CS 747, Autumn 2022: Lecture 3

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Analysis of UCB
- Understanding Thompson Sampling
- Other bandit problems

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Analysis of UCB
- Understanding Thompson Sampling
- Other bandit problems

Upper Confidence Bounds = UCB (Auer et al., 2002)

- At time t, for every arm a, define $u b_{a}^{t}=\hat{p}_{a}^{t}+\sqrt{\frac{2 \ln (t)}{u_{a}^{t}}}$.
- \hat{p}_{a}^{t} is the empirical mean of rewards from arm a.
- u_{a}^{t} the number of times a has been sampled at time t.

Upper Confidence Bounds = UCB (Auer et al., 2002)

- At time t, for every arm a, define $u b_{a}^{t}=\hat{p}_{a}^{t}+\sqrt{\frac{2 \ln (t)}{u_{a}^{t}}}$.
- \hat{p}_{a}^{t} is the empirical mean of rewards from arm a.
- u_{a}^{t} the number of times a has been sampled at time t.
- Pull an arm a for which ucb ${ }_{a}^{t}$ is maximum.

Upper Confidence Bounds = UCB (Auer et al., 2002)

- At time t, for every arm a, define $u b_{a}^{t}=\hat{p}_{a}^{t}+\sqrt{\frac{2 \ln (t)}{u_{a}^{t}}}$.
- \hat{p}_{a}^{t} is the empirical mean of rewards from arm a.
- u_{a}^{t} the number of times a has been sampled at time t.
- Pull an arm a for which ucb ${ }_{a}^{t}$ is maximum.

Upper Confidence Bounds = UCB (Auer et al., 2002)

- At time t, for every arm a, define $u c b_{a}^{t}=\hat{p}_{a}^{t}+\sqrt{\frac{2 \ln (t)}{u_{a}^{t}}}$.
- \hat{p}_{a}^{t} is the empirical mean of rewards from arm a.
- u_{a}^{t} the number of times a has been sampled at time t.
- Pull an arm a for which ucb ${ }_{a}^{t}$ is maximum.

Achieves regret of $O(\log (T))$: optimal dependence on T.

KL-UCB (Garivier and Cappé, 2011)

- Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

KL-UCB (Garivier and Cappé, 2011)

- Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

$$
\text { ucb-k| }\left.\right|_{a} ^{t}=\max \left\{q \in\left[\hat{p}_{a}^{t}, 1\right] \text { s. t. } u_{a}^{t} K L\left(\hat{p}_{a}^{t}, q\right) \leq \ln (t)+c \ln (\ln (t))\right\} \text {, where } c \geq 3 \text {. }
$$

KL-UCB (Garivier and Cappé, 2011)

- Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound. ucb-kla $=\max \left\{q \in\left[\hat{p}_{a}^{t}, 1\right]\right.$ s. t. $\left.u_{a}^{t} K L\left(\hat{p}_{a}^{t}, q\right) \leq \ln (t)+c \ln (\ln (t))\right\}$, where $c \geq 3$. Equivalently, ucb-k| $\left.\right|_{a} ^{t}$ is the solution $q \in\left[\hat{p}_{a}^{t}, 1\right]$ to $K L\left(\hat{p}_{a}^{t}, q\right)=\frac{\ln (t)+c \ln (\ln (t))}{u_{a}^{t}}$.

KL-UCB (Garivier and Cappé, 2011)

- Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound. ucb-kl $l_{a}^{t}=\max \left\{q \in\left[\hat{p}_{a}^{t}, 1\right]\right.$ s. t. $\left.u_{a}^{t} K L\left(\hat{p}_{a}^{t}, q\right) \leq \ln (t)+c \ln (\ln (t))\right\}$, where $c \geq 3$. Equivalently, ucb-k| ${ }_{a}^{t}$ is the solution $q \in\left[\hat{p}_{a}^{t}, 1\right]$ to $K L\left(\hat{p}_{a}^{t}, q\right)=\frac{\ln (t)+c \ln (\ln (t))}{u_{a}^{t}}$. KL-UCB algorithm: at step t, pull $\operatorname{argmax}_{a \in A}$ ucb-kl $_{a}^{t}$.

KL-UCB (Garivier and Cappé, 2011)

- Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.
ucb-kla $=\max \left\{q \in\left[\hat{p}_{a}^{t}, 1\right]\right.$ s. t. $\left.u_{a}^{t} K L\left(\hat{p}_{a}^{t}, q\right) \leq \ln (t)+c \ln (\ln (t))\right\}$, where $c \geq 3$. Equivalently, ucb-kla is the solution $q \in\left[\hat{p}_{a}^{t}, 1\right]$ to $K L\left(\hat{p}_{a}^{t}, q\right)=\frac{\ln (t)+c \ln (\ln (t))}{u_{a}^{t}}$. KL-UCB algorithm: at step t, pull $\operatorname{argmax}_{a \in A}$ ucb-kl $_{a}^{t}$.
- Observe that $K L\left(\hat{\rho}_{a}^{t}, q\right)$ monotonically increases with q, and
- $K L\left(\hat{p}_{a}^{t}, \hat{p}_{a}^{t}\right)=0$;
- $K L\left(\hat{p}_{a}^{t}, 1\right)=\infty$.

Easy to compute ucb-kla ${ }_{a}^{t}$ numerically (for example through binary search).

KL-UCB (Garivier and Cappé, 2011)

- Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.
ucb-kla $=\max \left\{q \in\left[\hat{p}_{a}^{t}, 1\right]\right.$ s. t. $\left.u_{a}^{t} K L\left(\hat{p}_{a}^{t}, q\right) \leq \ln (t)+c \ln (\ln (t))\right\}$, where $c \geq 3$. Equivalently, ucb-kla is the solution $q \in\left[\hat{p}_{a}^{t}, 1\right]$ to $K L\left(\hat{p}_{a}^{t}, q\right)=\frac{\ln (t)+c \ln (\ln (t))}{u_{a}^{t}}$. KL-UCB algorithm: at step t, pull $\operatorname{argmax}_{a \in A}$ ucb-kl $_{a}^{t}$.
- Observe that $K L\left(\hat{p}_{a}^{t}, q\right)$ monotonically increases with q, and
- $K L\left(\hat{\rho}_{a}^{t}, \hat{p}_{a}^{t}\right)=0$;
- $K L\left(\hat{p}_{a}^{t}, 1\right)=\infty$.

Easy to compute ucb-kla ${ }_{a}^{t}$ numerically (for example through binary search).

- ucb-kla is a tighter confidence bound than $u^{t} b_{a}^{t}$.

KL-UCB (Garivier and Cappé, 2011)

- Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.
ucb-kla $=\max \left\{q \in\left[\hat{p}_{a}^{t}, 1\right]\right.$ s. t. $\left.u_{a}^{t} K L\left(\hat{p}_{a}^{t}, q\right) \leq \ln (t)+c \ln (\ln (t))\right\}$, where $c \geq 3$. Equivalently, ucb-kla is the solution $q \in\left[\hat{p}_{a}^{t}, 1\right]$ to $K L\left(\hat{p}_{a}^{t}, q\right)=\frac{\ln (t)+c \ln (\ln (t))}{u_{a}^{t}}$.
KL-UCB algorithm: at step t, pull $\operatorname{argmax}_{a \in A}$ ucb-kl $_{a}^{t}$.
- Observe that $K L\left(\hat{p}_{a}^{t}, q\right)$ monotonically increases with q, and
- $K L\left(\hat{\rho}_{a}^{t}, \hat{p}_{a}^{t}\right)=0$;
- $K L\left(\hat{p}_{a}^{t}, 1\right)=\infty$.

Easy to compute ucb-kla ${ }_{a}^{t}$ numerically (for example through binary search).

- ucb-kl ${ }_{a}^{t}$ is a tighter confidence bound than $u^{\prime} b_{a}^{t}$. Regret of KL-UCB asymptotically matches Lai and Robbins' lower bound!

Multi-armed Bandits

1. UCB, KL-UCB algorithms
2. Thompson Sampling algorithm
3. Concentration bounds

Background: Beta Distribution

- $\operatorname{Beta}(\alpha, \beta)$ defined on $[0,1]$. Two parameters: α and β.

Mean $=\frac{\alpha}{\alpha+\beta} ; \quad$ Variance $=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$.

Background: Beta Distribution

- $\operatorname{Beta}(\alpha, \beta)$ defined on $[0,1]$. Two parameters: α and β.

Thompson Sampling (Thompson, 1933)

- At time t , let arm a have s_{a}^{t} successes (1 's/heads) and f_{a}^{t} failures (0 's/tails).

Thompson Sampling (Thompson, 1933)

- At time t, let arm a have s_{a}^{t} successes (1 's/heads) and f_{a}^{t} failures (0 's/tails).
- $\operatorname{Beta}\left(s_{a}^{t}+1, f_{a}^{t}+1\right)$ represents a "belief" about the true mean of arm a.
- Mean $=\frac{s_{a}^{t}+1}{s_{a}^{t}+f_{a}^{t}+2} ;$ variance $=\frac{\left(s_{a}^{t}+1\right)\left(f_{a}^{t}+1\right)}{\left(s_{a}^{t}+f_{a}^{t}+2\right)^{2}\left(s_{a}^{t}+f_{a}^{t}+3\right)}$.

Thompson Sampling (Thompson, 1933)

- At time t, let arm a have s_{a}^{t} successes (1 's/heads) and f_{a}^{t} failures (0 's/tails).
- Beta $\left(s_{a}^{t}+1, f_{a}^{t}+1\right)$ represents a "belief" about the true mean of arm a.
- Mean $=\frac{s_{a}^{t}+1}{s_{a}^{t}+f_{a}^{t}+2} ;$ variance $=\frac{\left(s_{a}^{t}+1\right)\left(f_{a}^{t}+1\right)}{\left(s_{a}^{t}+f_{a}^{t}+2\right)^{2}\left(s_{a}^{t}+f_{a}^{t}+3\right)}$.
- Computational step: For every arm a, draw a sample (in agent's mind)

$$
x_{a}^{t} \sim \operatorname{Beta}\left(s_{a}^{t}+1, f_{a}^{t}+1\right) .
$$

- Sampling step: Pull (in real world) arm a for which x_{a}^{t} is maximum.

Thompson Sampling (Thompson, 1933)

- At time t, let arm a have s_{a}^{t} successes (1 's/heads) and f_{a}^{t} failures (0 's/tails).
- Beta $\left(s_{a}^{t}+1, f_{a}^{t}+1\right)$ represents a "belief" about the true mean of arm a.
- Mean $=\frac{s_{a}^{t}+1}{s_{a}^{t}+f_{a}^{t}+2} ;$ variance $=\frac{\left(s_{a}^{t}+1\right)\left(f_{a}^{t}+1\right)}{\left(s_{a}^{t}+f_{a}^{t}+2\right)^{2}\left(s_{a}^{t}+f_{a}^{t}+3\right)}$.
- Computational step: For every arm a, draw a sample (in agent's mind)

$$
x_{a}^{t} \sim \operatorname{Beta}\left(s_{a}^{t}+1, f_{a}^{t}+1\right) .
$$

- Sampling step: Pull (in real world) arm a for which x_{a}^{t} is maximum.

Thompson Sampling (Thompson, 1933)

- At time t, let arm a have s_{a}^{t} successes (1 's/heads) and f_{a}^{t} failures (0 's/tails).
- Beta $\left(s_{a}^{t}+1, f_{a}^{t}+1\right)$ represents a "belief" about the true mean of arm a.
- Mean $=\frac{s_{a}^{t}+1}{s_{a}^{t}+f_{a}^{t}+2} ;$ variance $=\frac{\left(s_{a}^{t}+1\right)\left(f_{a}^{t}+1\right)}{\left(s_{a}^{t}+f_{a}^{t}+2\right)^{2}\left(s_{a}^{t}+f_{a}^{t}+3\right)}$.
- Computational step: For every arm a, draw a sample (in agent's mind)

$$
x_{a}^{t} \sim \operatorname{Beta}\left(s_{a}^{t}+1, f_{a}^{t}+1\right) .
$$

- Sampling step: Pull (in real world) arm a for which x_{a}^{t} is maximum.

Achieves optimal regret (Kaufmann et al., 2012); is excellent in practice (Chapelle and Li, 2011).

Multi-armed Bandits

1. UCB, KL-UCB algorithms
2. Thompson Sampling algorithm
3. Concentration bounds

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

- Then, for or any fixed $\epsilon>0$, we have

$$
\begin{aligned}
& \mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 u \epsilon^{2}}, \text { and } \\
& \mathbb{P}\{\bar{x} \leq \mu-\epsilon\} \leq e^{-2 u \epsilon^{2}}
\end{aligned}
$$

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

- Then, for or any fixed $\epsilon>0$, we have

$$
\begin{aligned}
& \mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 U \epsilon^{2}}, \text { and } \\
& \mathbb{P}\{\bar{x} \leq \mu-\epsilon\} \leq e^{-2 U \epsilon^{2}} .
\end{aligned}
$$

- Note the bounds are trivial for large ϵ, since $\bar{x} \in[0,1]$.

Applications

- For given mistake probability δ and tolerance ϵ, how many samples u_{0} of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more?

Applications

- For given mistake probability δ and tolerance ϵ, how many samples u_{0} of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_{0}=\left\lceil\frac{1}{2 \epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right\rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$
\mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 u_{0} \epsilon^{2}} \leq \delta
$$

Applications

- For given mistake probability δ and tolerance ϵ, how many samples u_{0} of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_{0}=\left\lceil\frac{1}{2 \epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right\rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$
\mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 u_{0} \epsilon^{2}} \leq \delta
$$

- We have u samples of X. How do we fill up this blank?: With probability at least $1-\delta$, the empirical mean \bar{x} exceeds the true mean μ by at most $\epsilon_{0}=$ \qquad .

Applications

- For given mistake probability δ and tolerance ϵ, how many samples u_{0} of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_{0}=\left\lceil\frac{1}{2 \epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right\rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$
\mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 u_{0} \epsilon^{2}} \leq \delta
$$

- We have u samples of X. How do we fill up this blank?:

With probability at least $1-\delta$, the empirical mean \bar{x} exceeds the true mean μ by at most $\epsilon_{0}=$ \qquad .
We can write $\epsilon_{0}=\sqrt{\frac{1}{2 u} \ln \left(\frac{1}{\delta}\right)}$; by Hoeffding's Inequality:

$$
\mathbb{P}\left\{\bar{x} \geq \mu+\epsilon_{0}\right\} \leq e^{-2 u\left(\epsilon_{0}\right)^{2}} \leq \delta
$$

Arbitrary Bounded Range

- Suppose X is a random variable bounded in $[a, b]$. Can we still apply Hoeffding's Inequality?

Arbitrary Bounded Range

- Suppose X is a random variable bounded in [a,b]. Can we still apply Hoeffding's Inequality?
Yes. Assume $u ; x_{1}, x_{2}, \ldots, x_{u} ; \epsilon$ as defined earlier.

Arbitrary Bounded Range

- Suppose X is a random variable bounded in $[a, b]$. Can we still apply Hoeffding's Inequality?
Yes. Assume $u ; x_{1}, x_{2}, \ldots, x_{u} ; \epsilon$ as defined earlier.
Consider $Y=\frac{X-a}{b-a}$; for $1 \leq i \leq u, y_{i}=\frac{x_{i}-a}{b-a} ; \bar{y}=\frac{1}{u} \sum_{i=1}^{u} y_{i}$.

Arbitrary Bounded Range

- Suppose X is a random variable bounded in $[a, b]$. Can we still apply Hoeffding's Inequality?
Yes. Assume $u ; x_{1}, x_{2}, \ldots, x_{u} ; \epsilon$ as defined earlier.
Consider $Y=\frac{X-a}{b-a}$; for $1 \leq i \leq u, y_{i}=\frac{x_{i}-a}{b-a} ; \bar{y}=\frac{1}{u} \sum_{i=1}^{u} y_{i}$.
Since Y is bounded in $[0,1]$, we get

$$
\begin{aligned}
& \mathbb{P}\{\bar{x} \geq \mu+\epsilon\}=\mathbb{P}\left\{\bar{y} \geq \frac{\mu-a}{b-a}+\frac{\epsilon}{b-a}\right\} \leq e^{-\frac{2 u \epsilon^{2}}{(b-a)^{2}}}, \text { and } \\
& \mathbb{P}\{\bar{x} \leq \mu-\epsilon\}=\mathbb{P}\left\{\bar{y} \leq \frac{\mu-a}{b-a}-\frac{\epsilon}{b-a}\right\} \leq e^{-\frac{2 u \epsilon^{2}}{(b-a)^{2}} .}
\end{aligned}
$$

A "KL" Inequality

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

A "KL" Inequality

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

- Then, for or any fixed $\epsilon \in[0,1-\mu]$, we have

$$
\mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-u K L(\mu+\epsilon, \mu)},
$$

and for or any fixed $\epsilon \in[0, \mu]$, we have

$$
\mathbb{P}\{\bar{x} \leq \mu-\epsilon\} \leq e^{-u K L(\mu-\epsilon, \mu)},
$$

where for $p, q \in[0,1], K L(p, q) \stackrel{\text { det }}{=} p \ln \left(\frac{p}{q}\right)+(1-p) \ln \left(\frac{1-p}{1-q}\right)$.

Some Observations

- The KL inequality gives a tighter upper bound:

For $p, q \in[0,1]$,

$$
K L(p, q) \geq 2(p-q)^{2} \Longrightarrow e^{-u K L(p, q)} \leq e^{-2 u(p-q)^{2}} .
$$

- Both bounds are instances of "Chernoff bounds", of which there are many more forms.
- Similar bounds can also be given when X has infinite support (such as a Gaussian), but might need additional assumptions.

Multi-armed Bandits

1. UCB, KL-UCB algorithms
2. Thompson Sampling algorithm
3. Concentration bounds
