
CS 747 (Autumn 2021): Weekly Quizzes

Instructor: Shivaram Kalyanakrishnan

November 18, 2021

Note. Provide justifications/calculations/steps along with each answer to illustrate how you ar-
rived at the answer. You will not receive credit for giving an answer without sufficient explanation.

Submission. Write down your answer by hand, then scan and upload to Moodle. Write clearly
and legibly. Be sure to mention your roll number.

Week 11

Question. An agent interacting with episodic MDP (S,A, T,R, γ) executes a stochastic policy π
parameterised by a d-dimensional parameter vector w ∈ Rd for some d ≥ 1. States are represented
by features φi : S → R, 1 ≤ i ≤ d. The MDP has two actions: A = {0, 1}. With parameter vector
w = (w1, w2, . . . , wd), the policy π is specified by:

πw(s, 0) =
1

1 + e−
∑d

i=1 wiφi(s)
; πw(s, 1) = 1− π(s, 0).

Following policy πw, suppose the agent encounters the trajectory

s0, a0, r0, s1, a1, r1, . . . , sT ,

where sT is a terminal state. Also suppose that the agent updates its policy parameters from w to
w′ by performing a Reinforce update based on this episode, with learning rate α > 0. There is
no baseline subtraction.

Write down pseudocode to compute each element w′i, 1 ≤ i ≤ d, based on w and the recorded
trajectory. Do not perform operations directly on vectors; instead perform updates to scalars,
iterating over them if necessary. You can assume that πw(s, a) and φi(s) are already available in
memory for s ∈ S, a ∈ A, i ∈ {1, 2, . . . , d}: you can use them as variables in your code. [5 marks]

Solution. First we derive the components of ∇w lnπw(s, a) for s ∈ S and a ∈ A. For each
j ∈ {1, 2, . . . , d}, we have

∂ lnπw(s, 0)

∂j
=

1

πw(s, 0)

e−
∑d

i=1 wiφi(s)

(1 + e−
∑d

i=1 wiφi(s))2
φj(s) = πw(s, 1)φj(s);

∂ lnπw(s, 1)

∂j
=

1

πw(s, 1)

−e−
∑d

i=1 wiφi(s)

(1 + e−
∑d

i=1 wiφi(s))2
φj(s) = −πw(s, 0)φj(s).

Now we are ready for the Reinforce update.

Q← 0.
For i = 1, 2, . . . , d:

∆i ← 0.
For t = T − 1, T − 2, . . . , 0:

Q← Q+ γtrt.
For i = 1, 2, . . . , d:

If at = 0:
gi ← πw(st, 1)φi(s

t).
Else:

gi ← −πw(st, 0)φi(s
t).

∆i ← ∆i + gi ·Q.
For i = 1, 2, . . . , d:

w′i ← wi + α∆i.

2

Week 10

Question. This week’s questions are related to function approximation and policy search.

a. Imagine a task with a small number of states (say a few tens or hundreds) and actions (say
single digit), such as one of the many “grid world” examples given in the textbook by Sutton
and Barto (2018). If an agent has to learn successful behaviour on such tasks, it is quite
conceivable to use the usual “tabular” representation, with one entry for each Q-value, and
to converge to optimal behaviour. Even so, can you see any advantages of using generalisation,
under which different states or state-action pairs would share parameters that get updated
during learning? [1 mark]

b. Grid search is a conceptually simple form of policy search. Suppose the policy for a particular
task is parameterised by d parameters w1, w2, . . . , wd ∈ [0, 1] for some d ≥ 1. In grid search,
the parameter ranges are discretised, say into m ≥ 2 values each, and only parameters vectors
that take these values are evaluated. Hence, the policies evaluated are the ones parameterised
by w1, w2, . . . , wd ∈ {0, 1

m−1 ,
2

m−1 , . . . ,
m−2
m−1 , 1}. Each such policy is evaluated by performing

L ≥ 1 rollouts from the designated start state (since, in general, the task could be stochastic).
The empirical average of the (discounted) long-term value in the rollouts is taken as the value
of the corresponding policy. The output of the search is the discrete-valued parameter vector
that registered the highest empirical value. Comment on the role of the hyperparameters d,
m, and L on the efficacy as well as the practicality of performing grid search. [2 marks]

Solution.
a. Generalisation can prompt faster learning. On many naturally-occurring tasks, the features we
encode impart the bias that “similar states have similar values”—which can help generate good
estimates even for unvisited states. Especially if we are bootstrapping, this bias can accelerate the
learning process.

b. Although it depends on how the parameters are put to use, for most function approximators
we can expect that having more parameters (a larger setting of d) can allow for the representation
of more complex policies. A larger value of m means we are conducting a search over a larger
number of policies—potentially increasing the maximum value we will obtain from the search.
Unfortunately the number of discrete-valued policies is md, which would be feasible to exhaustively
evaluate only for small values of d. For tasks with a high amount of stochasticity, L would need
to be large to blunt out the noise and identify the true maximising policy. With small values of L,
we can end up with a poor policy even if we have searched over a large number of policies. The
number of samples would scale linearly with L.

3

Week 9

Question. This question relates to a prediction problem using linear function approximation. A
2-state MDP and a fixed policy π result in the following transitions:

• s1 → s1 with probability 1
2 and reward 1;

• s1 → s2 with probability 1
2 and reward 0;

• s2 → s1 with probability 1 and reward 0.

The task, depicted below, uses a discount factor γ = 1
2 .

s s
1 2

0.5, 1
0.5, 0

1, 0

We aim to approximate V π using a single scalar parameter w ∈ R, such that V π is approximated
well by V̂w. In particular, s1 has an associated feature value φ(s1) = 3, and s2 has an associated
feature value φ(s2) = 1. We set V̂w(s) = wφ(s) for s ∈ {s1, s2}, and aim to find w such that
V̂w ≈ V π.

a. Solve for

w? = argmin
w∈R

2∑
i=1

µπ(si)(V
π(si)− V̂w(si))

2,

where µπ denotes the stationary distribution of π. [3 marks]

b. Suppose an agent uses Linear TD(0) to estimate the parameter w. It uses harmonic discount-
ing, hence should be expected to converge. Suppose it converges to w0. Based the results
discussed in class, what is the farthest that w0 can be from w?? In other words, give an upper
bound on |w0 − w?|. [3 marks]

Solution.

a. The Bellman equations for π are

V π(s1) =
1

2
(1 + γV π(s1)) +

1

2
γV π(s2),

V π(s2) = γV π(s1),

which give: V π(s1) = 4
5 , V

π(s2) = 2
5 . The stationary distribution µπ satisfies

µπ(s1) =
1

2
µπ(s1) + µπ(s2),

µπ(s1) + µπ(s2) = 1,

4

giving µπ(s1) = 2
3 , µ

π(s2) = 1
3 . Substituting, we get

w? = argmin
w∈R

(
2

3

(
4

5
− 3w

)2

+
1

3

(
2

5
− w

)2
)

= argmin
w∈R

(
2(4− 15w)2 + (2− 5w)2

)
= argmin

w∈R
(475w2 − 260w)

=
26

95
.

b. We use the established upper bound:

MSV E(w0) ≤ 1

1− γ
MSV E(w?)

Now,

MSV E(w0) =

2∑
i=1

µπ(si)(V
π(si)− V̂w0(si))

2

=
2

3

(
4

5
− 3w0

)2

+
1

3

(
2

5
− w0

)2

=
1

75
(475(w0)2 − 260w0 + 36).

Similarly,

MSV E(w?) =
1

75
(475(w?)2 − 260w? + 36) =

26× 26

15× 95
− 52× 26

15× 95
+

12

25
=

12

25
− 26× 26

15× 95
.

Hence, we get

1

75
(475(w0)2 − 260w0 + 36) ≤ 2

(
12

25
− 26× 26

15× 95

)
⇐⇒

(w0)2 − 52

95
w0 +

36

475
≤ 150

475

(
12

25
− 26× 26

15× 95

)
⇐⇒(

w0 −
26

95

)2

≤ 150

475

(
12

25
− 26× 26

15× 95

)
− 36

475
+

26× 26

95× 95
=

8

95× 95

⇐⇒

|w0 − w?| ≤
2
√

2

95
.

5

Week 8

Question. Consider a prediction problem on an MDP with states s1 and s2. The policy π being
executed is such that each state transitions to the other with probability p ∈ (0, 1), and has a self
loop with probability 1− p. Going from s1 to s2 earns a reward of r > 0, while going from s2 to s1

earns −r. The reward for staying in the same state in consecutive time steps is zero. The discount
factor γ is set to 3

4 . The figure below provides a pictorial representation.

s s

1 − p, 0 1 − p, 0
p, r

p, −r
1 2

The TD(0) algorithm is applied to estimate the value function V π. The initial estimate V 0 is
such that V 0(s1) = V 0(s2) = 0. Suppose the agent starts in state s1 and performs two actions
(hence two learning updates). The first is a TD(0) update with learning rate 1, and the second
is a TD(0) update with learning rate 1

2 . Let V 1 denote the value function estimate after the first
update, and V 2 the value function estimate after the second update.

a. What is the distribution of V 2? In other words, enumerate all possible values for the pair
(V 2(s1), V 2(s2)), along with the non-zero probability that the pair is realised at the end of
the two TD updates. [3 marks]

b. From your answer to part a, work out the values of E[V 2(s1)] and E[V 2(s2)]. [1 mark]

c. Suppose the agent continues with more updates, using a learning rate that is annealed har-
monically: 1

3 for the third update, 1
4 for the fourth update, and so on. If V t denotes the

value function estimate after t updates for t ≥ 1, what are the values of limt→∞ E[V t(s1)] and
limt→∞ E[V t(s2)]? [2 marks]

It should be relatively simple to code up the learning process described above and verify the cor-
rectness of your answers by simulation, for different values of p and r. Although not required, you
are encouraged to do so to build familiarity with the random process by which learning proceeds.

Solution.

a. There are four possible trajectories that can materialise in 2 steps; we derive the values of V 2

in each case. We use αt to denote the learning rate for the t-th update, t ≥ 1. Note that only one
state has its value updated at each step; the estimate for the other state remains unaffected.

• With probability (1− p)2, the transitions are s1 → s1 → s1. In this case, we get

V 1(s1) = V 0(s1)(1− α1) + α1(0 + γV 0(s1)) = 0.

V 1(s2) = V 0(s2) = 0.

V 2(s1) = V 1(s1)(1− α2) + α2(0 + γV 1(s1)) = 0.

V 2(s2) = V 1(s2) = 0.

6

• With probability (1− p)p, the transitions are s1 → s1 → s2. In this case, we get

V 1(s1) = V 0(s1)(1− α1) + α1(0 + γV 0(s1)) = 0.

V 1(s2) = V 0(s2) = 0.

V 2(s1) = V 1(s1)(1− α2) + α2(r + γV 1(s2)) =
r

2
.

V 2(s2) = V 1(s2) = 0.

• With probability p2, the transitions are s1 → s2 → s1. In this case, we get

V 1(s1) = V 0(s1)(1− α1) + α1(r + γV 0(s2)) = r.

V 1(s2) = V 0(s2) = 0.

V 2(s1) = V 1(s1) = r.

V 2(s2) = V 1(s2)(1− α2) + α2(−r + γV 1(s1)) = −r
8
.

• With probability p(1− p), the transitions are s1 → s2 → s2. In this case, we get

V 1(s1) = V 0(s1)(1− α1) + α1(r + γV 0(s2)) = r.

V 1(s2) = V 0(s2) = 0.

V 2(s1) = V 1(s1) = r.

V 2(s2) = V 1(s2)(1− α2) + α2(0 + γV 1(s2)) = 0.

b. The expected values are obtained by aggregating the four possible cases from part a.

E[V s(s1)] = (1− p)2(0) + (1− p)p
(r

2

)
+ p2(r) + p(1− p)(r) =

rp(3− p)
2

.

E[V s(s2)] = (1− p)2(0) + (1− p)p(0) + p2
(
−r

8

)
+ p(1− p)(0) = −p

2r

8
.

c. The algorithm is guaranteed to converge to V π, which we can obtain by solving these Bellman
equations.

V π(s1) = p(r + γV π(s2)) + (1− p)γV π(s1),

V π(s2) = p(−r + γV π(s1)) + (1− p)γV π(s2).

Substituting for γ, we obtain

lim
t→∞

E[V t(s1)] = V π(s1) =
4pr

6p+ 1
,

lim
t→∞

E[V t(s2)] = V π(s2) = − 4pr

6p+ 1
.

7

Week 7

Question. An agent interacts with an episodic MDP (S,A, T,R, γ), where S = {1, 2, 3,>}, with
> being the sole terminal state. The agent follows a fixed, deterministic policy π : S \ {>} → A.
For s ∈ S \ {>}, s′ ∈ S, the probability of transitioning from s to s′ under π is T (s, π(s), s′); for
convenience let us denote this quantity pss′ . This 12-dimensional “p” vector, induced by π on T ,is
the main quantity of interest in this question.

Suppose episodes are always started at state 1. Consider the sequence of states h, given by

h = (1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 3,>).

a. What is the probability that the sequence of states encountered by the agent in its first episode
is h? Provide your answer as a function of the p vector; in other words, pss′ , s ∈ S\{>}, s′ ∈ S
(although not all twelve probabilities need to occur in your answer). [1 mark]

b. The data the agent has seen through its interaction enables it to get some idea about the
underlying MDP. In part a, you provided the probability of any arbitrary p vector generating
h in the first episode. Let p? be a p vector that has the maximum probability (among all p
vectors) of generating h. If there is a unique value of p?, fill its entries in the table below;
otherwise fill entries corresponding any maximising p vector. Explain how you arrived at your
answer [3 marks].

p?11 p?12 p?13 p?1> p?21 p?22 p?23 p?2> p?31 p?32 p?33 p?3>

Solution.
a. We have to multiply the probabilities of going from 1 to 1, then 1 to 2, then 2 to 1, . . . , 3 to >,
which for a given p vector is

(p11)3(p12)3(p13)(p21)3p23p32p3>.

b. For s ∈ {1, 2, 3}, we know that ps1 + ps2 + ps3 + ps> = 1. Simple calculus establishes that
for non-negative integers a, b, c, d, the quantity (ps1)a(ps2)b(ps3)c(ps>)d has a unique maximum p?

where

p?s1 =
a

a+ b+ c+ d
, p?s2 =

b

a+ b+ c+ d
, p?s3 =

c

a+ b+ c+ d
, p?s4 =

d

a+ b+ c+ d
.

The vector p? that achieves the highest probability of generating h is specified in the table below.

p?11 p?12 p?13 p?1> p?21 p?22 p?23 p?2> p?31 p?32 p?33 p?3>
3
7

3
7

1
7 0 3

4 0 1
4 0 0 1

2 0 1
2

8

Week 5

Question. Consider an MDP (S,A, T,R, γ) in which the set of states is S = {1, 2, . . . , n}. This
question relates to a variation of value iteration. Concretely, let us denote the variant given in class
CV (for “class variant”), and the one given by the pseudocode below QV (for “quiz variant”). In
QV, each state is initialised with value 0. Subsequently the value function V is updated through
T iterations; in each iteration all n state values get updated.

QV
V ← n-dimensional 0 vector.
For i = 0, 1, . . . , T − 1:

For s = 1, 2, . . . , n:
V (s)← maxa∈A

∑
s′∈S T (s, a, s′){R(s, a, s′) + γV (s′)}.

Return V .

a. Pay close attention to the pseudocode. In qualitative terms, what is the main difference
between QV and CV? In quantitative terms, derive an operator B : (S → R) → (S → R)
that is being implemented by QV. In other words, for what B can we describe the code above
as T successive applications of B to the initial value vector? Feel free to use the Bellman
optimality operator B?, as well as recursion, in your definition of B. [2 marks]

b. QV is used quite commonly in practice, and is known to converge to V ? (as T → ∞). Your
job is to prove this to be the case. To that end, show that (1) B is a contraction mapping in
a Banach space, and (2) its fixed point is V ?. [4 marks]

Solution.
a. Even if the pseudocode uses V as a “running” variable that is constantly being updated, it will
help us in our upcoming argument to denote by V i the value vector after i iterations, i ≥ 0. The
initial value vector is V 0 = 0. In CV, the Bellman-type updates to each state in V i+1 depend
entirely on V i. On the other hand, in QV, updates for subsequent states use the “most recent”
values of the previous states (meaning from V i+1 itself). Of course, all the information needed to
populate V i+1 is still present in V i even under QV, only the process of going from V i to V i+1 can
no longer be performed by an independent update for each state. Yet, the process of obtaining
V i+1 from V i can still be written down in terms of an operation V i+1 = B(V i), where the operator
B : (S → R)→ (S → R) is defined as below:

B(X)(1)
def
= max

a∈A

∑
1≤s′≤n

T (s, a, s′){R(s, a, s′) + γX(s′)},

and for 2 ≤ s ≤ n,

B(X)(s)
def
= max

a∈A

 ∑
1≤s′<s

T (s, a, s′){R(s, a, s′) + γB(X)(s′)}+
∑

s≤s′≤n
T (s, a, s′){R(s, a, s′) + γX(s′)}

 .

Notice that B(X)(1) = B?(X)(1). Also observe that B depends on the sequencing of the states:
specifically that B(X)(s) depends on B(X)(s′) for 1 ≤ s′ < s ≤ n.

9

b. To show that B is a contraction mapping, we use the usual (Rn, ‖·‖∞) Banach space. Take
arbitrary X,Y ∈ Rn. We have

|B(X)(1)−B(Y)(1)| = |B?(X)(1)−B?(Y)(1)| ≤ ‖B?(X)−B?(Y)‖∞ ≤ γ‖X − Y ‖∞.

We now use induction, assuming that for 1 ≤ s′ < s ≤ n, |B(X)(s) − B(Y)(s)| ≤ γ‖X − Y ‖∞.
Our steps below for state s are to first apply the definition of B?, use the triangle inequality
(|a+ b| ≤ |a|+ |b|), then apply the fact that γ < 1.

|B(X)(s)−B(Y)(s)| ≤ max
a

∣∣∣∣∣∣γ
∑

1≤s′<s
T (s, a, s′){B(X)(s′)−B(Y)(s′)}+ γ

∑
s≤s′≤n

T (s, a, s′){X(s′)− Y (s′)}

∣∣∣∣∣∣
≤ γmax

a

 ∑
1≤s′<s

T (s, a, s′)|B(X)(s′)−B(Y)(s′)|+
∑

s≤s′≤n
T (s, a, s′)|X(s′)− Y (s′)|

≤ γmax

a

 ∑
1≤s′<s

T (s, a, s′)(γ‖X − Y ‖∞) +
∑

s≤s′≤n
T (s, a, s′)‖X − Y ‖∞

≤ γmax

a

 ∑
1≤s′<s

T (s, a, s′)‖X − Y ‖∞ +
∑

s≤s′≤n
T (s, a, s′)‖X − Y ‖∞

= γ‖X − Y ‖∞.

The proof that V ? is the fixed point of B is also straightforward. We already know that
B(V ?)(1) = B?(V ?)(1) = V ?(1). For 2 ≤ s ≤ n, we have

B(V ?)(s) = max
a∈A

 ∑
1≤s′<s

T (s, a, s′){R(s, a, s′) + γB(V ?)(s′)}+
∑

s≤s′≤n
T (s, a, s′){R(s, a, s′) + γV ?(s′)}

= max

a∈A

 ∑
1≤s′<s

T (s, a, s′){R(s, a, s′) + γV ?(s′)}+
∑

s≤s′≤n
T (s, a, s′){R(s, a, s′) + γV ?(s′)}

= V ?(s).

10

Week 4

Question. This question is about the probability of transitioning between the states of an MDP
over an extended period of time. Taking notations as usual, assume that you are given

• an MDP (S,A, T,R, γ),

• a start state sstart ∈ S,

• a policy π : S → A,

• a non-negative integer t ≥ 0 specifying the number of time steps elapsed (the same as the
number of actions taken), and

• an arbitrary state sfinish ∈ S.

For s ∈ S, t ≥ 0, let X[t][s] denote the probability that the agent is in state s at time t, assuming
it is in sstart at t = 0, and it takes actions according to π at every step. By initialisation, we have

X[0][s] =

{
1 s = sstart,

0 otherwise.

Provide pseudocode to compute X[t][sfinish]. You can refer to any subset of the input parameters—
S, A, T , R, γ, sstart, π, t, sfinish—in your pseudocode, using notations as introduced in class (such
as T (s, a, s′) to denote a transition probability and π(s) to denote an action). To obtain full marks,
you must provide an algorithm whose running time scales at most polynomially in t. [3 marks]

Solution. For i ≥ 0, the agent is in state s at time i + 1 if and only if it made a transition into
s from the state s′ in which it was at time i. Hence we obtain a recursive relationship between
X[i+ 1][·] and X[i][·], which involves the transition probabilities under π. This recurrence can be
used to compute X[t][sfinish]. Pseudocode is provided below.

For s ∈ S:
X[0][s]← 0.

X[0][sstart]← 1.

For i = 0, 1, . . . , t− 1:
For s ∈ S:

X[i+ 1][s]←
∑

s′∈S X[i][s′]T (s′, π(s′), s).
Return X[t][sfinish].

The sum in the recurrence can be performed using a for-loop or a vector dot product. Notice
that O(|S|2) arithmetic operations are performed to obtain X[i+ 1] from X[i], and there are t such
iterations in total. There is no dependence on |A|.

Can you think of a way to reduce the dependence on t from linear to logarithmic? The answer
lies in writing down X[t] as the product of a t-step transition matrix (of dimension |S| × |S|) and
X[0][·]. This matrix is itself the t-th power of a single-step transition matrix, and can be computed
in O(log(t+ 1)) matrix multiplications. The dependence on |S| remains polynomial.

11

Week 3

Question. You are familiar with the UCB algorithm applied to Bernoulli bandits. The algorithm
selects an arm to pull by being greedy with respect to the arms’ upper confidence bounds. Consider
arm a that has been pulled uta ≥ 1 time(s) out of a total of t ≥ 1 pull(s), and has empirical mean
p̂ta. The upper confidence bound for this arm is given by

ucbta = p̂ta +

√
1

2uta
ln

(
1

δ(t)

)
,

where the common choice is to set δ(t) = 1
t4

. The upper confidence bound used by KL-UCB is

ucb-klta = the solution q ∈ [p̂ta, 1] that satisfies utaKL(p̂ta, q) = ln

(
1

δ′(t)

)
,

wherein we commonly take δ′(t) = 1
t·(ln t)c for some fixed c ≥ 3. Recall that for x, y ∈ [0, 1], KL(x, y)

denotes the KL-divergence between Bernoulli distributions with means x and y, respectively.

a. Show that if 0 < δ(t) ≤ δ′(t), then regardless of the number of pulls uta and empirical mean
p̂ta, we are guaranteed that ucb-klta ≤ ucbta. You can use the well-known Pinsker’s Inequality,
which states that for x, y ∈ [0, 1], KL(x, y) ≥ 2(x− y)2. [2 marks]

b. The intuition behind KL-UCB incurring lower regret than UCB is that it uses a “tighter”
upper confidence bound, as established in part a. Extending this logic, suppose we propose
an even tighter quantity

ucb-proposedta =
1

2

(
p̂ta + ucb-klta

)
,

which clearly satisfies ucb-proposedta ≤ ucb-klta. May we expect an algorithm that is greedy
with respect to ucb-proposed to incur even lower regret than ucb-klta? Explain. [1 mark]

Solution.
a. By definition, utaKL(p̂ta,ucb-klta) = ln

(
1

δ′(t)

)
. Applying Pinsker’s Inequality to the LHS and and

the relation between δ and δ′ to the RHS, we get 2uta(ucb-klta − p̂ta)2 ≤ ln
(

1
δ(t)

)
, which, in turn,

can be rearranged to obtain

ucb-klta ≤ p̂ta +

√
1

2uta
ln

1

δ(t)
= ucbta.

b. Note that ucbta and ucb-klta are both genuine upper confidence bounds: with probability δ(t)
or δ′(t), respectively, there is a guarantee that the true mean does not exceed them. And we
have formal proofs that for mistake probability δ(t) or δ′(t), the corresponding algorithm achieves
logarithmic regret. On the other hand, it is not clear that ucb-proposed will be an upper bound
on the mean with sufficiently high probability. It runs the risk of not exploring at a sufficient rate.
An ideal upper confidence bound would be one that achieves the required “mistake probability”,
while still being as tight as possible.

Another perspective on the question would be that since KL-UCB is proven to be asymptotically
optimal, it is not possible for any other algorithm to improve upon it substantively. However, note
that there remains room for an algorithm to always achieve lower regret than KL-UCB, but only,
say, by at most a constant amount. Such an occurrence would not contradict known theory.

12

Week 2

Question. Since the UCB algorithm achieves logarithmic regret on every bandit instance, we may
infer that it satisfies the GLIE conditions. In this question, you are to argue from first principles
that indeed UCB performs an infinite amount of exploration. To simplify our argument, we only
consider a 2-armed bandit instance with arms 1 and 2. Suppose that the algorithm is (1) initialised
by pulling each arm once, and (2) thereafter it is greedy with respect to the arms’ upper confidence
bounds at each time step, (3) breaking ties uniformly at random.

Adopting the usual notation, let uta and p̂ta denote the number of pulls and the empirical mean
of arm a ∈ {1, 2} after t ≥ 2 pulls (which ensures that the empirical means are well-defined). We
consider an arbitrary t-length history h, summarised by t, ut1, p̂t1, ut2, p̂t2. We contemplate: is it
possible that one of the arms will never get pulled after encountering h? Your task is to show that
on the contrary, there exists a finite integer T (which can be defined in terms of t, ut1, p̂t1, ut2, p̂t2
or some subset of them) such that the T pulls following h are guaranteed to have at least one pull
of each arm. It is okay of you unable to work out an explicit formula for T , but are still able
to formally argue for its existence. Support your claims with rigorous justification, rather than
appealing to “intuition” and informal observations. [4 marks]

Solution. Suppose that for some x > 1, the x pulls following h are all of the same arm, which,
without loss of generality, we may take as arm 1. Then we have

ucbt+x2 − ucbt+x1 = p̂t+x2 +

√
2 ln(t+ x)

ut2
− p̂t+x1 −

√
2 ln(t+ x)

ut1 + x

≥ 0 +

√
2 ln(t+ x)

t
− 1−

√
2 ln(t+ x)

x

= −1 +

√
2 ln(t+ x)

t

(
1−

√
t

x

)
.

If we choose any x ≥ et + 16, we have ln(t + x) > t and
√
t/x ≤

√
2/(e2 + 16) < 0.2925, using

the fact that
√

t
et+16 is a decreasing function of t, which is maximised in our domain at t = 2.

Consequently we get
ucbt+x2 − ucbt+x1 > −1 +

√
2(1− 0.2925) > 0.

Thus, even if all x pulls have been of arm 1, it is clear that the next pull (t + x + 1) must be of
arm 2. For the choice of T = dete+ 17, we have established that the T pulls following h cannot all
be of the same arm.

13

Week 1

Question. Consider the family of n-armed bandit instances, n ≥ 2, in which each arm a ∈
{1, 2, . . . , n} generates a 1-reward with probability pa and a 0-reward with probability 1−pa. Thus,
each instance of the family is fixed by a vector (p1, p2, . . . , pn), where pa ∈ [0, 1] for a ∈ {1, 2, . . . , n}.

A round-robin algorithm undertakes m ≥ 2 passes over the set of arms; the sequence of pulls
1, 2, . . . , n is repeated m times. For each arm a ∈ {1, 2, . . . , n}, let sa denote the number of 1-
rewards (interpreted as “successes”) from its m pulls, and let fa denote the number of 0-rewards
(interpreted as “failures”) from its m pulls (hence sa + fa = m).

a. For a fixed bandit instance (p1, p2, . . . , pn), what is the probability that s1 = s2 = · · · = sn?
Give your answer in terms of p1, p2, . . . , pn, and m. [2 marks]

b. Denote the total number of successes after the m passes S = s1 + s2 + · · · + sn. What are
the mean and variance of S? Again, your answer must be in terms of p1, p2, . . . , pn, and m.
[2 marks]

It will help to view the reward given by each pull as a random variable, noting that it is inde-
pendent of the (nm− 1) others. This view can facilitate an easy computation of the variance of S
in part b—in your answer, be sure to explain why.

Solution.

a. Each arm a is pulled m times. The probability that it gets sa successes and fa failures
for 0 ≤ sa ≤ m, sa + fa = m, is

(
m
sa

)
(pa)

sa(1 − pa)fa . For any fixed number of successes
s ∈ {0, 1, . . . ,m}, the probability that all n arms get s successes is∏

a∈{1,2,...,n}

(
m

s

)
(pa)

s(1− pa)m−s.

The required probability takes into account all possible values of s, and is thus

m∑
s=0

∏
a∈{1,2,...,n}

(
m

s

)
(pa)

s(1− pa)m−s.

b. S is seen to be the sum of nm Bernoulli variables Xa,l for arm a ∈ {1, 2, . . . , n} and pass
l ∈ {1, 2, . . .m}. The mean of Xa,l is pa, and its variance is pa(1− pa). We use

E[S] =
n∑
a=1

m∑
l=1

E[Xa,l] = m
n∑
a=1

pa.

Since the variables are independent, we also have

Var[S] =
n∑
a=1

m∑
l=1

Var[Xa,l] = m

n∑
a=1

pa(1− pa).

Note that if random variables X and Y are not independent, it is not necessary that they
satisfy Var[X + Y] = Var[X] + Var[Y]. In typical bandit algorithms (such as ε-greedy sam-
pling), the arm that is pulled at some fixed time step could itself be random, disallowing the
decomposition of S into

∑n
a=1

∑m
l=1Xa,l, which makes our variance-calculation convenient.

14

