
CS 747 (Autumn 2021): End-semester Examination

Instructor: Shivaram Kalyanakrishnan

To be submitted by 11.55 p.m., November 21, 2021

Note. Provide justifications/calculations/steps along with each answer to illustrate how you ar-
rived at the answer. You will not receive credit for giving an answer without sufficient explanation.

Submission. Write down your answer by hand, then scan and upload to Moodle. Write clearly
and legibly. Begin the answer to any question on a new page. Be sure to mention your roll number.

Question 0. Have you read the instructor’s message with subject “End-semester Examination”,
announced through Moodle on November 7, 2020? Have you followed the rules laid out in that
message, in letter and in spirit? Specify related observations or comments, if any. [It is mandatory
for you to answer this question.]



Question 1. This question pertains to an abstraction of games such as football and hockey,
specifically to work out under what circumstances a team must play aggressively or defensively. To
simplify our analysis, we assume that our team, denoted “agent” A, plays against a fixed, static
“opponent” O, whose behaviour does not depend on time. Concretely, assume that the game is
played for H steps for some H ≥ 1: this means A takes a total of H actions. The two actions
available to A are a (aggressive) and d (defensive). At most one goal can be scored in each step.

• If A plays action a, it has a probability pa+ of scoring a goal, a probability pa− of conceding a
goal, and a probability pa= of neither team scoring, where pa+, p

a
−, p

a
= ∈ (0, 1), pa++pa−+pa= = 1.

• If A plays action d, it has a probability pd+ of scoring a goal, a probability pd− of conceding a
goal, and a probability pd= of neither team scoring, where pd+, p

d
−, p

d
= ∈ (0, 1), pd++pd−+pd= = 1.

At the end of H steps, A is awarded 2 points if it has scored more goals than O, and 0 points
if it has scored fewer goals than O. In case of a draw (wherein A and O have an equal number of
goals), A earns 1 point.

1a. In summary, the problem instance you are given is the tuple (pa+, p
a
−, p

a
=, p

d
+, p

d
−, p

d
=, H). Given

such an instance, your aim is to compute behaviour for A that maximises its expected score.
To that end, formulate an MDP based on the problem instance, arguing that an optimal
policy for the MDP will describe the optimal behaviour we seek for A. [3 marks]

1b. Describe a procedure to compute an optimal policy for the MDP you have defined in part a.
To obtain full marks, show that the number of bitwise operations performed by your procedure
is upper-bounded by a polynomial in H (treating as constants the number of bits used to
encode the probabilities associated with the actions). Bitwise operations include reading and
writing a bit; performing addition, subtraction, or comparison on a pair of bits; negating a
bit, and so on. [2 marks]

1c. Assume that, as is commonly observed in practice, aggressive play has a strictly higher chance
of scoring, but also of conceding a goal. That is,

pa+ > pd+;

pa− > pd−.

Under this assumption, describe the conditions under which a is an optimal action when there
is only one step left in the game (that is, after H − 1 steps have elapsed). [3 marks]
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Question 2. Agents A and O are engaged in a matrix game, with A having actions a1, a2, and
O having actions o1 and o2. The agents play for T rounds, T ≥ 1. In each round, both players
simultaneously declare their actions; one player is given a reward of 1 and the other a reward of
0. The table below gives the probabilities of A receiving a 1-reward (equivalently, of O receiving a
0-reward) for different pairs of actions played.

o1 o2
a1 1/3 1/2

a2 2/3 1/4

A game results in a history

a0, o0, r0, a1, o1, r1, . . . , aT−1, oT−1, rT−1,

where for 0 ≤ t ≤ T − 1, A and O pick at and ot, respectively, and rt (taken as A’s reward) is
drawn from a Bernoulli distribution whose parameter is fixed by at and ot as given in the table.
The players may play strategies that depend on history, or are memoryless (but in general still
mixed or stochastic).

2a. Suppose O plays a memoryless strategy q ∈ [0, 1], which is shorthand for saying that on each
round, it plays o1 with probability q and o2 with probability 1 − q. What is the maximum
expected reward thatA can obtain by playing some fixed strategy (which could be memoryless
or history-dependent) against O’s q-strategy for T rounds? Your answer can be in terms of
q; denote it R⋆

T (to be used in part b). [2 marks]

2b. Now suppose A knows that O is playing a memoryless strategy, but it does not know which
strategy (that is, it does not know q). Can A play a strategy πA so as to converge to optimal
play against O’s q-strategy for any arbitrary choice q ∈ [0, 1]? πA can be history-dependent,
but it must not depend on q. However, suppose it does play against O’s q-strategy and obtains
an expected aggregate reward of RT in T rounds. The question is whether it is possible to
achieve

lim
T→∞

RT

R⋆
T

= 1

for all q ∈ [0, 1]. Prove either that there exists πA satisfying this notion of optimality, or that
there is no strategy πA for which the result holds. [2 marks]

2c. If A plays a memoryless strategy p (picking a1 with probability p and a2 with probability
1− p), and O plays a q-strategy, with p, q ∈ [0, 1], what is A’s expected aggregate reward in
T rounds? [1 mark]

2d. Let us denote your answer to part c as f(p, q, T ). Work out the value of

max
p∈[0,1]

min
q∈[0,1]

f(p, q, T ).

What does this value signify? [3 marks]
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Question 3. In this question, we investigate relationships between policies for M, the family of
MDPs of the form (S,A, T,R, γ) in which the set of actions A = {0, 1}. Assume that the MDPs in
M encode continuing tasks, and have γ < 1.

For policy π : S → A, let IS(π) denote the set of improvable states of π (defined the Week 6
lecture). If IS(π) ̸= ∅, a policy π′ : S → A is said to be a locally-improving policy of π if

1. for s ∈ S, π′(s) ̸= π(s) =⇒ s ∈ IS(π), and

2. there exists s ∈ S such that π′(s) ̸= π(s).

In alternative terms, π′ is a locally-improving policy of π if any legal policy improvement operation
(also presented in the Week 6 lecture) on π yields π′. For any policy π with IS(π) ̸= ∅, let LI(π)
denote the set of all locally-improving policies of π.

3a. For this part, we restrict our attention to the family of MDPs M′ ⊂ M whose transitions
are all deterministic (meaning T associates every state-action pair with a single next state).
Now consider the following statement G1.

G1: If π is a non-optimal policy for M ∈M′, then there exists
an optimal policy π⋆ for M such that π⋆ ∈ LI(π).

In other words, G1 says that in deterministic 2-action MDPs, one can always reach an optimal
policy from a non-optimal policy with just one step of policy improvement (although in
general, the corresponding choice of policy improvement might not be known). Is G1 true or
false? Provide a proof. [4 marks]

3b. For this part, we consider the entire family of 2-action MDPsM and the statement G2.

G2: If π is a non-optimal policy for M ∈M, then there exists
a policy π′ ∈ LI(π) such that for all π′′ ∈ LI(π), π′ ⪰ π′′.

G2 says that among all the locally-improving policies of π, there exists one that dominates
or is equal to every other. Is G2 true or false? Provide a proof. [4 marks]

To prove that G1 or G2 is true, you must have a working that holds for all qualifying M and
π. To show either of them false, a single counterexample (combination of M and π) will suffice.
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Question 4. This question revisits Reinforce, which was the subject of your most recent weekly
quiz. An agent interacts with a deterministic episodic MDP (S,A, T,R). Indeed the transition
function T is known to the agent. Hence, when it is at state s ∈ S, the agent can consider each
possible action a ∈ A and compute the next state s′ = T (s, a) that it will reach. No discounting is
used in defining values.

The agent executes a stochastic policy π parameterised by a d-dimensional parameter vector
w ∈ Rd for some d ≥ 1. States are represented by features ϕi : S → R, 1 ≤ i ≤ d, and the parameter
vector being optimised is w = (w1, w2, . . . , wd). Following policy πw, suppose the agent encounters
the trajectory

s0, a0, r0, s1, a1, r1, . . . , sH ,

where sH is a terminal state. Also suppose that the agent updates its policy parameters from w
to w′ by performing a Reinforce update based on this episode, with learning rate α > 0. There
is no baseline subtraction. The pseudocode below performs the update, but leaves it to you to fill
out the steps to calculate the appropriate gradient g. The two parts of the question specify two
different choices of πw; for each you must provide the lines in the pseudocode to correctly set gi.

Q← 0.
For i = 1, 2, . . . , d:

∆i ← 0.
For t = H − 1, H − 2, . . . , 0:

Q← Q+ rt.
For i = 1, 2, . . . , d:

//Fill these lines any way you want,
//using new variables if needed,
//so that gi is set correctly.
//Use as many lines as needed.

∆i ← ∆i + gi ·Q.
For i = 1, 2, . . . , d:

w′
i ← wi + α∆i.

For each part below, show your derivation to obtain gi. Thereafter, you only need to provide
pseudocode for the blanks above; no need to repeat the portions that are already filled out. In your
pseudocode, you can use the states, actions, and rewards encountered, and also T , ϕ, and w.

4a. The probability of taking a ∈ A from s ∈ S is obtained by performing a soft-max operation
on a linear evaluation of T (s, a). Concretely,

πw(s, a) =
ew·ϕ(T (s,a))∑
b∈A ew·ϕ(T (s,b))

. [3 marks]

4b. For x ∈ R, let σ(x) denote the sigmoid function σ(x) = 1
1+e−x . When in state s ∈ S, the

agent employs the following random process to select a ∈ A. (1) It chooses a ∈ A uniformly
at random. (2) With probability σ(w · ϕ(T (s, a))) it returns a as the action to take. (3) If no
action is returned, the agent goes back to step 1. [4 marks]
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