they get deployed

in practice. One key reason for this disparity between “theory” and “practice”
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is state aliasing: the inability to unambiguously identify environmental states

based on observations alone. The literature provides several principled meth-

ods to deal with state aliasing; however, most of these methods do not scale in

practice to tasks with more than a few hundreds of states. The large, possibly

continuous state spaces encountered in real-world tasks are a second challenge

to the assumption that tasks can be treated as finite MDPs. In most practical

tasks, there is a need to generalize over the state-action space. Although some

formal assurances can be provided for learning with generalization (such as

guarantees of convergence), it remains that fundamentally, the performance

that can be achieved is limited by the generalization scheme used.

This dissertation takes the philosophical position that whereas we might

mitigate the adverse consequences of state aliasing and generalization, it is

impractical to assume that we can eliminate them. As violations of the finite-

MDP assumption, these factors lead to imperfect representations for learning.

As a response to this observation, this dissertation considers the question of

designing learning methods specifically to work with imperfect representations.

To begin, in chapters 1 and 2, we argued that even if a learning method

is paired with an imperfect representation, it is possible to precisely define an

objective for the learning method to achieve. We defined the objective to be

that of learning a policy with relatively high expected long-term reward, while

using a minimal number of samples. While such a goal appears to be a very

natural one, note that the existing literature only provides us the means to

achieve it when working with perfect representations. How might we achieve

the same goal when working with imperfect representations? This question,

which strikes at the heart of developing practically-effective RL algorithms,

does not have readily forthcoming answers. It is the question that motivates
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this dissertation. The dissertation makes four contributions towards develop-

ing learning methods that can work successfully with imperfect representa-

tions.

1. Experimental comparison of learning methods. First, in Chap-

ter 3, we introduced “parameterized learning problems”, a novel experimen-

tal methodology facilitating the systematic control of representational aspects

such as state aliasing and generalization. We applied this methodology to com-

pare two qualitatively distinct classes of RL methods: on-line value function-

based (VF) methods, and policy search (PS) methods. After extensive com-

parisons of various methods within each class, we picked Sarsa as a represen-

tative method from the VF class, and CMA-ES from PS. Comparing Sarsa

and CMA-ES, we found that the former enjoys superior sample-efficiency, and

also better asymptotic performance when the learner is provided an expressive

representation. On the other hand, CMA-ES is significantly more robust to

severely deficient representations. Both methods suffer noticeably when state

noise is added; the order between the methods is additionally determined by

the width of generalization.

2. Limits of representation. Following the results of our experimental

study, we conducted a deeper analysis of the reasons VF methods perform rel-

atively poorly with inexpressive generalization schemes. Specifically, in Chap-

ter 4, we examined this question in the context of Tetris, the popular video

game. With a linear representation scheme introduced by Bertsekas and Tsit-

siklis (1996), we tested the results of approximate policy iteration on this task.

We designed a hand-coded policy that clears roughly 1,000 lines per episode,
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and used Monte Carlo simulation to estimate the best approximations of its

value function under three natural definitions of approximation error. We

found that none of the resulting approximate value functions induces a pol-

icy that clears more than 70 lines per episode, indicating that approximate

policy improvement with this commonly-used linear architecture results in a

performance decrease. We surmise it is likely that in several practical tasks,

the failure of VF methods can be attributed to a similar phenomenon.

3. Subset selection and efficient policy search. The third major contri-

bution of this dissertation is a formal study of the “subset selection” problem

in multi-armed bandits. This problem, which finds application in numerous ar-

eas, is particularly relevant to this dissertation through its connection with the

selection routines of ranking-based PS methods such as CMA-ES and CEM. In

Chapter 5, we formalized subset selection and devised algorithms under three

operational settings: probably approximately correct (PAC) selection, simple

regret (SR) minimization, and cumulative regret (CR) minimization. Under

each of these settings, we generalized previous work devoted to identifying just

the single best arm in an n-armed bandit. Our most novel results are under

the PAC framework, where our high-probability sample complexity bounds

improve upon the best existing ones for the single-arm case. Additionally we

showed that our elimination algorithm under the SR setting indeed improves

the performance of policy search methods such as CMA-ES and CEM.

4. Hybrid learning methods. The fourth and final contribution of this

thesis is in the form of two case studies, which investigate techniques for com-

bining the strengths of different classes of learning methods. These case studies
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were presented in Chapter 6. Under Case Study 1, we showed that the strategy

of applying VF and PS methods in sequence—initially VF for some duration,

followed by a transfer of the learned weights to be refined using PS—indeed

inherits the strengths of its VF and PS constituents, and is often more suc-

cessful than either of them taken in isolation. We verified these results both

on the suite of parameterized learning problems introduced in this thesis, and

on the more complex and realistic RL benchmark task of robot soccer Keep-

away. Case Study 2 undertook a deeper investigation involving the Keepaway

task. Whereas Case Study 1, and indeed most previous work on Keepaway,

limit learning in the task to an isolated, infrequent decision that amounts to

a turn-taking behavior (“Pass” behavior), under Case Study 2, we expanded

the agents’ learning capability to include a much more frequent action (moving

without the ball, or “GetOpen” behavior). We introduced a policy search

method for learning GetOpen; results established the success of learning

GetOpen both separately and together with Pass. Our demonstrations of

successfully learning complex tasks by applying hybrid learning methods are

a step towards scaling RL to even more complex problems.

We hope that the various contributions of this dissertation, described

above, will motivate and serve future research on several important topics

related to sequential decision making in practice. In the next section, we

present a number of ideas for future work to examine.

7.2 Future Work

In this section, we devote some attention to the broad questions raised,

but not fully answered, in chapters 3, 4, 5, and 6.
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7.2.1 Inductive Bias of Reinforcement Learning Methods

Inductive bias is a central concept in machine learning. In the context

of supervised learning, Mitchell (1980, see page 185) defines inductive bias as

“. . . any basis for choosing one generalization over another, other than strict

consistency with the observed training instances.” In rough terms, we may

construe the inductive bias of a method as the assumptions it makes in order

to infer a general pattern based on the specific instances that the data provide.

Naturally the concept of inductive bias also applies to RL. However, whereas

it is possible to formally define inductive bias in settings such as supervised

learning (Haussler, 1988; Bishop, 2006, see Section 3.2), the complex nature

of the RL problem is less easy to negotiate. How might we proceed?

For a start, we might consider the characterization given by Cobb

(1992), under which the inductive bias in a reinforcement learner is further

divided into “language” (or representational) and “procedural” biases (Utgoff

(1986) enumerates similar types of biases under inductive concept learning).

The division corresponds closely with the distinction this dissertation makes

between “representations” and “learning methods”. In our experiments in

Chapter 3, we enforced that VF and PS methods shared the same represen-

tation; this approach facilitated a direct comparison between the procedural

components characterizing VF and PS methods.

Unfortunately it is not possible to standardize representations across

all the different classes of RL methods. For example, a model-based method

fundamentally requires that a model (a mapping from state-action pairs to

distributions over states and rewards) be represented. Likewise, policy gradi-

ent algorithms typically require the representation to provide an analytically

differentiable policy. In the absence of a common representation for different
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RL methods, how might we compare their procedural biases?

As an added complication in defining inductive bias, consider yet an-

other distinguishing trait of RL. Whereas in the supervised learning scenario,

a learning algorithm is provided a set of training examples as its input, under

RL, the learning agent is itself the entity in charge of exploring the world and

gathering experience. How does exploration factor into inductive bias?

Even if answers to these questions are not forthcoming at present, we

believe that the practice of RL can greatly benefit from a more formal char-

acterization of the relationships between learning methods, representations,

and tasks—as encapsulated within the notion of inductive bias. To motivate

research along this direction, we present a qualitative argument for ordering

different classes of RL methods based on their “sample-sensitivity”, a term we

define to loosely imply the extent to which individual samples influence the out-

come of a method. We hypothesize that sample-sensitivity might correspond

closely with the procedural bias of different RL methods. Our speculative

essay on this hypothesis is presented in Appendix D.

7.2.2 Empirical Analysis of Value Function-based Methods

In Chapter 4, we adopted an experimental approach to investigate the

reasons VF methods performed significantly worse than PS methods on the

Tetris task. Through a carefully-engineered Monte Carlo simulation, we es-

tablished that approximate policy iteration (using the linear representation of

Bertsekas and Tsitsiklis (1996)) could, in fact, lead to a worsening of the policy

in Tetris (under three separate weighting distributions for the error term). We

believe that analytical studies of this nature are essential for understanding

the strengths and weakness of VF methods when they get applied in complex
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sequential decision making problems.

If working with a tabular representation, we have a clear theoretical

understanding of why a VF method should find an optimal policy (Bellman,

1957). Unfortunately the same cannot be said of learning with imperfect rep-

resentations. Unlike PS methods, which directly traverse the space of policies,

VF methods learn value functions as intermediate structures, and only derive

policies indirectly. If a VF method fails on some practical application, it could

be due to several reasons, including deficient features, state aliasing, inappro-

priate learning rate, and insufficient exploration. By and large, the literature

does not describe instances where VF methods have failed, and provide expla-

nations for such failure in terms of the elements listed above. We believe that

studies similar to the one we undertook in Chapter 4 could begin contributing

useful insights for practitioners of RL. To test the capability of a representa-

tion to support value function-based learning on some task, one could employ

approximate policy improvement (approximate policy evaluation followed by

greedy policy improvement) as a diagnostic test, as we did under Tetris.

Analytical studies explaining the successes of VF methods could also

be informative. A sizeable number of the popular successes of RL have in-

volved the application of VF methods. Application domains include backgam-

mon (Tesauro, 1992), elevator dispatching (Crites and Barto, 1996), robot

soccer Keepaway (Stone et al., 2005), optimized trade execution (Nevmyvaka

et al., 2006), blimp control (Rottmann et al., 2007), 9 × 9 Go (Silver et al.,

2007), and computer memory scheduling (İpek et al., 2008) (Table 1.1 lists

several others). How does the best policy learned in these tasks compare

with the optimal policy, or some approximation thereof? What is the error

in approximating of the value function? How is the error distributed over the
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state-action space? We admit that Tetris has several convenient attributes

(such as a discrete state space and a concise forward model) for answering

such questions; ingenious experimental techniques might be required in more

complex RL tasks.

7.2.3 Efficient Exploration for Policy Search

Our work in Chapter 5, on subset selection and its role in policy search,

raises many interesting possibilities for future work. Some relevant problems

were discussed in Section 5.7; below we present some broader questions.

Our work generalizes existing formulations under the PAC, SR, and CR

settings (from selecting one arm to selecting a subset of arms). From the point

of view of the bandits literature, it could be fruitful to explore whether our

formulations can be generalized further. Also to examine are the fundamental

relationships between the PAC, SR, and CR settings themselves. Apart from

the improved bounds it delivers, our LUCB algorithm under the PAC setting is

remarkable for its similarity to the UCB algorithm under the CR setting (Auer

et al., 2002a). How does a simple switch in the directions of confidence bounds

effect a change from “only-explore” to “explore-exploit”?

In terms of the application of our work to policy search, it is worth reit-

erating that evolutionary and other algorithms for stochastic optimization im-

plement varying selection strategies: subset selection is only one among these

strategies. In particular, proportionate selection (selecting candidates with a

probability proportional to their fitness) and tournament selection (selecting

candidates based on “head-to-head” comparisons) are other common selection

mechanisms (Miller and Goldberg, 1996). Also, while our work treats fitness as

an independent attribute of each individual in the population, in some cases,

260



fitness could additionally depend on individuals’ likeness to other members

of the population (Stanley, 2004). The evolutionary computation community

has long wrestled with the issue of noise in fitness evaluations (Arnold, 2001):

mapping relevant problems to the framework of multi-armed bandits could

result in both theoretical and practical advances.

7.2.4 Principles for Integrating Learning Methods

Over the years, RL research has developed several distinct paradigms

for learning (we provide a brief survey of five different classes of RL algorithms

in Appendix C). However, there has not been much research on mechanisms

for combining these methods in effective ways. Surely this aspect demands

greater attention if we aim to scale RL to more complex tasks. Our efforts

in Chapter 6 are a step in this direction. Recall that we presented two case

studies involving hybrid learning architectures, in which VF and PS methods

were combined for learning complex tasks. In the first case study, we applied

these methods in sequence; in the second, they were applied to qualitatively

distinct components of a complex subtask of robot soccer. We believe that a

significant amount of work needs to be done towards identifying the principles

behind tying together different learning methods.

Neuroscience provides evidence of multiple control modes working in

tandem in animal brains (Niv, 2009, see Section 2.3). These mechanisms in-

clude goal-directed, habitual, episodic, and Pavlovian modes. Dayan (2008)

notes that not only do these different modes find application in different tasks

in animal behavior, often they compete on the same task. As an example of

interaction between different control mechanisms, Dayan cites the architec-

ture of Deep Blue (Campbell et al., 2002), the successful Chess program. The
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success of the program owes to the adoption of qualitatively distinct control

regimes in different parts of the state space. In particular, early-game and

end-game moves are drawn from fixed databases, while large portions of mid-

dle game are tackled by forward modeling and the application of a well-tuned

evaluation function. The mid-game search, which is perhaps the most crucial

component, benefits from the use of specialized hardware and massive par-

allelization. The success of multi-strategy approaches in tackling a complex

game like Chess serves as an incentive for developing similar schemes within

the context of RL.

The interaction between evolution and learning (Ackley and Littman,

1992) is yet another biological phenomenon that bears relevance to the design

of hybrid learning methods. Evolution, even if it happens at a much slower rate

than learning, can ring in definitive adaptations in species. The NEAT+Q al-

gorithm proposed by Whiteson and Stone (2006a) is a computational analogue

of this phenomenon. The outer loop in this “two timescale” algorithm corre-

sponds to running NEAT, an evolutionary algorithm that searches the space

of topologies for neural networks. Within the inner loop, each individual indi-

vidual in the population (a neural network) is trained using Q-learning. The

authors show that NEAT+Q is successful on the Mountain Car task, which

has traditionally been problematic to learn with VF methods that use neural

networks for function approximation. NEAT+Q also performs well on a job

scheduling task.

To the extent that multi-strategy approaches can cope with greater

complexity in tasks, it also becomes difficult to learn from experience under

such approaches. Identifying general principles for the development hybrid

learning methods is an important challenge for future work.
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7.3 Conclusion

This dissertation is founded by the observation that whereas the “the-

ory” of sequential decision making is largely dependent on the assumption

of perfect representations (enumerable state-action spaces), the “practice” of

sequential decision making almost always has to cope with imperfect repre-

sentations. This dissertation calls for a “theory of practice”: what principles

might guide the design of learning methods that can work effectively with im-

perfect representations? It is impossible—at any rate, in the span of one Ph.D.

dissertation!—to provide complete answers to a question so enormous, even if

basic. Yet, this dissertation makes progress through philosophical, experimen-

tal, analytical, and theoretical contributions to various elements involved with

learning in the presence of imperfect representations.

We look forward to future research to advance both the individual

contributions of this thesis, and the overarching ideas behind it. We view

this dissertation as a purposeful step towards developing more robust and

practically-effective learning methods for sequential decision making.
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Appendix A

Additional Experiments from Chapter 3

This appendix provides additional sets of graphs pertaining to experi-

ments in Chapter 3.

A.1 Effect of α0 and ǫ0 on Methods in VF

The plots below show the effect of the initial learning rate α0 and

exploration rate ǫ0 on the learned performance of different methods in VF.

Intensity ranges are indicated to the right of each plot. Under I1, all the

methods use θ0 = 10; under I2, they use θ0 = 0.5; under I3, they use θ0 = 5.

We observe that under instance I1, Sarsa(0), Q-learning(0), and ExpSarsa(0)

all achieve normalized performance values close to 1. Under I2, ExpSarsa(0)

and ExpSarsa(1) perform best at low values of α0 and ǫ0.
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ExpSarsa(0)
I1 I2 I3

α0

ε0

0.1 1.0

0.1

1.0

 0.986
 0.987
 0.988
 0.989
 0.99
 0.991
 0.992
 0.993
 0.994
 0.995
 0.996

α0

ε0

0.1 1.0

0.1

1.0

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

α0

ε0

0.1 1.0

0.1

1.0

 0.635

 0.64

 0.645

 0.65

 0.655

 0.66

 0.665

ExpSarsa(1)
I1 I2 I3

α0

ε0

0.1 1.0

0.1

1.0

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

α0

ε0

0.1 1.0

0.1

1.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

α0

ε0

0.1 1.0

0.1

1.0

 0.685
 0.69
 0.695
 0.7
 0.705
 0.71
 0.715
 0.72
 0.725
 0.73
 0.735

267



A.2 Effect of #trials and #gens on Methods in PS

The plots below show the effect of #trials and #gens on the perfor-

mance of different policy search methods. Intensity ranges are indicated to

the right of each plot. Under RWG, only #trials is varied (#gens = 50,000
#trials

);

the mean performance is plotted with one standard error. The methods all

show noticeable variance in performance over the ranges plotted, underscoring

the need for careful tuning. For all methods, the highest performance is under

problem instance I2. We see that CMA-ES performs better on average, over

the parameter ranges plotted, than both CEM and GA.
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Appendix B

Derivations from Chapter 5

This appendix provides derivations for results used in Chapter 5.

B.1 Relationship between H1 and H2(m)

We prove the statement of (5.5); that is:

H2(m) ≤ H1 ≤
(

m

2
+

n−m+1∑

k=2

1

k

)
H2(m).

Inequalities relating the various ∆ terms all follow from (5.1).

1. First we prove the left inequality. Let j∗ = argmaxj∈Bot
j−m+1
∆2

m,j
, with ties

broken arbitrarily. Then,

H2(m) =
j∗ −m + 1

∆2
m,j∗

=
1

∆2
m,j∗

+

j∗∑

k=m+1

1

∆2
m,j∗
≤ 1

∆2
m,m+1

+

j∗∑

k=m+1

1

∆2
m,k

=

j∗∑

a=m

1

∆2
a

≤
n∑

a=1

1

∆2
a

= H1.

When m = 1, we obtain H2(m) = H1 if p2 = p3 = · · · = pn, which

yields ∆1 = ∆2 = · · · = ∆n. For m ≥ 2, H1 exceeds H2(m) by at least
∑m−1

i=1
1

∆2
i
.
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2. The right inequality is proven as follows.

H1 =
n∑

a=1

1

∆2
a

=
m∑

i=1

1

∆2
i

+
n∑

j=m+1

1

∆2
j

≤
m∑

i=1

1

∆2
m

+

n∑

j=m+1

1

j −m + 1
max
l∈Bot

l −m + 1

∆2
l

=
(m

2

)( 2

∆2
m+1

)
+

n−m+1∑

k=2

1

k
max
l∈Bot

l −m + 1

∆2
l

≤
(

m

2
+

n−m+1∑

k=2

1

k

)
max
l∈Bot

l −m + 1

∆2
l

=

(
m

2
+

n−m+1∑

k=2

1

k

)
H2(m).

Suppose p1 = p2 = . . . pm, and ∀j ∈ Bot : pj = pm − c
√

j −m + 1, for a

suitably small constant c; then we get H1 =
(

m
2

+
∑n−m+1

k=2
1
k

)
H2(m).

B.2 Derivation in Lemma 5.9

∞∑

u=4u∗

1
(a,t)+1

exp

(
−2∆2

a

(√
u−

√
u∗

1(a, t)
)2
)

≤
∫ ∞

x1=4u∗

1
(a,t)

exp

(
−2∆2

a

(√
x1 −

√
u∗

1(a, t)
)2
)

dx1

= 2

∫ ∞

x2=
√

u∗

1
(a,t)

x2 exp
(
−2∆2

ax
2
2

)
dx2

+2
√

u∗
1(a, t)

∫ ∞

x2=
√

u∗

1
(a,t)

exp
(
−2∆2

ax
2
2

)
dx2

=
1

2∆2
a

∫ ∞

x3=2∆2u∗

1
(a,t)

exp (−x3) dx3
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+

√
2πu∗

1(a, t)

∆a

∫ ∞

x4=2∆a

√
u∗

1
(a,t)

1√
2π

exp

(
−x2

4

2

)
dx4

≤ 1

2∆2
a

exp
(
−2∆2

au
∗
1(a, t)

)
+

1

4∆2
a

exp
(
−2∆2

au
∗
1(a, t)

)

=
3

4∆2
a

exp

(
−2∆2

a

⌈
1

2∆2
a

ln

(
k1nt4

δ

)⌉)

≤ 3δ

4∆2
ak1nt4

.

B.3 Calculation in Lemma 5.10

Let T = CH
ǫ/2
1 ln

(
H

ǫ/2

1

δ

)
, where C ≥ 146. Then:

2 + 8
∑

a∈Arms

u∗
1(a, T )

= 2 + 8
∑

a∈Arms

⌈
1

2
[
∆a| ǫ2

]2 ln

(
k1nT 4

δ
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≤ 2 + 8n + 4H
ǫ/2
1 ln

(
k1nT 4

δ

)

≤ (10 + 4 ln(k1))H
ǫ/2
1 + 4H

ǫ/2
1 ln

(n

δ

)
+ 16H

ǫ/2
1 ln(T )

< 14H
ǫ/2
1 + 4H
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1 ln

(n

δ

)
+ 16H

ǫ/2
1

(
ln(C) + 2 ln

(
H

ǫ/2
1

)
+ ln

(n

δ
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= 14H
ǫ/2
1 + 20H

ǫ/2
1 ln

(n

δ

)
+ 32H
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1 ln
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H
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1

)
+ 16H
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1 ln(C)

≤ (66 + 16 ln(C))H
ǫ/2
1 ln

(
H

ǫ/2
1

δ

)

< CH
ǫ/2
1 ln

(
H

ǫ/2
1

δ

)

= T.
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Appendix C

Classes of Learning Methods: Brief Survey

In this appendix, we provide a brief survey of different classes of RL

methods. We identify five classes of learning methods that are qualitatively

distinct, and together account for a large number of the standard algorithms

for sequential decision making. Yet, our list is not exhaustive, as methods

from these classes can be innovatively combined to yield new methods. The

five classes we consider (in appendices C.1 through C.5) are listed below.

C.1: Model-free on-line value function-based (VF) methods
C.2: Model-based and batch (MB) methods
C.3: Policy gradient (PG) methods
C.4: Actor-critic (AC) methods
C.5: Policy search (PS) methods

We find the order above the most naturally suited to the purpose of

exposition. However, this order is different from the one hypothesized in Ap-

pendix D (page 288) to be consistent with the procedural bias of these classes

of methods.

In our survey, we lay particular emphasis on literature that addresses

the effects of state aliasing and generalization on different learning methods.

Even so, our survey remains necessarily brief. For more in-depth descriptions

of RL algorithms, we refer the reader to the excellent surveys undertaken by

Geist and Pietquin (2010) and Szepesvári (2010). In addition the textbook by
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Sutton and Barto (1998) provides detailed descriptions of many fundamental

RL methods.

This appendix may be read independently from the main chapters in

the dissertation. Some portions from this appendix appear as fragments in

Chapter 3.

C.1 Model-free On-line Value Function-based Methods

Model-free value function-based (VF) methods are conceptually simple

RL methods. In these methods, the basic idea is to maintain an approximate

action value function Qt, and progressively refine it as new transition samples

become available. In particular each transition sample (st, at, rt, st+1) is used

to update Qt through a temporal difference (TD) update rule. The update

is meant to minimize a temporal difference error TD Errort, and typically

assumes the form:

Qt+1(st, at)← Qt(st, at) + αtTD Errort,

where αt is a learning rate. TD Errort essentially captures the difference

between the current estimate of the action value, Qt(st, at), and a potentially

better estimate that relies on having observed rt and st+1. Evidence gathered

by neuroscientists suggests that TD-like learning mechanisms operate in the

human brain (Seymour et al., 2004).

The precise definition of TD Errort gives rise to different instances

of learning methods. For example, under Q-learning: TD Errort
def

= rt+1 +

γ maxa∈A Qt(st+1, a)−Qt(st, at). Under Sarsa(0), we have: TD Errort
def

= rt+1+

γQt(st+1, at+1)−Qt(st, at) (computed after action at+1 is selected). For finite
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MDPs, in which Qt can be maintained in a table that enumerates all state-

action pairs, it has be shown that both Q-learning (Watkins and Dayan, 1992)

and Sarsa(0) (Singh et al., 2000) can be made to converge to the optimal

action value function Q∗, from which an optimal policy π∗ can be obtained as

π(s) = argmaxa∈A Q∗(s, a), ∀s ∈ S.

The only data structure a VF method needs to keep in memory is the

action value function Qt, whose size remains constant. We consider this charac-

teristic the defining aspect of VF methods, which are model-free. Model-based

and batch methods, described in Section C.2, sometimes also compute value

functions, but value functions are not the sole data structure they store in

memory. It is typical for such methods to store an entire model of the transi-

tion and rewards dynamics, or a batch of previously collected samples. Con-

sequently the learning updates performed by model-based and batch methods

tend to be more computationally intensive than those made by VF methods.

VF methods are simple to describe and easy to implement. However,

they encounter difficulties as soon as Qt is no longer an exact tabular rep-

resentation, but is a “compact” representation incorporating some form of

generalization. The generalization (or function approximation) architecture

most commonly considered for theoretical analysis involves representing Qt

as a linear combination of basis functions φ: that is, Qt = wT
t φ. Here the

parameters wt are updated based on experience.

Whereas linear architectures, and in particular, sparse representations

such as tile coding (Sutton, 1996), have found some success in practice with

VF methods, it remains that in general, approximate architectures are inca-

pable of representing the optimal action value function Q∗. With architectures

capable of representing Q∗, it is still not guaranteed that an optimal vector of
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parameters w∗ will be found, as intermediate value functions encountered dur-

ing learning might prove problematic for function approximation (Boyan and

Moore, 1995). Further, even if a value function is approximated relatively well

(in terms of some suitably defined error), greedy action selection might yet pick

suboptimal actions in regions of inaccurate approximation (Koller and Parr,

2000; Baxter and Bartlett, 2001; Kalyanakrishnan and Stone, 2007). Chap-

ter 4 in this dissertation demonstrates the occurrence of such a phenomenon

in Tetris, the popular video game.

A bulk of the research in RL with linear function approximation has

been in the context of prediction: estimating the value function of a fixed

policy (without policy improvement). An early result due to Sutton (1988)

establishes that TD(0) with linear function approximation converges when

the features used are linearly independent. Dayan (1992), and Dayan and

Sejnowski (1994), extend this result to TD(λ), ∀λ ∈ [0, 1], while Tsitsiklis

and Van Roy (1997) show convergence for the more realistic case of infinite

state spaces and linearly dependent features. Although most results for the

convergence of linear TD learning are for estimating values of the policy that

is used to gather experiences, the more general (and useful) case of off-policy

learning has also been addressed (Precup et al., 2001; Sutton et al., 2009).

Residual gradient algorithms (Williams and Baird, III, 1994; Baird,

1995) are VF methods specifically designed for the function approximation

scenario. These algorithms are distinguished from other TD methods in the

objective function they seek to minimize. Whereas methods such as TD(λ)

seek convergence to “the least squares fixed point approximation”, residual

(gradient) methods minimize the “squared Bellman residual” (Lagoudakis and

Parr, 2003, see Section 5). This alternative formulation imparts residual gradi-
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ent algorithms stability while performing off-policy bootstrapping, which can

potentially cause conventional TD methods to diverge (Baird, 1995; Sutton

and Barto, 1998). In a recent comparative study of residual gradient algo-

rithms and TD learning algorithms, Li (2008) finds that while the former tend

to result in smaller TD errors, the latter make better predictions of value.

The problems in learning approximate value functions on-line primarily

arise due to the nonstationarity and bias in the targets provided to the function

approximator (Thrun and Schwartz, 1993). The best theoretical guarantees

for learning control policies with approximate schemes come with several re-

strictions. Most results are limited to linear function approximation schemes;

in addition some methods make demands such as Lipschitz continuity of the

policy being learned (Perkins and Precup, 2003), and favorable initial condi-

tions (Melo et al., 2008). Certain updating schemes enjoy guarantees of con-

vergence, but typically lack guarantees about the long-term reward that will be

accrued at convergence (Sabes, 1993; Perkins and Pendrith, 2002; Perkins and

Precup, 2003). In recent work, Maei et al. (2010) introduce the Greedy-GQ

algorithm, which provably converges while making off-policy learning updates

to a linear function approximator. Unfortunately Greedy-GQ requires that the

policy followed while learning stay fixed, preventing the agent from actively

exploring based on the experiences it gathers. Thus, for example, ǫ-greedy

exploration with ǫ < 1 violates the conditions needed for Greedy-GQ to con-

verge.

It is quite well-known that bootstrapping—estimating values based on

existing estimates of values—is a prime cause of instability while learning on-

line with function approximation. Indeed it has been shown that doing away

with bootstrapping, and instead making Monte Carlo updates, can result in
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more stable learning (Boyan and Moore, 1995). Another strategy is to control

the extent of bootstrapping through eligibility traces (Sutton and Barto, 1998,

see Chapter 7). The eligibility trace parameter λ is such that setting it to 0

yields a fully bootstrapping update, as in Sarsa(0); setting it to 1 yields Monte

Carlo updates that involve no bootstrapping; intermediate values implement

varying degrees of bootstrapping. Singh and Sutton (1996) show that Sarsa(λ)

with λ > 0 (and with “replacing” traces) promotes quicker learning and better

asymptotic behavior than Sarsa(0) on the Mountain Car task. They use tile

coding for function approximation.

Not only do Monte Carlo and partially bootstrapping methods benefit

learning with function approximation; research shows that they also help cope

with state aliasing (Singh et al., 1994; Jaakkola et al., 1995; Pendrith and Mc-

Garity, 1998; Perkins, 2002). Both state aliasing and function approximation

have the effect of corrupting estimates of the value function—using true returns

in place of these estimates reduces bias, even if it means increasing the variance

in the updates. In general the best memoryless policies for POMDPs can be

stochastic (Singh et al., 1994). However, Loch and Singh (1998) demonstrate

that deterministic policies learned using Sarsa(λ) with ample exploration still

perform relatively well on a suite of benchmark POMDPs. Key to this suc-

cess is the high values of λ used (between 0.8 and 0.975). It must be noted

from these results that some amount of bootstrapping still appears to be useful

(that is, the best setting of λ is not 1) even under severe state aliasing. A more

recent variant of Sarsa(λ) applied to POMDPs is SarsaLandmark (James and

Singh, 2009), in which λ is set to 0 when special “landmark” states (which are

perfectly observable) are visited, but remains 1 at all other times.

Whereas most theoretical analyses of VF methods with function ap-
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proximation pertain to the use of linear architectures, there have been efforts

to generalize these results to more expressive representations (Papavassiliou

and Russell, 1999). However, it is seldom the case that a practical applica-

tion of RL exactly matches the function approximation formulations that have

been theoretically analyzed. This mismatch has not curtailed the possibility

of realizing successful learning algorithms in practice. On the other hand, re-

markable RL successes such as in Backgammon (Tesauro, 1992) have employed

VF methods using non-linear function approximators in highly stochastic and

nonstationary environments.

C.2 Model-based and Batch Methods

Rather than directly learn a value function based on experience, model-

based methods first approximate the transition function T and the reward

function R of the task MDP. Together, T and R constitute a model, which

can effectively serve as a surrogate for the environment; that is, they can be

used to predict next states and rewards. With access to a model, several al-

ternatives present themselves for deriving a control policy. One possibility is

to run forward simulations using the model at action selection time, and to

pick actions based on their predicted long-term effects (Kocsis and Szepesvári,

2006). Otherwise, a value function can be computed beforehand using the

model, and used to implicitly represent the policy (Kalyanakrishnan et al.,

2008). Yet another approach, adopted, for instance, in the popular helicopter

control application, is to perform policy search by using the model for evalu-

ating policies (Ng et al., 2004).

The Dyna architecture proposed by Sutton (1990) encapsulates the es-

sential aspects of model-based RL. In the set of discrete maze tasks Sutton uses
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to demonstrate Dyna, T and R are estimated simply from the frequency counts

of state visits. Under Dyna, the action value function Q can be improved both

based on direct experience gathered from environmental interaction, and based

on indirect experience simulated by the model. Planning, or learning from sim-

ulation in the model, can considerably speed up the convergence rate. Several

variants and improvements to Dyna, such as prioritized sweeping, have sub-

sequently been demonstrated to further speed up learning on tasks such as

navigation and rod maneuvering through mazes (Peng and Williams, 1993;

Moore and Atkeson, 1993; Sutton and Barto, 1998, see Chapter 9).

While model-based methods summarize the information available from

transition samples through estimates of T and R, batch methods preserve

this information by storing the transitions themselves in memory. Thus, they

maintain a data structure D = {(si, ai, ri, s
′
i)} comprising transition samples

observed in the past. In general the size of D can grow with time; it is typical

in practice to exercise some rule to manage its size. Like model-based methods,

batch methods also allow for sophisticated updates to Q every time step, going

beyond the simple on-line updates that VF methods perform.

Experience replay (Lin, 1992) is a conceptually simple form of batch

updating, under which stored transitions are simply replayed multiple times

and “on-line” learning updates performed. Stored batches of experiences can

be used in more ingenious ways to impart speed and stability to learning.

For example, function approximators such as neural networks are often easier

to train under sweeps of batch updating, rather than under on-line updating.

Fitted Q Iteration (FQI), which is derived from a related method called Fitted

Value Iteration (Gordon, 1995), is one such method that uses regression as a

subroutine to fit action values to a batch of samples. For a given batch,
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FQI is guaranteed to converge for “averaging” function approximators such

as trees (Ernst et al., 2005) and kernel methods (Ormoneit and Sen, 2002).

Even in the absence of such guarantees, FQI has proven effective using neural

networks for function approximation in some challenging tasks (Riedmiller,

2005; Kalyanakrishnan and Stone, 2007).

As with VF methods, a significant body of literature devoted to formal

analysis of the function approximation case in model-based and batch methods

assumes that the model (and value function) are represented as linear combi-

nations of basis functions. For instance, recent work has provided convergence

guarantees under certain restrictions for a linear implementation of Dyna (Sut-

ton et al., 2008). In the context of batch RL, the most popular approaches

with linear architectures are least squares methods. Least Squares Temporal

Difference (LSTD) learning (Bradtke and Barto, 1996) is an efficient proce-

dure to approximate the value function of a policy by processing a batch of

samples collected from the policy. LSTD converges to the same set of weights

as TD(0), but at a significantly faster rate (Lazaric et al., 2010). LSTD can

also be extended to different values of λ (Boyan, 2002). Least Squares Pol-

icy Evaluation (LSPE) (Nedić and Bertsekas, 2003) is yet another evaluation

algorithm akin to LSTD. Least Squares Policy Iteration (LSPI) (Lagoudakis

and Parr, 2003) extends LSTD to control problems, computing a sequence of

policies from a fixed set of data, such that successive iterations are likely to

yield better policies. An advantage of batch least squares approaches when

compared to on-line methods is that they involve little parameter tuning (they

do not need a learning rate parameter), and so they tend to be more robust.

This robustness comes at the price of overhead in memory and computation.

While it is natural to imagine model-based and batch RL methods as
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qualitatively distinct, there is also reason to treat them alike (as we do in Ap-

pendix D, addressing these methods together under the abbreviation “MB”).

In a formal sense, Strehl et al. (2006) differentiate model-based methods from

model-free methods based on the size of the agent’s memory. Batch methods

that store a significant amount of experience can thus be considered implicitly

model-based. One can imagine batch methods to be model-based methods

that incidentally simulate only those experiences that have actually occurred

while interacting with the environment. Indeed this bias towards “direct” data

often helps batch methods such as experience replay achieve better results than

model-based approaches that simulate experiences based on imperfect mod-

els (Lin, 1992). However, in some cases, such as when model-based and batch

methods share the same data and features in a linear architecture, they can be

expected to yield identical results (Boyan, 2002; Schoknecht, 2003; Parr et al.,

2008; Sutton et al., 2008).1

“Best-match learning” (van Seijen et al., 2011) is a recent framework

that combines the space-efficiency of VF methods with the sample-efficiency of

MB methods. Under this framework, rather than updating the value function

as and when samples are gathered, updates are postponed (and samples stored

in memory) for as long as possible. The advantage of such a postponement

is that updates can reflect any changes that have occurred in the targets for

a sample after the sample was collected (and before the update is made).

In their experiments, van Seijen et al. (2011) show that best-match learning

can outperform both experience replay (a batch method) and TD(λ) (a VF

method).

1Also see: http://www.cs.duke.edu/~parr/icml08-addendum.html.
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C.3 Policy Gradient Methods

Unlike VF and MB methods, policy gradient (PG) methods do not

attempt to compute the effects or expected utilities of actions taken from

individual states; instead, they reason about the aggregate performance of

policies. In tasks where a policy π can be represented using a vector of real-

valued parameters w, PG methods estimate the gradient of the policy value

V (πw) with respect to w, that is, ∇wV (πw). In general an unbiased estimate

of this gradient can be obtained from transition data (Sutton et al., 2000;

Kakade, 2001). Performing ascent on this gradient then leads to local optima

in the space of parameters.

PG methods for RL date at least as far back as the REINFORCE

suite of algorithms proposed by Williams (1992). Whereas the REINFORCE

algorithms themselves do not enjoy provable convergence guarantees, subse-

quent work has considered multiple formulations of policy gradients that are

amenable to theoretical treatment. A key requirement in all these approaches

is that the policy be differentiable with respect to its parameters, so that a

gradient can be obtained (and this, in turn, requires that policies be stochas-

tic). The thrust, then, is in extracting an unbiased estimate of the gradient

from the transition data. An illustrative example is Kakade’s natural gradient,

which has the additional benefit of being invariant to linear transformations

of the parameter space, thereby reducing the burden of tuning step sizes along

different parameter axes.

Finite MDPs with small state and action spaces are well-suited to be

solved by VF methods, as they require no generalization; the appeal of PG

methods lies in tasks where generalization by way of the parameterized policy

is effective. Often policies can be easier to represent than value functions;
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PG methods become particularly attractive when value functions are hard to

represent or learn. Some PG approaches apply to partially observable envi-

ronments (Baxter and Bartlett, 2001), and to policies that maintain a mem-

ory (Aberdeen and Baxter, 2002). Ghavamzadeh and Engel (2007b) show that

PG methods can be derived within a Bayesian framework.

C.4 Actor-Critic Methods

Actor-Critic (AC) methods (Barto et al., 1983) encompass a broad

range of algorithms. The essence of these algorithms is a division of the learn-

ing agent into an actor part, which is responsible for implementing a policy,

and a critic, which evaluates this policy and thereby directs adaptation. In

general multiple realizations are possible of both actor and critic, but under

the most common interpretation, the actor executes a parameterized policy,

which it adapts using policy gradient updates; the actor depends on the critic

to compute the gradient (Konda and Tsitsiklis, 2003). The main difference

between AC and PG methods is in the computation of the gradient itself.

The gradient of a policy depends on the long-term rewards accrued

from the states it visits. Canonical PG approaches would depend on actual

returns to compute this gradient (as would Monte Carlo methods), whereas

in actor-critic methods, the critic typically maintains a value function that

can readily provide the gradient. Suppose that at some instant, the critic has

exactly computed the value function V1 for the actor’s policy π1. Now, say, the

actor adapts its policy to π2. Since the value function V2 of π2 is likely to be

close to V1, a few updates to V1 based on observed transitions under π2 should

suffice to converge to V2. Estimating V2 solely based on returns under π2 is

likely to suffer from much higher variance, and would take more transitions
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to produce comparable gradient estimates. Naturally, the bias introduced

by the critic’s parameterized representation of the value function could affect

the actor’s policy improvement. However, theoretical work has addressed the

design of “compatible” function approximation for the critic to match the

actor’s policy representation, such that no bias is introduced (Sutton et al.,

2000; Konda and Tsitsiklis, 2003).

The theory of natural gradients has been extended to the actor-critic

context (Bhatnagar et al., 2008) and has been shown effective on control

tasks such as Cart Pole and hitting a baseball (Peters and Schaal, 2008a).

Ghavamzadeh and Engel (2007a) extend the theory of Bayesian reasoning to

actor-critic architectures by modeling the policy gradient as a Gaussian Pro-

cess. In recent times, a number of AC and PG methods have specifically been

proposed for learning robotic control, including “Policy learning by Weighting

Exploration with the Returns” (PoWER) (Kober and Peters, 2009), “Relative

Entropy policy Search” (REPS) (Peters et al., 2010), and “Policy Improvement

with Path Integrals” (PI2) (Theodorou et al., 2010).

C.5 Policy Search Methods

Policy search (PS) methods are much like PG methods: rather than

computing values of actions, they search the space of policy parameters for

settings that yield high expected long-term reward. Unlike PG methods, PS

methods do not necessarily assume that gradients can be computed analyt-

ically. Consequently they can operate on deterministic policies. Also, there

is no restriction that their parameters be real numbers, and so PS methods

can work with a variety of representations. An apt example is the PS frame-

work implemented by Kohl and Stone (2004) to optimize the forward walking
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speed of an Aibo robot. The robot’s gait is described by a manually designed

rule, which contains parameters corresponding to positions and timings in the

trajectories described by the legs. This policy can be optimized using sev-

eral methods, including hill climbing, genetic algorithms, Amoeba, and also

a “policy gradient” technique that employs finite differences to approximate

gradients. A number of PS methods (for example, hill climbing and genetic al-

gorithms) only rely on discerning ranks among the values of different policies:

these methods are likely to be more robust than PG methods in the presence

of stochasticity.

Evolutionary computation has been a particularly popular choice for

PS; in particular several neuroevolutionary techniques have been tested on

control tasks (Gomez and Miikkulainen, 1999; Stanley, 2004; Metzen et al.,

2008). Typically the policy is represented using a neural network, whose topol-

ogy and weights are evolved to yield policies with higher values. Ignoring the

Markovian relationship between observed states and next states allows these

methods to cope to some extent with partial observability. Glickman and

Sycara (2001) show that even in severely occluded maze tasks, a small neu-

ral network with recurrent connections, interpreted as a stochastic policy, can

achieve excellent performance.

Just as AC methods aim to reduce the variance in estimates of gra-

dients, techniques to reduce the variance in estimates of policy values have

been employed in tandem with PS methods. PEGASUS (Ng and Jordan,

2000) is one such technique. Assuming that an environmental model is avail-

able, and further, that different “deterministic” realizations of this model can

be obtained by setting different random seeds, PEGASUS effectively controls

stochasticity in comparisons between policies. On simple tasks such as grid
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worlds and a bicycle controller, PEGASUS is demonstrated to significantly

improve the performance of a hill climbing algorithm. PEGASUS is also used

in the complex helicopter control task (Ng et al., 2004), in which the model is

itself learned from traces obtained when an expert controls the helicopter. In

yet another model-based approach to PS, Ng et al. (2000) use indirect means

to estimate the policy gradient and value, after first estimating the density

induced by the policy over the state space. With the aim of increasing the

sample-efficiency of PS, Peshkin and Shelton (2002) apply importance sam-

pling techniques to evaluate a policy from samples obtained by following a

different policy.

Recent advances in the field of stochastic optimization have had a pos-

itive effect on PS methods. The cross-entropy method (de Boer et al., 2005)

is among a family of optimization techniques that generate candidate solu-

tions (in the case of RL, policy parameters) from a parametric distribution.

This distribution is progressively updated such that with time, its variance

diminishes and its mean gravitates towards local optima in the parameter

space. Szita and Lőrincz (2006) demonstrate that the cross-entropy method

achieves orders of magnitude improvement over the best VF approaches for

Tetris (see Chapter 4 in this dissertation for a detailed discussion). Another

method in a similar vein is CMA-ES (Covariance Matrix Adaptation Evolu-

tion Strategy) (Hansen, 2009), which, like natural policy gradient methods,

has the attractive property of being immune to linear transformations of the

fitness landscape. Note that we use CMA-ES as a representative PS method

in our comparative study in Chapter 3.
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Appendix D

An Order Among Classes of Learning Methods

In this appendix, we present a speculative essay inspired by results from

chapters 3 and 4. We put forth a hypothesis for ordering different classes of RL

methods (specifically the five classes surveyed in Appendix C) based on their

procedural bias (discussed in Section 7.2.1, on page 257). We arrive at our

hypothesis based on a qualitative argument involving the “sample-sensitivity”

of different RL methods. Our hypothesis is to be treated as a guide to organize

future research on defining and evaluating the inductive bias of RL methods;

such research may validate, refine, or even entirely reject the hypothesis.

We define the sample-sensitivity of an RL method as the extent to

which individual samples influence its outcome. If learning method L1 is more

sample-sensitive than another method L2, then L1 would “extract more in-

formation” from samples than L2. Thus, L1 is likely to learn “more quickly”

than L2. On the other hand, if L1 and L2 are applied with the same imperfect

representation R, then L1 will achieve a lower asymptotic performance than L2

(because R corrupts the information extraction process of L1 more than that

of L2). Thus, the sample-sensitivity of a method is expected to relate directly

with its sample-efficiency, but inversely with the method’s robustness to poor

representations (henceforward, simply referred to as a method’s robustness).

Figure D.1 summarizes our ordering of different classes of RL methods

based on their sample-sensitivity. We consider five classes of RL methods.
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In decreasing order of sample-sensitivity, these classes are: model-based and

batch (MB) methods, model-free on-line value function-based (VF) methods,

actor-critic (AC) methods, policy gradient (PG) methods, and policy search

(PS) methods. For the interested reader, we provide a brief survey of these

different classes of methods in Appendix C.

Model-based methods (Sutton and Barto, 1998, see chapter 9) rely on

simulated experiences generated by an environmental model that is itself in-

ferred from transition samples. Hence, the assumption on which model-based

methods bank is that an accurate model of the transition and reward func-

tions can be represented and learned based on observed experiences. This is

a stronger assumption than that made by (model-free) on-line value function-

Model−based and Batch methods

Fully bootstrapping methods

Eligibility trace−based methods

Monte Carlo methods

Actor−critic methods

Policy gradient methods

Policy search methods"PS"

"PG"

"AC"

"MB"

"VF"

LOW

HIGH

Sample−
LOW HIGH

LOW

Sample−
efficiencysensitivity

Robustness

HIGH

Compared in chapters 3 and 4

Figure D.1: A proposed ordering of classes of learning methods based on their
“sample-sensitivity” (hypothesized to be consistent with the procedural bias
of RL methods). Appendix C provides a brief survey of the different classes
of methods included in the figure. Eligibility trace methods span a segment of
the spectrum between fully bootstrapping methods (λ = 0) and Monte Carlo
methods (λ = 1). The implementations of the actor and critic in actor-critic
methods also give rise to several points on the spectrum.
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based (VF) methods (Watkins and Dayan, 1992; Rummery and Niranjan,

1994), which only assume that observed samples can be used in computing

state-action values. We consider batch RL methods (Lagoudakis and Parr,

2003; Lin, 1992) similar to model-based methods in that they perform mul-

tiple passes, or aggregate updates, based on a set of experiences. Note that

VF methods make only a single update based on each transition. In line with

the view that the data used by batch methods themselves constitute an im-

plicit model (Strehl et al., 2006; Boyan, 2002), we treat model-based and batch

methods as one category of methods (abbreviated “MB”): the one with the

highest sample-sensitivity.

VF methods make progress towards the goal of approximating the value

function by constantly shifting their current estimates towards “better” esti-

mates derived from transition samples. Among this class itself, the extent

of bootstrapping could determine the sample-efficiency and robustness of dif-

ferent methods. Fully bootstrapping methods such as Sarsa(0) (Rummery

and Niranjan, 1994) estimate values of states using the estimated values of

next states, while Monte Carlo methods such as Sarsa(1) estimate state val-

ues based on samples of long-term reward. Thus, Monte Carlo methods are

less dependent on the state signal and value function representation than fully

bootstrapping methods. In general, controlling the eligibility trace parameter

λ yields intermediate methods, such as Sarsa(λ), which implement varying

extents of bootstrapping.

While VF methods still try to estimate state-action values, policy gra-

dient (PG) methods (Sutton et al., 2000; Kakade, 2001) only estimate the

gradient of the value of a policy with respect to its parameters, which they

achieve by summing actual returns, as under Monte Carlo methods. Policies
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contain less information than their action value functions, and consequently,

can be expressed with a smaller number of parameters. The aggregation of in-

formation gathered from multiple transitions to perform an update on a small

number of parameters has the effect of making PG methods less sensitive to

each individual transition. Actor-critic (AC) methods (Konda and Tsitsiklis,

2003) are much like PG methods, but they rely on a “critic” learning values (to

reduce the variance in gradient estimates), as under VF methods. The values

learned by the critic do not directly yield a control policy; rather, they guide

the improvement of the “actor’s” control policy. Thus, we place AC methods

in between VF and PG methods in the spectrum shown in Figure D.1.

By “policy search” (PS) methods, we refer to a generic class of opti-

mization algorithms (for example, genetic and evolutionary algorithms (Stan-

ley, 2004), hill climbing, and CMA-ES (Hansen, 2009)) that primarily rely on

estimating the ranks among a population of policies with respect to their val-

ues. Ranks are typically easier to estimate than gradients; indeed PS methods

can work perfectly well on policies that do not have analytically computable

gradients, which PG methods usually require. Their disregard for everything

but the relative order among the set of policies being considered makes PS

methods the least dependent on atomic state transitions for the purpose of

learning. Thus, PS methods have the lowest sample-sensitivity in Figure D.1.

The scope of the RL problem is broad, and it conjoins numerous di-

mensions: memory and representation, learning, computation, exploration,

and so on. Given this complexity, we believe it unlikely that different learning

algorithms will all fall neatly into the pockets presented in Figure D.1. The

proposed order is merely intended as a pivot around which future experimental

and theoretical investigations can be undertaken. A plausible target for the
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near term is to extend our experiments using parameterized learning problems

to classes of methods other than VF and PS. To develop theoretical frameworks

for understanding the inductive bias of RL methods, we may look to build on

the information-theoretic constructs developed by Lucas (2010), or turn to

standard learning-theoretic formulations such as the VC dimension (Kearns

and Vazirani, 1994, see Section 3.2).

As a related exercise, one might draw an analogy between the “VF ver-

sus PS methods” comparison we make in chapters 3 and 4, in the context of

RL, and the “generative versus discriminative” comparison that has long been

studied in relation to supervised learning (Ng and Jordan, 2001). Although

the output of an RL method is a policy, VF methods learn policies by first

learning a “deeper” structure, the value function (and similarly, model-based

methods first learn a model). In this sense, these methods are akin to genera-

tive supervised learning methods, which first account for dependencies in the

data before applying themselves to the task of predicting labels. On the other

hand, PS methods and discriminative supervised methods directly work on the

final “deliverable”—a policy or a classifier, respectively. Ng and Jordan (2001)

demonstrate through an example that generative methods can perform bet-

ter when the training data size is small, but discriminative methods typically

outperform them on larger data sets. Jebara (2002) unifies these contrasting

classes of methods under the umbrella of “maximum entropy discrimination”,

a more general class. As yet, our understanding of the “VF versus PS” dis-

tinction in RL is nowhere as clear as our understanding of the “generative

versus discriminative” contrast in supervised learning. We hope future work

will tackle this question, which the experiments in this dissertation highlight.
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Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowling, M. (2008). Dyna-

style planning with linear function approximation and prioritized sweeping.

In Proceedings of the Twenty-fourth Conference in Uncertainty in Artificial

Intelligence (UAI 2008), pages 528–536. AAAI Press.

Suttorp, T., Hansen, N., and Igel, C. (2009). Efficient covariance matrix up-

date for variable metric evolution strategies. Machine Learning, 75(2):167–

197.
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