### An Introduction to Reinforcement Learning

Shivaram Kalyanakrishnan shivaram@cse.iitb.ac.in

Department of Computer Science and Engineering Indian Institute of Technology Bombay

March 2019

[Video<sup>1</sup> of toddler learning to walk]

<sup>1.</sup> https://www.youtube.com/watch?v=jIzuy9fcf1k

[Video<sup>1</sup> of toddler learning to walk]



1. https://www.youtube.com/watch?v=jIzuy9fcf1k

[Video<sup>1</sup> of toddler learning to walk]



Learning to Drive a Bicycle using Reinforcement Learning and Shaping Jette Randløv and Preben Alstrøm. ICML 1998.

1. https://www.youtube.com/watch?v=jIzuy9fcf1k

[Video<sup>1</sup> of toddler learning to walk]



Learning to Drive a Bicycle using Reinforcement Learning and Shaping Jette Randløy and Preben Alstrøm. ICML 1998.

Learning by trial and error to perform *sequential* decision making.

1. https://www.youtube.com/watch?v=jIzuy9fcf1k

Shivaram Kalyanakrishnan 1/23













#### Resources

Reinforcement Learning: A Survey.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. JAIR 1996.

#### Resources

#### Reinforcement Learning: A Survey.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. JAIR 1996.





#### Reinforcement Learning: An Introduction

Richard S. Sutton and Andrew G. Barto. MIT Press, 1998. (2018 draft also now on-line).

#### Algorithms for Reinforcement Learning

Csaba Szepesvári. Morgan & Claypool, 2010.

### Today's Class

- 1. Markov Decision Problems
- 2. Planning and learning
- 3. Deep Reinforcement Learning
- 4. Summary

### Today's Class

- 1. Markov Decision Problems
- 2. Planning and learning
- 3. Deep Reinforcement Learning
- 4. Summary



S: set of states.

A: set of actions.

*T*: transition function.  $\forall s \in S, \forall a \in A, T(s, a)$  is a distribution over *S*.

*R*: reward function.  $\forall s, s' \in S, \forall a \in A, R(s, a, s')$  is a finite real number.

 $\gamma$ : discount factor.  $0 \le \gamma < 1$ .



S: set of states.

A: set of actions.

*T*: transition function.  $\forall s \in S, \forall a \in A, T(s, a)$  is a distribution over *S*.

*R*: reward function.  $\forall s, s' \in S, \forall a \in A, R(s, a, s')$  is a finite real number.

 $\gamma$ : discount factor.  $0 \le \gamma < 1$ .

Trajectory over time:  $s^0, a^0, r^0, s^1, a^1, r^1, ..., s^t, a^t, r^t, s^{t+1}, ...$ 



S: set of states.

A: set of actions.

*T*: transition function.  $\forall s \in S, \forall a \in A, T(s, a)$  is a distribution over *S*.

**R**: reward function.  $\forall s, s' \in S, \forall a \in A, R(s, a, s')$  is a finite real number.

 $\gamma$ : discount factor.  $0 \le \gamma < 1$ .

Trajectory over time:  $s^0, a^0, r^0, s^1, a^1, r^1, \ldots, s^t, a^t, r^t, s^{t+1}, \ldots$ Value, or expected long-term reward, of state s under policy  $\pi$ :  $V^{\pi}(s) = \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \ldots \text{ to } \infty | s^0 = s, a^j = \pi(s^i)].$ 



S: set of states.

A: set of actions.

*T*: transition function.  $\forall s \in S, \forall a \in A, T(s, a)$  is a distribution over *S*.

*R*: reward function.  $\forall s, s' \in S, \forall a \in A, R(s, a, s')$  is a finite real number.

 $\gamma$ : discount factor.  $0 \le \gamma < 1$ .

Trajectory over time:  $s^0$ ,  $a^0$ ,  $r^0$ ,  $s^1$ ,  $a^1$ ,  $r^1$ , ...,  $s^t$ ,  $a^t$ ,  $r^t$ ,  $s^{t+1}$ , ....

Value, or expected long-term reward, of state s under policy  $\pi$ :  $V^{\pi}(s) = \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + ... \text{ to } \infty | s^0 = s, a^i = \pi(s^i)].$ 

Objective: "Find  $\pi$  such that  $V^{\pi}(s)$  is maximal  $\forall s \in S$ ."

# State-transition Diagram



Notation: "transition probability, reward" marked on each arrow

What are the agent and environment? What are S, A, T, R, and  $\gamma$ ?

What are the agent and environment? What are S, A, T, R, and  $\gamma$ ?



1. http://www.chess-game-strategies.com/images/kqa\_chessboard\_large-picture\_2d.gif

What are the agent and environment? What are S, A, T, R, and  $\gamma$ ?





An Application of Reinforcement Learning to Aerobatic Helicopter Flight Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. NIPS 2006.

- 1. http://www.chess-game-strategies.com/images/kqa\_chessboard\_large-picture\_2d.gif
- http://www.aviationspectator.com/files/images/ SH-3-Sea-King-helicopter-191.preview.jpg

What are the agent and environment? What are S, A, T, R, and  $\gamma$ ?





[Video<sup>3</sup> of Tetris]

An Application of Reinforcement Learning to Aerobatic Helicopter Flight Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. NIPS 2006.

- 1. http://www.chess-game-strategies.com/images/kqa\_chessboard\_large-picture\_2d.gif
- http://www.aviationspectator.com/files/images/ SH-3-Sea-King-helicopter-191.preview.jpg
- 3. https://www.youtube.com/watch?v=kTKrVTHbL7E

### Today's Class

- 1. Markov decision problems
- 2. Planning and learning
- 3. Deep Reinforcement Learning
- 4. Summary

Recall that

$$V^{\pi}(s) = \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s, a^i = \pi(s^i)].$$

Bellman's Equations ( $\forall s \in S$ ):

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} T(s, \pi(s), s') \left[ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right].$$

 $V^{\pi}$  is called the value function of  $\pi$ .

Recall that

$$V^{\pi}(s) = \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s, a^i = \pi(s^i)].$$

Bellman's Equations ( $\forall s \in S$ ):

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} T(s, \pi(s), s') \left[ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right].$$

 $V^{\pi}$  is called the value function of  $\pi$ .

Define  $(\forall s \in S, \forall a \in A)$ :

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V^{\pi}(s')].$$

 $Q^{\pi}$  is called the action value function of  $\pi$ .

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s)).$$

Recall that

$$V^{\pi}(s) = \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s, a^i = \pi(s^i)].$$

Bellman's Equations ( $\forall s \in S$ ):

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')].$$

 $V^{\pi}$  is called the value function of  $\pi$ .

Define  $(\forall s \in S, \forall a \in A)$ :

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V^{\pi}(s')].$$

 $Q^{\pi}$  is called the action value function of  $\pi$ .

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s)).$$

The variables in Bellman's Equations are the  $V^{\pi}(s)$ . |S| linear equations in |S| unknowns.

Recall that

$$V^{\pi}(s) = \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s, a^i = \pi(s^i)].$$

Bellman's Equations ( $\forall s \in S$ ):

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')].$$

 $V^{\pi}$  is called the value function of  $\pi$ .

Define  $(\forall s \in S, \forall a \in A)$ :

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V^{\pi}(s')].$$

 $Q^{\pi}$  is called the action value function of  $\pi$ .

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s)).$$

The variables in Bellman's Equations are the  $V^{\pi}(s)$ . |S| linear equations in |S| unknowns.

Thus, given S, A, T, R,  $\gamma$ , and a fixed policy  $\pi$ , we can solve Bellman's equations efficiently to obtain,  $\forall s \in S$ ,  $\forall a \in A$ ,  $V^{\pi}(s)$  and  $Q^{\pi}(s, a)$ .

## Bellman's Optimality Equations

Let  $\Pi$  be the set of all policies. What is its cardinality?

## Bellman's Optimality Equations

Let  $\Pi$  be the set of all policies. What is its cardinality?

It can be shown that there exists a policy  $\pi^* \in \Pi$  such that

$$\forall \pi \in \Pi \ \forall s \in S : \ V^{\pi^*}(s) \geq V^{\pi}(s).$$

 $V^{\pi^*}$  is denoted  $V^*$ , and  $Q^{\pi^*}$  is denoted  $Q^*$ .

There could be multiple optimal policies  $\pi^*$ , but  $V^*$  and  $Q^*$  are unique.

## Bellman's Optimality Equations

Let  $\Pi$  be the set of all policies. What is its cardinality?

It can be shown that there exists a policy  $\pi^* \in \Pi$  such that

$$\forall \pi \in \Pi \ \forall s \in S : \ V^{\pi^*}(s) \geq V^{\pi}(s).$$

 $V^{\pi^*}$  is denoted  $V^*$ , and  $Q^{\pi^*}$  is denoted  $Q^*$ .

There could be multiple optimal policies  $\pi^*$ , but  $V^*$  and  $Q^*$  are unique.

Bellman's Optimality Equations ( $\forall s \in S$ ):

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') [R(s, a, s') + \gamma V^*(s')].$$

## **Planning**

Given S, A, T, R,  $\gamma$ , how can we find an optimal policy  $\pi^*$ ?

#### **Planning**

Given S, A, T, R,  $\gamma$ , how can we find an optimal policy  $\pi^*$ ?

**One method**. We can pose Bellman's Optimality Equations as a linear program, solve for  $V^*$ , derive  $Q^*$ , and induce  $\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$ .

### **Planning**

Given S, A, T, R,  $\gamma$ , how can we find an optimal policy  $\pi^*$ ?

**One method**. We can pose Bellman's Optimality Equations as a linear program, solve for  $V^*$ , derive  $Q^*$ , and induce  $\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$ .

**Another method** to find  $V^*$ . Value Iteration.

- ■Initialise  $V^0: S \to \mathbb{R}$  arbitrarily.
- $t \leftarrow 0$ .
- ■Repeat
  - $\blacksquare$ For all  $s \in S$ ,
    - $\blacksquare V^{t+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left[ R(s, a, s') + \gamma V^t(s') \right].$
  - $t \leftarrow t + 1$ .
- ■Until  $||V^t V^{t-1}||$  is small enough.

### **Planning**

Given S, A, T, R,  $\gamma$ , how can we find an optimal policy  $\pi^*$ ?

**One method**. We can pose Bellman's Optimality Equations as a linear program, solve for  $V^*$ , derive  $Q^*$ , and induce  $\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$ .

**Another method** to find  $V^*$ . Value Iteration.

```
■Initialise V^0: S \to \mathbb{R} arbitrarily.

■ t \leftarrow 0.

■Repeat
■For all s \in S,
■ V^{t+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left[ R(s, a, s') + \gamma V^t(s') \right].
■ t \leftarrow t+1.
■Until \|V^t - V^{t-1}\| is small enough.
```

Other methods. Policy Iteration, and mixtures with Value Iteration.

## Planning and Learning

#### Planning problem:

Given S, A, T, R,  $\gamma$ , how can we find an optimal policy  $\pi^*$ ? We need to be computationally efficient.

## Planning and Learning

#### Planning problem:

Given S, A, T, R,  $\gamma$ , how can we find an optimal policy  $\pi^*$ ? We need to be computationally efficient.

#### Learning problem:

Given S, A,  $\gamma$ , and the facility to follow a trajectory by sampling from T and R, how can we find an optimal policy  $\pi^*$ ? We need to be sample-efficient.















$$r^0 = -1$$
.



$$r^0 = -1.$$
  
 $r^1 = 2.$ 



$$r^0 = -1$$
.

$$r^1 = 2$$
.

$$r^2 = 10.$$



$$r^0 = -1$$
.

$$r^1 = 2$$
.

$$r^2 = 10.$$

How to take actions so as to maximise expected long-term reward

$$\mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots]?$$



$$r^0 = -1$$
.

$$r^1 = 2$$
.

$$r^2 = 10.$$

How to take actions so as to maximise expected long-term reward

$$\mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots]?$$

[Note that there exists an (unknown) optimal policy.]

► Keep a running estimate of the expected long-term reward obtained by taking each action from each state *s*, and acting *optimally* thereafter.

| Q  | red  | green |
|----|------|-------|
| 1  | -0.2 | 10    |
| 2  | 4.5  | 13    |
| 3  | 6    | -8    |
| 4  | 0    | 0.2   |
| 5  | -4.2 | -4.2  |
| 6  | 1.2  | 1.6   |
| 7  | 10   | 6     |
| 8  | 4.8  | 9.9   |
| 9  | 5.0  | -3.4  |
| 10 | -1.9 | 2.3   |
|    |      |       |

► Keep a running estimate of the expected long-term reward obtained by taking each action from each state s, and acting optimally thereafter.

| Q  | red  | green |  |
|----|------|-------|--|
| 1  | -0.2 | 10    |  |
| 2  | 4.5  | 13    |  |
| 3  | 6    | -8    |  |
| 4  | 0    | 0.2   |  |
| 5  | -4.2 | -4.2  |  |
| 6  | 1.2  | 1.6   |  |
| 7  | 10   | 6     |  |
| 8  | 4.8  | 9.9   |  |
| 9  | 5.0  | -3.4  |  |
| 10 | -1.9 | 2.3   |  |
|    |      |       |  |

$$Q(s^t, a^t) \leftarrow Q(s^t, a^t) + \alpha_t \{r^t + \gamma \max_a Q(s^{t+1}, a) - Q(s^t, a^t)\}.$$

► Keep a running estimate of the expected long-term reward obtained by taking each action from each state s, and acting optimally thereafter.

| -0.2 | 10                                   |  |
|------|--------------------------------------|--|
| 1 5  |                                      |  |
| 4.5  | 13                                   |  |
| 6    | -8                                   |  |
| 0    | 0.2                                  |  |
| -4.2 | -4.2                                 |  |
| 1.2  | 1.6                                  |  |
| 10   | 6                                    |  |
| 4.8  | 9.9                                  |  |
| 5.0  | -3.4                                 |  |
| -1.9 | 2.3                                  |  |
|      | 0<br>-4.2<br>1.2<br>10<br>4.8<br>5.0 |  |

$$Q(s^t, a^t) \leftarrow Q(s^t, a^t) + \alpha_t \{r^t + \gamma \max_a Q(s^{t+1}, a) - Q(s^t, a^t)\}.$$

► Keep a running estimate of the expected long-term reward obtained by taking each action from each state s, and acting optimally thereafter.

| -0.2 | 10                                   |  |
|------|--------------------------------------|--|
| 1 5  |                                      |  |
| 4.5  | 13                                   |  |
| 6    | -8                                   |  |
| 0    | 0.2                                  |  |
| -4.2 | -4.2                                 |  |
| 1.2  | 1.6                                  |  |
| 10   | 6                                    |  |
| 4.8  | 9.9                                  |  |
| 5.0  | -3.4                                 |  |
| -1.9 | 2.3                                  |  |
|      | 0<br>-4.2<br>1.2<br>10<br>4.8<br>5.0 |  |

$$Q(s^t, a^t) \leftarrow Q(s^t, a^t) + \underbrace{\alpha_t}\{r^t + \gamma \max_a Q(s^{t+1}, a) - Q(s^t, a^t)\}.$$

► Keep a running estimate of the expected long-term reward obtained by taking each action from each state *s*, and acting *optimally* thereafter.

| Q  | red   | green |
|----|-------|-------|
| 1  | -0.2  | 10    |
| 2  | 4.5   | 13    |
| 3  | 3 6 - |       |
| 4  | 0     | 0.2   |
| 5  | -4.2  | -4.2  |
| 6  | 1.2   | 1.6   |
| 7  | 10    | 6     |
| 8  | 4.8   | 9.9   |
| 9  | 5.0   | -3.4  |
| 10 | -1.9  | 2.3   |
|    |       |       |

$$Q(s^t, a^t) \leftarrow Q(s^t, a^t) + \alpha_t \{r^t + \gamma \max_a Q(s^{t+1}, a) - Q(s^t, a^t)\}.$$

- Act greedily based on the estimates (exploit) most of the time, but still
- ▶ Make sure to explore each action enough times.

► Keep a running estimate of the expected long-term reward obtained by taking each action from each state s, and acting optimally thereafter.

| Q  | red  | green |
|----|------|-------|
| 1  | -0.2 | 10    |
| 2  | 4.5  | 13    |
| 3  | 3 6  |       |
| 4  | 0    | 0.2   |
| 5  | -4.2 | -4.2  |
| 6  | 1.2  | 1.6   |
| 7  | 10   | 6     |
| 8  | 4.8  | 9.9   |
| 9  | 5.0  | -3.4  |
| 10 | -1.9 | 2.3   |
|    |      |       |

▶ Update these estimates based on experience  $(s^t, a^t, r^t, s^{t+1})$ :

$$Q(s^t, a^t) \leftarrow Q(s^t, a^t) + \alpha_t \{r^t + \gamma \max_a Q(s^{t+1}, a) - Q(s^t, a^t)\}.$$

- Act greedily based on the estimates (exploit) most of the time, but still
- ► Make sure to explore each action enough times.

Q-learning will converge and induce an optimal policy!

## Q-Learning Algorithm

- Let Q be our "guess" of  $Q^*$ : for every state s and action a, initialise Q(s, a) arbitrarily. We will start in some state  $s^0$ .
- For t = 0, 1, 2, ...
  - Take an action  $a^t$ , chosen uniformly at random with probability  $\epsilon$ , and to be argmax<sub>a</sub>  $Q(s^t, a)$  with probability  $1 \epsilon$ .
  - ■The environment will generate next state  $s^{t+1}$  and reward  $r^{t+1}$ .
  - ■Update:  $Q(s^t, a^t) \leftarrow Q(s^t, a^t) + \alpha_t(r^{t+1} + \gamma \max_{a \in A} Q(s^{t+1}, a) Q(s^t, a^t))$ .

[ $\epsilon$ : parameter for " $\epsilon$ -greedy" exploration] [ $\alpha_t$ : learning rate]

 $[r^{t+1} + \gamma \max_{a \in A} Q(s^{t+1}, a) - Q(s^t, a^t)$ : temporal difference prediction error]

## Q-Learning Algorithm

- Let Q be our "guess" of  $Q^*$ : for every state s and action a, initialise Q(s,a) arbitrarily. We will start in some state  $s^0$ .
- For t = 0, 1, 2, ...
  - Take an action  $a^t$ , chosen uniformly at random with probability  $\epsilon$ , and to be  $\operatorname{argmax}_a Q(s^t, a)$  with probability  $1 \epsilon$ .
  - ■The environment will generate next state  $s^{t+1}$  and reward  $r^{t+1}$ .
  - ■Update:  $Q(s^t, a^t) \leftarrow Q(s^t, a^t) + \alpha_t(r^{t+1} + \gamma \max_{a \in A} Q(s^{t+1}, a) Q(s^t, a^t))$ . [ $\epsilon$ : parameter for " $\epsilon$ -greedy" exploration] [ $\alpha_t$ : learning rate]

 $[r^{t+1} + \gamma \max_{a \in A} Q(s^{t+1}, a) - Q(s^t, a^t)$ : temporal difference prediction error]

For 
$$\epsilon \in (0,1]$$
 and  $\alpha_t = \frac{1}{t}$ , it can be proven that as  $t \to \infty$ ,  $Q \to Q^*$ .

#### Q-Learning

Christopher J. C. H. Watkins and Peter Dayan. Machine Learning, 1992.

| Task                                       | State<br>Aliasing | State<br>Space | Policy Representation (Number of features) |
|--------------------------------------------|-------------------|----------------|--------------------------------------------|
| Backgammon (T1992)                         | Absent            | Discrete       | Neural network (198)                       |
| Job-shop scheduling (ZD1995)               | Absent            | Discrete       | Neural network (20)                        |
| Tetris (BT1906)                            | Absent            | Discrete       | Linear (22)                                |
| Elevator dispatching (CB1996)              | Present           | Continuous     | Neural network (46)                        |
| Acrobot control (S1996)                    | Absent            | Continuous     | Tile coding (4)                            |
| Dynamic channel allocation (SB1997)        | Absent            | Discrete       | Linear (100's)                             |
| Active guidance of finless rocket (GM2003) | Present           | Continuous     | Neural network (14)                        |
| Fast quadrupedal locomotion (KS2004)       | Present           | Continuous     | Parameterized policy (12)                  |
| Robot sensing strategy (KF2004)            | Present           | Continuous     | Linear (36)                                |
| Helicopter control (NKJS2004)              | Present           | Continuous     | Neural network (10)                        |
| Dynamic bipedal locomotion (TZS2004)       | Present           | Continuous     | Feedback control policy (2                 |
| Adaptive job routing/scheduling (WS2004)   | Present           | Discrete       | Tabular (4)                                |
| Robot soccer keepaway (SSK2005)            | Present           | Continuous     | Tile coding (13)                           |
| Robot obstacle negotiation (LSYSN2006)     | Present           | Continuous     | Linear (10)                                |
| Optimized trade execution (NFK2007)        | Present           | Discrete       | Tabular (2-5)                              |
| Blimp control (RPHB2007)                   | Present           | Continuous     | Gaussian Process (2)                       |
| 9 × 9 Go (SSM2007)                         | Absent            | Discrete       | Linear (≈1.5 million)                      |
| Ms. Pac-Man (SL2007)                       | Absent            | Discrete       | Rule list (10)                             |
| Autonomic resource allocation (TJDB2007)   | Present           | Continuous     | Neural network (2)                         |
| General game playing (FB2008)              | Absent            | Discrete       | Tabular (part of state space               |
| Soccer opponent "hassling" (GRT2009)       | Present           | Continuous     | Neural network (9)                         |
| Adaptive epilepsy treatment (GVAP2008)     | Present           | Continuous     | Extremely rand, trees (114                 |
| Computer memory scheduling (IMMC2008)      | Absent            | Discrete       | Tile coding (6)                            |
| Motor skills (PS2008)                      | Present           | Continuous     | Motor primitive coeff. (100'               |
| Combustion Control (HNGK2009)              | Present           | Continuous     | Parameterized policy (2-3)                 |

| Task                                       | State<br>Aliasing | State<br>Space | Policy Representation<br>(Number of features) |
|--------------------------------------------|-------------------|----------------|-----------------------------------------------|
| Backgammon (T1992)                         | Absent            | Discrete       | Neural network (198)                          |
| Job-shop scheduling (ZD1995)               | Absent            | Discrete       | Neural network (20)                           |
| Tetris (BT1906)                            | Absent            | Discrete       | Linear (22)                                   |
| Elevator dispatching (CB1996)              | Present           | Continuous     | Neural network (46)                           |
| Acrobot control (S1996)                    | Absent            | Continuous     | Tile coding (4)                               |
| Dynamic channel allocation (SB1997)        | Absent            | Discrete       | Linear (100's)                                |
| Active guidance of finless rocket (GM2003) | Present           | Continuous     | Neural network (14)                           |
| Fast quadrupedal locomotion (KS2004)       | Present           | Continuous     | Parameterized policy (12)                     |
| Robot sensing strategy (KF2004)            | Present           | Continuous     | Linear (36)                                   |
| Helicopter control (NKJS2004)              | Present           | Continuous     | Neural network (10)                           |
| Dynamic bipedal locomotion (TZS2004)       | Present           | Continuous     | Feedback control policy (2)                   |
| Adaptive job routing/scheduling (WS2004)   | Present           | Discrete       | Tabular (4)                                   |
| Robot soccer keepaway (SSK2005)            | Present           | Continuous     | Tile coding (13)                              |
| Robot obstacle negotiation (LSYSN2006)     | Present           | Continuous     | Linear (10)                                   |
| Optimized trade execution (NFK2007)        | Present           | Discrete       | Tabular (2-5)                                 |
| Blimp control (RPHB2007)                   | Present           | Continuous     | Gaussian Process (2)                          |
| 9 × 9 Go (SSM2007)                         | Absent            | Discrete       | Linear (≈1.5 million)                         |
| Ms. Pac-Man (SL2007)                       | Absent            | Discrete       | Rule list (10)                                |
| Autonomic resource allocation (TJDB2007)   | Present           | Continuous     | Neural network (2)                            |
| General game playing (FB2008)              | Absent            | Discrete       | Tabular (part of state space                  |
| Soccer opponent "hassling" (GRT2009)       | Present           | Continuous     | Neural network (9)                            |
| Adaptive epilepsy treatment (GVAP2008)     | Present           | Continuous     | Extremely rand, trees (114                    |
| Computer memory scheduling (IMMC2008)      | Absent            | Discrete       | Tile coding (6)                               |
| Motor skills (PS2008)                      | Present           | Continuous     | Motor primitive coeff. (100'                  |
| Combustion Control (HNGK2009)              | Present           | Continuous     | Parameterized policy (2-3)                    |

| Task                                       | State<br>Aliasing | State<br>Space | Policy Representation<br>(Number of features) |
|--------------------------------------------|-------------------|----------------|-----------------------------------------------|
| Backgammon (T1992)                         | Absent            | Discrete       | Neural network (198)                          |
| Job-shop scheduling (ZD1995)               | Absent            | Discrete       | Neural network (20)                           |
| Tetris (BT1906)                            | Absent            | Discrete       | Linear (22)                                   |
| Elevator dispatching (CB1996)              | Present           | Continuous     | Neural network (46)                           |
| Acrobot control (S1996)                    | Absent            | Continuous     | Tile coding (4)                               |
| Dynamic channel allocation (SB1997)        | Absent            | Discrete       | Linear (100's)                                |
| Active guidance of finless rocket (GM2003) | Present           | Continuous     | Neural network (14)                           |
| Fast quadrupedal locomotion (KS2004)       | Present           | Continuous     | Parameterized policy (12)                     |
| Robot sensing strategy (KF2004)            | Present           | Continuous     | Linear (36)                                   |
| Helicopter control (NKJS2004)              | Present           | Continuous     | Neural network (10)                           |
| Dynamic bipedal locomotion (TZS2004)       | Present           | Continuous     | Feedback control policy (2)                   |
| Adaptive job routing/scheduling (WS2004)   | Present           | Discrete       | Tabular (4)                                   |
| Robot soccer keepaway (SSK2005)            | Present           | Continuous     | Tile coding (13)                              |
| Robot obstacle negotiation (LSYSN2006)     | Present           | Continuous     | Linear (10)                                   |
| Optimized trade execution (NFK2007)        | Present           | Discrete       | Tabular (2-5)                                 |
| Blimp control (RPHB2007)                   | Present           | Continuous     | Gaussian Process (2)                          |
| 9 × 9 Go (SSM2007)                         | Absent            | Discrete       | Linear (≈1.5 million)                         |
| Ms. Pac-Man (SL2007)                       | Absent            | Discrete       | Rule list (10)                                |
| Autonomic resource allocation (TJDB2007)   | Present           | Continuous     | Neural network (2)                            |
| General game playing (FB2008)              | Absent            | Discrete       | Tabular (part of state space                  |
| Soccer opponent "hassling" (GRT2009)       | Present           | Continuous     | Neural network (9)                            |
| Adaptive epilepsy treatment (GVAP2008)     | Present           | Continuous     | Extremely rand, trees (114                    |
| Computer memory scheduling (IMMC2008)      | Absent            | Discrete       | Tile coding (6)                               |
| Motor skills (PS2008)                      | Present           | Continuous     | Motor primitive coeff. (100'                  |
| Combustion Control (HNGK2009)              | Present           | Continuous     | Parameterized policy (2-3)                    |

| Task                                       | State<br>Aliasing | State<br>Space | Policy Representation (Number of features) |
|--------------------------------------------|-------------------|----------------|--------------------------------------------|
|                                            | Allasilig         | Space          | (Number of leatures)                       |
| Backgammon (T1992)                         | Absent            | Discrete       | Neural network (198)                       |
| Job-shop scheduling (ZD1995)               | Absent            | Discrete       | Neural network (20)                        |
| Tetris (BT1906)                            | Absent            | Discrete       | Linear (22)                                |
| Elevator dispatching (CB1996)              | Present           | Continuous     | Neural network (46)                        |
| Acrobot control (S1996)                    | Absent            | Continuous     | Tile coding (4)                            |
| Dynamic channel allocation (SB1997)        | Absent            | Discrete       | Linear (100's)                             |
| Active guidance of finless rocket (GM2003) | Present           | Continuous     | Neural network (14)                        |
| Fast quadrupedal locomotion (KS2004)       | Present           | Continuous     | Parameterized policy (12)                  |
| Robot sensing strategy (KF2004)            | Present           | Continuous     | Linear (36)                                |
| Helicopter control (NKJS2004)              | Present           | Continuous     | Neural network (10)                        |
| Dynamic bipedal locomotion (TZS2004)       | Present           | Continuous     | Feedback control policy (2)                |
| Adaptive job routing/scheduling (WS2004)   | Present           | Discrete       | Tabular (4)                                |
| Robot soccer keepaway (SSK2005)            | Present           | Continuous     | Tile coding (13)                           |
| Robot obstacle negotiation (LSYSN2006)     | Present           | Continuous     | Linear (10)                                |
| Optimized trade execution (NFK2007)        | Present           | Discrete       | Tabular (2-5)                              |
| Blimp control (RPHB2007)                   | Present           | Continuous     | Gaussian Process (2)                       |
| 9 × 9 Go (SSM2007)                         | Absent            | Discrete       | Linear (≈1.5 million)                      |
| Ms. Pac-Man (SL2007)                       | Absent            | Discrete       | Rule list (10)                             |
| Autonomic resource allocation (TJDB2007)   | Present           | Continuous     | Neural network (2)                         |
| General game playing (FB2008)              | Absent            | Discrete       | Tabular (part of state space               |
| Soccer opponent "hassling" (GRT2009)       | Present           | Continuous     | Neural network (9)                         |
| Adaptive epilepsy treatment (GVAP2008)     | Present           | Continuous     | Extremely rand. trees (114                 |
| Computer memory scheduling (IMMC2008)      | Absent            | Discrete       | Tile coding (6)                            |
| Motor skills (PS2008)                      | Present           | Continuous     | Motor primitive coeff. (100'               |
| Combustion Control (HNGK2009)              | Present           | Continuous     | Parameterized policy (2-3)                 |

Perfect representations (fully observable, enumerable states) are impractical.

## Today's Class

- 1. Markov Decision Problems
- 2. Planning and learning
- 3. Deep Reinforcement Learning
- 4. Summary

### Typical Neural Network-based Representation of Q



1. http://www.nature.com/nature/journal/v518/n7540/carousel/nature14236-f1.jpg

# ATARI 2600 Games (MKSRVBGRFOPBSAKKWLH2015)

[Breakout video<sup>1</sup>]

<sup>1.</sup> http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

### ATARI 2600 Games (MKSRVBGRFOPBSAKKWLH2015)

### [Breakout video1]



1. http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

### AlphaGo (SHMGSDSAPLDGNKSLLKGH2016)

March 2016: DeepMind's program beats Go champion Lee Sedol 4-1.



<sup>1.</sup> http://www.kurzweilai.net/images/AlphaGo-vs.-Sedol.jpg

### AlphaGo (SHMGSDSAPLDGNKSLLKGH2016)



AlphaGO 1202 CPUs, 176 GPUs, 100+ Scientists.

Lee Se-dol
1 Human Brain,
1 Coffee.

1. http://static1.uk.businessinsider.com/image/56e0373052bcd05b008b5217-810-602/screen%20shot%202016-03-09%20at%2014.png

Shivaram Kalyanakrishnan 20/23

## Learning Algorithm: Batch Q-learning

1. Represent action value function Q as a neural network.

2. Gather data (on the simulator) by taking  $\epsilon$ -greedy actions w.r.t. Q:  $(s_1, a_1, r_1, s_2, a_2, r_2, s_3, a_3, r_3, \dots s_D, a_D, r_D, s_{D+1})$ .

3. Train the network such that  $Q(s_t, a_t) \approx r_t + \max_a Q(s_{t+1}, a)$ . Go to 2.

## Learning Algorithm: Batch Q-learning

- Represent action value function Q as a neural network.
   AlphaGo: Use both a policy network and an action value network.
- Gather data (on the simulator) by taking ε-greedy actions w.r.t. Q: (s₁, a₁, r₁, s₂, a₂, r₂, s₃, a₃, r₃, ... s<sub>D</sub>, a<sub>D</sub>, r<sub>D</sub>, s<sub>D+1</sub>).
   AlphaGo: Use Monte Carlo Tree Search for action selection
- 3. Train the network such that  $Q(s_t, a_t) \approx r_t + \max_a Q(s_{t+1}, a)$ . Go to 2.

AlphaGo: Trained using self-play.

## Today's Class

- 1. Markov Decision Problems
- 2. Planning and learning
- 3. Deep Reinforcement Learning
- 4. Summary

#### Summary

- Learning by trial and error to perform sequential decision making.
- Do not program behaviour! Rather, specify goals.
- Rich history, at confluence of several fields of study, firm foundation.
- Given an MDP  $(S, A, T, R, \gamma)$ , we have to find a policy  $\pi : S \to A$  that yields high expected long-term reward from states.
- An optimal value function  $V^*$  exists, and it induces an optimal policy  $\pi^*$  (several optimal policies might exist).
- Under planning, we are given S, A, T, R, and  $\gamma$ . We may compute  $V^*$  and  $\pi^*$  using a dynamic programming algorithm such as policy iteration.
- In the learning context, we are given S, A, and  $\gamma$ : we may sample T and R in a sequential manner. We can still converge to  $V^*$  and  $\pi^*$  by applying a temporal difference learning method such as Q-learning.
- Limited in practice by quality of the representation used.
- Deep neural networks address the representation problem in some domains, and have yielded impressive results.