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Abstract

In class, we have defined MDPs and taken infinite discounted reward as the criterion to
optimise. We have claimed based on intuition, rather than proof, that to realise optimal
behaviour in this setting, it suffices for an agent to consider policies that are deterministic,
stationary, and Markovian. In this note, we provide a formal proof of the same claim. In
particular, we show that history and stochasticity do not offer any additional benefit in this
setting. Central to our proof is the finite horizon discounted reward criterion, on which we
establish comparisons between different classes of policies. The infinite discounted reward
setting is treated as a limiting case of the finite horizon setting.

1 Four Policy Classes

Let us anchor our discussion around a fixed MDP (S,A, T,R, γ), with notations as usual. We shall
assume, as is commonly done, that the individual rewards are bounded in [−Rmax, Rmax] for some
known Rmax > 0. When an agent interacts with the MDP, starting from some state s0 at time step
t = 0, it encounters a state-action-reward sequence over time: s0, a0, r0, s1, a1, r1, s2, . . . . It is this
sequence, up to t steps, that is treated as the history of the first t steps, t ≥ 0. However, to simplify
our discussion, we leave out the rewards from histories1, instead taking a t-step history h as

h = s0, a0, s1, a1, s2, a2, . . . , st.

For history h, let s(h) denote its last entry (a state). Hence, for the t-length history h given above
(length t means t actions have been taken), we have s(h) = st.

Although we are interested in the infinite discounted reward setting, we build out our proof by
first considering the finite horizon discounted reward setting. Let us fix a horizon K ≥ 1 for our
discussion. Let HK denote the set of all histories of length 0 ≤ k ≤ K − 1. In its interaction up to
K steps, the agent at any time step will have encountered a history from h ∈ HK , and must decide
which action to take based on h. We consider some natural choices for determining the agent’s
decision based on the information present in h.

1If rewards are generated deterministically, our choice results in no loss of information. Even if rewards are
generated stochastically, our eventual claims shall still hold; the student is encouraged to take up this extension as
an exercise.
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1.1 History-dependent Stochastic Policies

The most general class of policies we can imagine is Λ = {λ : HK → PD(A)}, where PD(A)
denotes the set of probability distributions over A. If the agent follows policy λ ∈ Λ, then from
history h ∈ HK , the agent takes action a ∈ A with probability λ(h, a). We adopt the convention
of subscripting values with the number of steps left up to the horizon, setting the value to 0 when
there are no more steps. Thus, for policy λ ∈ Λ and h ∈ HK , we obtain V λ0 (h) = 0, and for
1 ≤ k ≤ K,

V λk (h) =
∑
a∈A

λ(h, a)
∑
s′∈S

T (s(h), a, s′){R(s(h), a, s′) + γV λk−1(h.(a, s′))},

where h.(a, s′) is the history obtained by appending h with action a and state s′. Although we
have gone ahead with our definition above for all histories h and time steps k from their respective
sets, note that V λk (h) will only be of interest to us when h is of length K − k, and moreover, h is
a history that can be realised by the underlying MDP. Nonetheless, we lose nothing by extending
our definition to a larger set of histories and time steps.

1.2 History-dependent Deterministic Policies

If we constrain the agent to choose actions deterministically for each history, we obtain a class of
policies M = {µ : HK → A}. As before, for policy µ ∈M and h ∈ HK , we set V µ0 (h) = 0, and for
1 ≤ k ≤ K, take

V µk (h) =
∑
s′∈S

T (s(h), µ(h), s′){R(s(h), µ(h), s′) + γV µk−1(h.(µ(h), s′))}.

1.3 Time-dependent Deterministic Policies

We may further restrict our agent to choose an action deterministically solely based on the current
state s and the number of time steps t that have elapsed so far (or equivalently and more conve-
niently, the number of steps to termination, since the horizon K can be treated as a constant). The
resulting set of policies is Θ = {θ : S × {1, 2, . . . ,K} → A}. While writing down values of such
policies, we continue subscripting by the number of steps to go to the horizon, assuming that the
policy is passed this same number for action-selection. In summary, we have for θ ∈ Θ, s ∈ S :
V θ0 (s) = 0, and for 1 ≤ k ≤ K,

V θk (s) =
∑
s′∈S

T (s, θ(s, k), s′){R(s(h), θ(s, k), s′) + γV θk−1(s′)}.

Recall that the property of being time-varying is also called being nonstationary, which is another
commonly-used term to denote the policies in Θ.

1.4 Deterministic, Stationary, Markovian Policies

Our final class of policies is the familiar one from class: Π = {π : S → A}. For these policies—which
are deterministic, Markovian, and stationary—we have for s ∈ S, V π0 (s) = 0, and for 1 ≤ k ≤ K,

V Π
k (s) =

∑
s′∈S

T (s, π(s), s′){R(s, π(s), s′) + γV πk−1(s′))}.
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It is easy to see that Π ⊂ Θ ⊂M ⊂ Λ, which is also shown diagrammatically below.

Π Θ M Λ

We shall show that in spite of being a restricted class, Π suffices to express optimal behaviour in
MDPs with infinite discounted reward. We begin with Λ and go through M , Θ, and Π in sequence.

2 Results

For stating our results, let us fix an arbitrary start state s0 ∈ S (which also doubles up as a starting
history). Since the value of any policy at s0 is a scalar, we can be sure that there will be an optimal
policy in each class; define these policies as below.

λ? = argmax
λ∈Λ

V λK(s0).

µ? = argmax
µ∈M

V µK(s0).

θ? = argmax
θ∈Θ

V θK(s0).

π? = argmax
π∈Π

V πK(s0).

In the next sections, we prove the following results.

V λ
?

K (s0) = V µ
?

K (s0) = V θ
?

K (s0). (1)

V π
?

K (s0) ≥ V θ
?

K (s0)− 2γK
Rmax

1− γ
. (2)

From (1), we see that deterministic time-dependent are as powerful as stochastic, history-
dependent ones for the finite horizon setting. Since Π ⊂ Θ, it is self-evident that V π

?

K (s0) ≤ V θ?K (s0).
Since γ < 1. we have from (2) that

lim
K→∞

V π
?

K (s0) = lim
K→∞

V θ
?

K (s0),
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which implies π? gives as high a value from s0 as any of θ?, µ?, and λ? as K → ∞ (the infinite
discounted reward setting). We already know that there is an optimal policy in Π that yields the
highest value from every start state (among all policies in Π). If we choose such as policy as our
π?, then we have effectively shown that in spite of belonging to Π, π? cannot be improved upon by
any policy in Λ in the infinite discounted reward setting, regardless of starting state.

All that is left to do now is to get through with our proofs of (1) and (2).

3 Proof of (1)

We set out to prove the following statement for 1 ≤ k ≤ K: for h ∈ HK ,

V λ
?

k (h) = V µ
?

k (h) = V θ
?

k (s(h)).

We use induction, taking as base case our definition for k = 0: for h ∈ HK ,

V λ
?

0 (h) = V µ
?

0 (h) = V θ
?

0 (h(s)) = 0.

Assuming the statement to be true for k − 1, we shall show it is true for k, for k ∈ {1, 2, . . . ,K}.
The Bellman equations for λ? : HK → PD(A) give us for h ∈ HK :

V λ
?

k (h) =
∑
a∈A

λ?(h, a)
∑
s′∈S

T (s(h), a, s′){R(s(h), a, s′) + γV λ
?

k−1(h.(a, s′))},

which, because of our induction hypothesis, can be written as

V λ
?

k (h) =
∑
a∈A

λ?(h, a)
∑
s′∈S

T (s(h), a, s′){R(s(h), a, s′) + γV θ
?

k−1(s′)}.

The RHS is of the form
∑
a λ

?(h, a)f(a), where λ?(h, ·) is a probability distribution over A. It is
clear that putting the entire probability mass on some action a ∈ A maximising f will not decrease
the k-step value. In other words, we may choose a policy µ : HT → A such that for h ∈ HK ,
µ(h) = a =⇒ λ?(h, a) > 0. Then we observe that

V µk (h) =
∑
s′∈S

T (s(h), µ(s(h)), s′){R(s(h), µ(s(h)), s′) + γV µk−1(h.(µ(s(h)), s′))}

=
∑
s′∈S

T (s(h), µ(s(h)), s′){R(s(h), µ(s(h)), s′) + γV θ
?

k−1(s′)}

= max
a∈A

∑
s′∈S

T (s(h), a, s′){R(s(h), a, s′) + γV θ
?

k−1(s′)}

≥ V λ
?

k (h).

Now, consider a policy θ ∈ Θ such that for s ∈ S, j ∈ {1, 2, . . . , k},

θ(s, j) = argmax
a∈A

∑
s′∈S

T (s, a, s′){R(s, a, s′) + γV θj−1(s′)}.

From the working shown above, we verify that for h ∈ HK , V θk (s(h)) = V µk (h).
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Our inductive proof has thereby established that for any h ∈ HK , we can choose policies µ ∈M
and θ ∈ Θ such that they yield at least as high k-step values as λ? ∈ Λ. Recall that λ? itself is a
policy that maximises the k-step value from s0. By applying our result on s0, it is clear that there
exist µ? ∈M and θ? ∈ Θ such that

V λ
?

K (s0) = V µ
?

K (s0) = V θ
?

K (s0).

Now, observe that there is no need for θ? to depend on s0; in fact, it can be defined as: for
s ∈ S, k ∈ {1, 2, . . . ,K}:

θ?(s, k) = argmax
a∈A

∑
s′∈S

T (s, a, s′){R(s, a, s′) + γV θ
?

k−1(s′)},

with arbitrary tie-breaking. In vector notation, we obtain a succinct formula for computing the
value function of θ?: V θ

?

K = (B?)K(0), where B? is the Bellman optimality operator, and 0 is the
zero vector.

The main contribution of the finite horizon setting to our proof is in allowing us to eliminate
the need for full histories—easily argued since there is no decision-making to be done beyond the
horizon, and so no use carrying any history beyond the horizon. It is a separate matter that even
time-dependence is not needed when the number of steps is infinite; this is the proof coming up in
the next section.

4 Proof of (2)

We have just seen that for K ≥ 1,
V θ

?

K = (B?)K(0).

Now, let π be an optimal policy from Π for the infinite discounted reward setting that we have
discussed in class. We must be careful to distinguish π from π? ∈ Π introduced in Section 2, which
is maximal (from s0) for a horizon of K, and hence could be different from π. If Bπ is the Bellman
operator for π, it is easy to see that for K ≥ 1,

V πK = (Bπ)K(0).

We know that B? and Bπ both have the same unique fixed point V ?, which is the optimal value
function for the infinite discounted reward setting. We obtain the result below by applying the
triangle inequality and Banach’s Fixed Point Theorem, while noting that values in the infinite
discounted reward setting must lie bounded in [−Rmax

1−γ ,
Rmax

1−γ ].

‖V πK − V θ
?

K ‖∞ = ‖V πK − V ? + V ? − V θ
?

K ‖∞
≤ ‖V πK − V ?‖∞ + ‖V θ

?

K − V ?‖∞
= ‖(Bπ)K(0)− V ?‖∞ + ‖(B?)K(0)− V ?‖∞
≤ γK‖0− V ?‖∞ + γK‖0− V ?‖∞
= 2γK‖V ?‖∞

≤ 2γK
Rmax

1− γ
.
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We have

V π
?

K (s0) ≥ V πK(s0) ≥ V θ
?

K (s0)− 2γK
Rmax

1− γ
,

which is our claim in (2).
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