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Multi-armed Bandits

1. Understanding Thompson Sampling

2. Other bandit problems
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Thompson Sampling (Thompson, 1933)
- At time t, arm a has st

a successes (1’s) and f t
a failures (0’s).

- Beta(st
a + 1, f t

a + 1) represents a “belief” about pa.

R

1

0

- Computational step: For every arm a, draw a sample

x t
a ∼ Beta(st

a + 1, f t
a + 1).

- Sampling step: Pull an arm a for which x t
a is maximum.
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Bayesian Inference
Bayes’ Rule of Probability for events A and B:

P{A|B} =
P{B|A}P{A}

P{B}
.

Application: there is an unknown world w from among possible worlds W , in
which we live.
We maintain a belief distribution over w ∈ W .

Belief0(w) = P{w}.

The process by which each w produces evidence e is known.
Evidence samples e1,e2, . . . ,em are produced i.i.d. by the unknown world w .
How to continuously refine our belief distribution based on incoming
evidence?

Beliefm(w) = P{w |e1,e2, . . . ,em}
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Bayesian Inference

Beliefm+1(w) = P{w |e1,e2, . . . ,em+1}

=
P{e1,e2, . . . ,em+1|w}P{w}

P{e1,e2, . . . ,em+1}

=
P{e1,e2, . . . ,em|w}P{em+1|w}P{w}

P{e1,e2, . . . ,em+1}

=
P{e1,e2, . . . ,em,w}P{em+1|w}

P{e1,e2, . . . ,em+1}

=
P{w |e1,e2, . . . ,em}P{e1,e2, . . . ,em}P{em+1|w}

P{e1,e2, . . . ,em+1}

=
Beliefm(w)P{em+1|w}∑

w ′∈W Beliefm(w ′)P{em+1|w ′}
.
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Bayesian Inference in Thompson Sampling
View each arm a’s mean pa as world w , estimated from rewards (evidence).

Belief0 over pa is typically set to Uniform(0,1), but need not.
If em+1 is a 1-reward, we must set for x ∈ [0,1]

Beliefm+1(x) =
Beliefm(x) · x∫ 1

y=0 Beliefm(y) · y
.

If em+1 is a 0-reward, we must set for x ∈ [0,1]

Beliefm+1(x) =
Beliefm(x) · (1 − x)∫ 1

y=0 Beliefm(y) · (1 − y)
.

We achieve exactly that by taking

Beliefm(x) = Betas+1,f+1(x)dx

when the first m pulls yield s 1’s and f 0’s!
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Principle of Selecting Arm to Pull

We have a belief distribution for each arm’s mean.
Together, these distributions represent a belief distribution over bandit
instances.
We sample a bandit instance I from the joint belief distribution, and
We act optimally w.r.t. I.

Alternative view: the probability with which we pick an arm is our belief that it
is optimal. For example, if A = {1,2}, the probability of pulling 1 is

P{x t
1 > x t

2} =

∫ 1

x1=0

∫ x1

x2=0
Betast

1+1,f t
1+1,(x1)Betast

2+1,f t
2+1,(x2)dx2dx1.
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Multi-armed Bandits

1. Understanding Thompson Sampling

2. Other bandit problems
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Other Bandit Problems
In this course, we have covered

▶ stochastic multi-armed bandits,
▶ minimisation of expected cumulative regret.

There are many other variations/formulations.

Incorporating risk/variance in the objective.
▶ Arm 1 gives rewards 0 and 100, each w.p. 1/2.
▶ Arm 2 gives rewards 48 and 50, each w.p. 1/2.
▶ Which arm would you prefer?

What if the arms’ (true) means vary over time?
▶ Nonstationary setting, seen for example, in on-line ads.
▶ Approach depends on nature of drift/change in rewards.
▶ In practice, one might only trust most recent data from arms.
▶ In practice, the set of arms can itself change over time!
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Other Bandit Problems
Pure exploration.

▶ Separate “testing” and “live” phases.
▶ In testing phase, rewards don’t matter.
▶ PAC formulation: W.p. at least 1 − δ, must return an ϵ-optimal arm, while

incurring a small number of pulls.
▶ Simple regret formulation: Given a budget of T pulls, must output an arm a

such that pa is large, or equivalently, simple regret = p⋆ − pa is small).

Limited number of feedback stages.
▶ Suppose you are given budget T , but your algorithm can look at history only

s < T times?
▶ UCB, Thompson Sampling, etc. are fully sequential (s = T ).
▶ How to manage with fewer “stages” s?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 12
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Other Bandit Problems
What if the number of arms is large (thousands, millions)?

▶ If arms can be described using features, mean reward is often treated as a
(linear) function of these features.

▶ Quantile-regret: look for “good”, rather than “optimal” arms.

What if we are interacting with many bandits simultaneously?
▶ Contextual bandits: If the bandits themselves can be described using features

(a “context”), data from one can be used to generate estimates about others.

What if the rewards do not come from a fixed random process?
▶ Adversarial bandits make no assumption on the rewards.
▶ Possible to show sub-linear regret when compared against playing a single arm

for the entire run.
▶ Necessary to use a randomised algorithm.
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11/12

Other Bandit Problems
What if the number of arms is large (thousands, millions)?

▶ If arms can be described using features, mean reward is often treated as a
(linear) function of these features.

▶ Quantile-regret: look for “good”, rather than “optimal” arms.

What if we are interacting with many bandits simultaneously?
▶ Contextual bandits: If the bandits themselves can be described using features

(a “context”), data from one can be used to generate estimates about others.

What if the rewards do not come from a fixed random process?
▶ Adversarial bandits make no assumption on the rewards.
▶ Possible to show sub-linear regret when compared against playing a single arm

for the entire run.
▶ Necessary to use a randomised algorithm.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11 / 12



11/12

Other Bandit Problems
What if the number of arms is large (thousands, millions)?

▶ If arms can be described using features, mean reward is often treated as a
(linear) function of these features.

▶ Quantile-regret: look for “good”, rather than “optimal” arms.

What if we are interacting with many bandits simultaneously?
▶ Contextual bandits: If the bandits themselves can be described using features

(a “context”), data from one can be used to generate estimates about others.

What if the rewards do not come from a fixed random process?
▶ Adversarial bandits make no assumption on the rewards.
▶ Possible to show sub-linear regret when compared against playing a single arm

for the entire run.
▶ Necessary to use a randomised algorithm.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11 / 12



12/12

Multi-armed Bandits
The exploration-exploitation dilemma
Definitions: Bandit, Algorithm
ϵ-greedy algorithms
Evaluating algorithms: Regret
Achieving sub-linear regret
A lower bound on regret
UCB, KL-UCB algorithms
Thompson Sampling algorithm
Concentration bounds
Analysis of UCB
Understanding Thompson Sampling
Other bandit problems

Next class: Markov Decision Problems
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