CS 747, Autumn 2022: Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- **3.** ϵ -greedy algorithms

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- **3.** ϵ -greedy algorithms

Coin 1

Coin 2

 $\mathbb{P}\{\text{heads}\} = p_2$

Coin 3

 $\mathbb{P}\{\text{heads}\} = p_3$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.

 $\mathbb{P}\{\text{heads}\} = p_1$

• Maximise the total number of heads!

Coin 1

Coin 2

 $\mathbb{P}\{\text{heads}\} = p_2$

Coin 3

 $\mathbb{P}\{\text{heads}\} = p_3$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.

 $\mathbb{P}\{\text{heads}\} = p_1$

• Maximise the total number of heads!

Let's play!

Coin 1

Coin 2

 $\mathbb{P}\{\text{heads}\} = p_2$

Coin 3

 $\mathbb{P}\{\text{heads}\} = p_3$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

 $\mathbb{P}\{\text{heads}\} = p_1$

Let's play!

• If you knew p_1, p_2, p_3 beforehand, how would you have played?

Coin 1

Coin 2

 $\mathbb{P}\{\text{heads}\} = p_2$

Coin 3

 $\mathbb{P}\{\text{heads}\} = p_3$

- p_1 , p_2 , and p_3 are unknown.
- You are given a total of 20 tosses.
- Maximise the total number of heads!

 $\mathbb{P}\{\text{heads}\} = p_1$

Let's play!

 If you knew p₁, p₂, p₃ beforehand, how would you have played? How many heads would you have got in 20 tosses?

• On-line advertising: Template optimisation

• On-line advertising: Template optimisation

Clinical trials

• On-line advertising: Template optimisation

- Clinical trials
- Packet routing in communication networks

• On-line advertising: Template optimisation

- Clinical trials
- Packet routing in communication networks
- Game playing and reinforcement learning

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- **3.** ϵ -greedy algorithms

Stochastic Multi-armed Bandits

• *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).

Stochastic Multi-armed Bandits

• *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).

 Let A be the set of arms. Arm a ∈ A has mean reward p_a.

Stochastic Multi-armed Bandits

• *n* arms, each associated with a Bernoulli distribution (rewards are 0 or 1).

 Let A be the set of arms. Arm a ∈ A has mean reward p_a.

• Highest mean is p^* .

One-armed Bandits

1. https://pxhere.com/en/photo/942387.

• Here is what an algorithm does-

For $t = 0, 1, 2, \dots, T - 1$:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1})$,
- Pick an arm *a^t* to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .

• Here is what an algorithm does-

For $t = 0, 1, 2, \dots, T - 1$:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1}),$
- Pick an arm *a^t* to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- T is the total sampling budget, or the horizon.

• Here is what an algorithm does-

For t = 0, 1, 2, ..., T - 1:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1})$,
- Pick an arm *a^t* to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- T is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping

from the set of all histories

to the set of all arms.

• Here is what an algorithm does-

For t = 0, 1, 2, ..., T - 1:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1})$,
- Pick an arm *a^t* to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- T is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping

from the set of all histories

to the set of all arms.

• Formally: a randomised algorithm is a mapping

from the set of all histories

to the set of all probability distributions over arms.

• Here is what an algorithm does—

For t = 0, 1, 2, ..., T - 1:

- Given the history $h^t = (a^0, r^0, a^1, r^1, a^2, r^2, \dots, a^{t-1}, r^{t-1})$,
- Pick an arm *a^t* to sample (or "pull"), and
- Obtain a reward r^t drawn from the distribution corresponding to arm a^t .
- *T* is the total sampling budget, or the horizon.
- Formally: a deterministic algorithm is a mapping

from the set of all histories

to the set of all arms.

• Formally: a randomised algorithm is a mapping

from the set of all histories

to the set of all probability distributions over arms.

• The algorithm picks the arm to pull; the bandit instance returns the reward.

• Consider $h^{T} = (a^{0}, r^{0}, a^{1}, r^{1}, \dots, a^{T-1}, r^{T-1}).$

Consider

 $h^{T} = (a^{0}, r^{0}, a^{1}, r^{1}, \dots, a^{T-1}, r^{T-1}).$ Observe that $\mathbb{P}\{h^{T}\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^{t}|h^{t}\}\mathbb{P}\{r^{t}|a^{t}\}, \text{ where }$ $\mathbb{P}\{a^{t}|h^{t}\} \text{ is decided by the algorithm,}$ $\mathbb{P}\{r^{t}|a^{t}\} \text{ comes from the bandit instance.}$

Consider

 $h^{T} = (a^{0}, r^{0}, a^{1}, r^{1}, \dots, a^{T-1}, r^{T-1}).$ Observe that $\mathbb{P}\{h^{T}\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^{t}|h^{t}\}\mathbb{P}\{r^{t}|a^{t}\},$ where $\mathbb{P}\{a^{t}|h^{t}\}$ is decided by the algorithm, $\mathbb{P}\{r^{t}|a^{t}\}$ comes from the bandit instance. • An algorithm, bandit instance pair can generate many possible *T*-length histories.

Consider

 $h^{T} = (a^{0}, r^{0}, a^{1}, r^{1}, \dots, a^{T-1}, r^{T-1}).$ Observe that $\mathbb{P}\{h^{T}\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^{t}|h^{t}\}\mathbb{P}\{r^{t}|a^{t}\}, \text{ where }$ $\mathbb{P}\{a^{t}|h^{t}\} \text{ is decided by the algorithm,}$ $\mathbb{P}\{r^{t}|a^{t}\} \text{ comes from the bandit instance.}$ • An algorithm, bandit instance pair can generate many possible *T*-length histories.

How many histories possible if the algorithm is deterministic and rewards 0–1?

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- **3.** ϵ -greedy algorithms

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

• *ϵ*G1

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, sample a^{best} .

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

• *ϵ*G1

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, sample a^{best} .

• *ϵ*G2

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

• Parameter $\epsilon \in [0, 1]$ controls the amount of exploration.

• *ϵ*G1

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- At $t = \lfloor \epsilon T \rfloor$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, sample a^{best} .

• *ϵ*G2

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, sample an arm with the highest empirical mean.

• *ϵ*G3

- With probability ϵ , sample an arm uniformly at random; with probability $1 - \epsilon$, sample an arm with the highest empirical mean.

• Are ϵ G1, ϵ G2, ϵ G3 deterministic or randomised algorithms?

Questions

- Are ϵ G1, ϵ G2, ϵ G3 deterministic or randomised algorithms?
- Fix a 4-armed bandit instance with means $p_1 > p_2 > p_3 > p_4$.
- If $\epsilon = 1$, what is the expected reward of ϵ G1?

Questions

- Are ϵ G1, ϵ G2, ϵ G3 deterministic or randomised algorithms?
- Fix a 4-armed bandit instance with means $p_1 > p_2 > p_3 > p_4$.
- If $\epsilon = 1$, what is the expected reward of $\epsilon G1$?
- If $\epsilon = 0.8$ and T is relatively large, what is the expected reward of ϵ G1?

Questions

- Are ϵ G1, ϵ G2, ϵ G3 deterministic or randomised algorithms?
- Fix a 4-armed bandit instance with means $p_1 > p_2 > p_3 > p_4$.
- If $\epsilon = 1$, what is the expected reward of ϵ G1?
- If $\epsilon = 0.8$ and T is relatively large, what is the expected reward of ϵ G1?
- Does ϵ G1 perform worse than ϵ G2 on each run?

Multi-armed Bandits

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- **3.** ϵ -greedy algorithms

Multi-armed Bandits

- 1. The exploration-exploitation dilemma
- 2. Definitions: Bandit, Algorithm
- **3**. *e*-greedy algorithms

Next class: What is a "good" algorithm? What is the "best" algorithm?