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Upper Confidence Bounds = UCB (Auer et al., 2002)
- At time t, for every arm a, define ucbt

a = p̂t
a +

√
2 ln(t)

ut
a

.
- p̂t

a is the empirical mean of rewards from arm a.
- ut

a the number of times a has been sampled at time t .

- Pull an arm a for which ucbt
a is maximum.

R

1

0

p
a
t

ucba
t

Achieves regret of O (log(T )):
optimal dependence on T .
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KL-UCB (Garivier and Cappé, 2011)
Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.

ucb-klta = max{q ∈ [p̂t
a,1] s. t. ut

aKL(p̂t
a,q) ≤ ln(t) + c ln(ln(t))}, where c ≥ 3.

Equivalently, ucb-klta is the solution q ∈ [p̂t
a,1] to KL(p̂t

a,q) =
ln(t)+c ln(ln(t))

ut
a

.

KL-UCB algorithm: at step t , pull argmaxa∈A ucb-klta.

Observe that KL(p̂t
a,q) monotonically increases with q, and

▶ KL(p̂t
a, p̂t

a) = 0;
▶ KL(p̂t

a,1) = ∞.

Easy to compute ucb-klta numerically (for example through binary search).

ucb-klta is a tighter confidence bound than ucbt
a.

Regret of KL-UCB asymptotically matches Lai and Robbins’ lower bound!
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Multi-armed Bandits

1. UCB, KL-UCB algorithms

2. Thompson Sampling algorithm

3. Concentration bounds
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Background: Beta Distribution
Beta(α, β) defined on [0,1]. Two parameters: α and β.

Mean =
α

α + β
; Variance =

αβ

(α + β)2(α + β + 1)
.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

B
e

ta
 p

d
f(

x
)

x

α = 1, β = 1
α = 3, β = 4

α = 5, β = 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-10.0 -5.0 0.0 5.0 10.0

G
a

u
s
s
ia

n
 p

d
f(

x
)

x

µ = 0, σ = 2
µ = 0, σ = 3
µ = 5, σ = 1

Plots obtained by adapting gnuplot script http://gnuplot.sourceforge.net/demo/prob.5.gnu.
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Thompson Sampling (Thompson, 1933)
- At time t, let arm a have st

a successes (1’s/heads) and f t
a failures (0’s/tails).

- Beta(st
a + 1, f t

a + 1) represents a “belief” about the true mean of arm a.

- Mean = st
a+1

st
a+f t

a+2 ; variance = (st
a+1)(f t

a+1)
(st

a+f t
a+2) 2(st

a+f t
a+3)

.

- Computational step: For every arm
a, draw a sample (in agent’s mind)

x t
a ∼ Beta(st

a + 1, f t
a + 1).

- Sampling step: Pull (in real world)
arm a for which x t

a is maximum.

Achieves optimal regret (Kaufmann
et al., 2012); is excellent in practice
(Chapelle and Li, 2011).

R

1

0
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Multi-armed Bandits

1. UCB, KL-UCB algorithms

2. Thompson Sampling algorithm

3. Concentration bounds
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Hoeffding’s Inequality (Hoeffding, 1963)
Let X be a random variable bounded in [0,1], with E[X ] = µ;

Let u ≥ 1;
Let x1, x2, . . . , xu be i.i.d. samples of X ; and
Let x̄ be the mean of these samples (an empirical mean):

x̄ =
1
u

u∑
i=1

xi .

Then, for or any fixed ϵ > 0, we have

P{x̄ ≥ µ+ ϵ} ≤ e−2uϵ2
, and

P{x̄ ≤ µ− ϵ} ≤ e−2uϵ2
.

Note the bounds are trivial for large ϵ, since x̄ ∈ [0,1].
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Applications
For given mistake probability δ and tolerance ϵ, how many samples u0 of X
do we need to guarantee that with probability at least 1 − δ, the empirical
mean x̄ will not exceed the true mean µ by ϵ or more?

u0 = ⌈ 1
2ϵ2 ln(

1
δ
)⌉ pulls are sufficient, since Hoeffding’s Inequality gives

P{x̄ ≥ µ+ ϵ} ≤ e−2u0ϵ
2 ≤ δ.

We have u samples of X . How do we fill up this blank?:
With probability at least 1 − δ, the empirical mean x̄ exceeds the true mean µ
by at most ϵ0 = .

We can write ϵ0 =
√

1
2u ln(

1
δ
); by Hoeffding’s Inequality:

P{x̄ ≥ µ+ ϵ0} ≤ e−2u(ϵ0)
2 ≤ δ.
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)⌉ pulls are sufficient, since Hoeffding’s Inequality gives

P{x̄ ≥ µ+ ϵ} ≤ e−2u0ϵ
2 ≤ δ.

We have u samples of X . How do we fill up this blank?:
With probability at least 1 − δ, the empirical mean x̄ exceeds the true mean µ
by at most ϵ0 = .

We can write ϵ0 =
√

1
2u ln(

1
δ
); by Hoeffding’s Inequality:

P{x̄ ≥ µ+ ϵ0} ≤ e−2u(ϵ0)
2 ≤ δ.
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Arbitrary Bounded Range

Suppose X is a random variable bounded in [a,b]. Can we still apply
Hoeffding’s Inequality?

Yes. Assume u; x1, x2, . . . , xu; ϵ as defined earlier.
Consider Y = X−a

b−a ; for 1 ≤ i ≤ u, yi =
xi−a
b−a ; ȳ = 1

u

∑u
i=1 yi .

Since Y is bounded in [0,1], we get

P{x̄ ≥ µ+ ϵ} = P
{

ȳ ≥ µ− a
b − a

+
ϵ

b − a

}
≤ e− 2uϵ2

(b−a)2 , and

P{x̄ ≤ µ− ϵ} = P
{

ȳ ≤ µ− a
b − a

− ϵ

b − a

}
≤ e− 2uϵ2

(b−a)2 .
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A “KL” Inequality
Let X be a random variable bounded in [0,1], with E[X ] = µ;
Let u ≥ 1;
Let x1, x2, . . . , xu be i.i.d. samples of X ; and
Let x̄ be the mean of these samples (an empirical mean):

x̄ =
1
u

u∑
i=1

xi .

Then, for or any fixed ϵ ∈ [0,1 − µ], we have

P{x̄ ≥ µ+ ϵ} ≤ e−uKL(µ+ϵ,µ),

and for or any fixed ϵ ∈ [0, µ], we have

P{x̄ ≤ µ− ϵ} ≤ e−uKL(µ−ϵ,µ),

where for p,q ∈ [0,1],KL(p,q) def
=p ln(p

q ) + (1 − p) ln(1−p
1−q ).
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Some Observations

The KL inequality gives a tighter upper bound:
For p,q ∈ [0,1],

KL(p,q) ≥ 2(p − q)2 =⇒ e−uKL(p,q) ≤ e−2u(p−q)2
.

Both bounds are instances of “Chernoff bounds”, of which there are many
more forms.

Similar bounds can also be given when X has infinite support (such as a
Gaussian), but might need additional assumptions.
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Multi-armed Bandits

1. UCB, KL-UCB algorithms

2. Thompson Sampling algorithm

3. Concentration bounds
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