CS 747, Autumn 2022: Lecture 5

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

Multi-armed Bandits

1. Understanding Thompson Sampling
2. Other bandit problems

Multi-armed Bandits

\author{

1. Understanding Thompson Sampling
}

2. Other bandit problems

Thompson Sampling (Thompson, 1933)

- At time t, arm a has s_{a}^{t} successes (1 's) and f_{a}^{t} failures (0 's).

Thompson Sampling (Thompson, 1933)

- At time t, arm a has s_{a}^{t} successes (1 's) and f_{a}^{t} failures (0 's).
- Beta $\left(s_{a}^{t}+1, f_{a}^{t}+1\right)$ represents a "belief" about p_{a}.

Thompson Sampling (Thompson, 1933)

- At time t, arm a has s_{a}^{t} successes (1 's) and f_{a}^{t} failures (0 's).
- Beta($s_{a}^{t}+1, f_{a}^{t}+1$) represents a "belief" about p_{a}.

- Computational step: For every arm a, draw a sample

$$
x_{a}^{t} \sim \operatorname{Beta}\left(s_{a}^{t}+1, f_{a}^{t}+1\right) .
$$

- Sampling step: Pull an arm a for which x_{a}^{t} is maximum.

Thompson Sampling (Thompson, 1933)

- At time t, arm a has s_{a}^{t} successes (1 's) and f_{a}^{t} failures (0 's).
- Beta($s_{a}^{t}+1, f_{a}^{t}+1$) represents a "belief" about p_{a}.

- Computational step: For every arm a, draw a sample

$$
x_{a}^{t} \sim \operatorname{Beta}\left(s_{a}^{t}+1, f_{a}^{t}+1\right) .
$$

- Sampling step: Pull an arm a for which x_{a}^{t} is maximum.

Bayesian Inference

- Bayes' Rule of Probability for events A and B :

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{B \mid A\} \mathbb{P}\{A\}}{\mathbb{P}\{B\}}
$$

Bayesian Inference

- Bayes' Rule of Probability for events A and B :

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{B \mid A\} \mathbb{P}\{A\}}{\mathbb{P}\{B\}} .
$$

- Application: there is an unknown world w from among possible worlds W, in which we live.
- We maintain a belief distribution over $w \in W$.

$$
\text { Belief }_{0}(w)=\mathbb{P}\{w\} .
$$

Bayesian Inference

- Bayes' Rule of Probability for events A and B :

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{B \mid A\} \mathbb{P}\{A\}}{\mathbb{P}\{B\}} .
$$

- Application: there is an unknown world w from among possible worlds W, in which we live.
- We maintain a belief distribution over $w \in W$.

$$
\text { Belief }_{0}(w)=\mathbb{P}\{w\} .
$$

- The process by which each w produces evidence e is known.
- Evidence samples $e_{1}, e_{2}, \ldots, e_{m}$ are produced i.i.d. by the unknown world w.

Bayesian Inference

- Bayes' Rule of Probability for events A and B :

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{B \mid A\} \mathbb{P}\{A\}}{\mathbb{P}\{B\}} .
$$

- Application: there is an unknown world w from among possible worlds W, in which we live.
- We maintain a belief distribution over $w \in W$.

$$
\text { Belief }_{0}(w)=\mathbb{P}\{w\} .
$$

- The process by which each w produces evidence e is known.
- Evidence samples $e_{1}, e_{2}, \ldots, e_{m}$ are produced i.i.d. by the unknown world w.
- How to continuously refine our belief distribution based on incoming evidence?

$$
\operatorname{Belief}_{m}(w)=\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m}\right\}
$$

Bayesian Inference

$$
\text { Belief }_{m+1}(w)=\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\}
$$

Bayesian Inference

$$
\begin{aligned}
\text { Belief }_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}}
\end{aligned}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m} \mid w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}}
\end{aligned}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m} \mid w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}, w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}}
\end{aligned}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m} \mid w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}, w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m}\right\} \mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}}
\end{aligned}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m} \mid w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}, w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m}\right\} \mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\operatorname{Belief}_{m}(w) \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\sum_{w^{\prime} \in w} \operatorname{Belief}_{m}\left(w^{\prime}\right) \mathbb{P}\left\{e_{m+1} \mid w^{\prime}\right\}} .
\end{aligned}
$$

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).
- Belief f_{0} over p_{a} is typically set to $\operatorname{Uniform}(0,1)$, but need not.

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).
- Belief $_{0}$ over p_{a} is typically set to Uniform $(0,1)$, but need not.
- If e_{m+1} is a 1-reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot x}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot y}
$$

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).
- Belief over p_{a} is typically set to $\operatorname{Uniform}(0,1)$, but need not.
- If e_{m+1} is a 1 -reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot x}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot y} .
$$

- If e_{m+1} is a 0 -reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot(1-x)}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot(1-y)}
$$

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).
- Belief f_{0} over p_{a} is typically set to Uniform $(0,1)$, but need not.
- If e_{m+1} is a 1 -reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot x}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot y}
$$

- If e_{m+1} is a 0-reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot(1-x)}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot(1-y)}
$$

- We achieve exactly that by taking

$$
\operatorname{Belief}_{m}(x)=\operatorname{Beta}_{s+1, f+1}(x) d x
$$

when the first m pulls yield $s 1$'s and $f 0$'s!

Principle of Selecting Arm to Pull

- We have a belief distribution for each arm's mean.
- Together, these distributions represent a belief distribution over bandit instances.
- We sample a bandit instance / from the joint belief distribution, and
- We act optimally w.r.t. I.

Principle of Selecting Arm to Pull

- We have a belief distribution for each arm's mean.
- Together, these distributions represent a belief distribution over bandit instances.
- We sample a bandit instance / from the joint belief distribution, and
- We act optimally w.r.t. I.
- Alternative view: the probability with which we pick an arm is our belief that it is optimal. For example, if $A=\{1,2\}$, the probability of pulling 1 is

$$
\mathbb{P}\left\{x_{1}^{t}>x_{2}^{t}\right\}=\int_{x_{1}=0}^{1} \int_{x_{2}=0}^{x_{1}} \operatorname{Beta}_{s_{1}^{t}+1, f_{1}^{f}+1,}\left(x_{1}\right) \operatorname{Beta}_{s_{2}^{t}+1, f_{2}^{t}+1,}\left(x_{2}\right) d x_{2} d x_{1} .
$$

Multi-armed Bandits

1. Understanding Thompson Sampling

2. Other bandit problems

Other Bandit Problems

- In this course, we have covered
- stochastic multi-armed bandits,
- minimisation of expected cumulative regret.

There are many other variations/formulations.

Other Bandit Problems

- In this course, we have covered
- stochastic multi-armed bandits,
- minimisation of expected cumulative regret.

There are many other variations/formulations.

- Incorporating risk/variance in the objective.
- Arm 1 gives rewards 0 and 100, each w.p. 1/2.
- Arm 2 gives rewards 48 and 50, each w.p. 1/2.
- Which arm would you prefer?

Other Bandit Problems

- In this course, we have covered
- stochastic multi-armed bandits,
- minimisation of expected cumulative regret.

There are many other variations/formulations.

- Incorporating risk/variance in the objective.
- Arm 1 gives rewards 0 and 100, each w.p. 1/2.
- Arm 2 gives rewards 48 and 50, each w.p. 1/2.
- Which arm would you prefer?
- What if the arms' (true) means vary over time?
- Nonstationary setting, seen for example, in on-line ads.
- Approach depends on nature of drift/change in rewards.
- In practice, one might only trust most recent data from arms.
- In practice, the set of arms can itself change over time!

Other Bandit Problems

- Pure exploration.
- Separate "testing" and "live" phases.
- In testing phase, rewards don't matter.
- PAC formulation: W.p. at least $1-\delta$, must return an ϵ-optimal arm, while incurring a small number of pulls.
- Simple regret formulation: Given a budget of T pulls, must output an arm a such that p_{a} is large, or equivalently, simple regret $=p^{\star}-p_{a}$ is small).

Other Bandit Problems

- Pure exploration.
- Separate "testing" and "live" phases.
- In testing phase, rewards don't matter.
- PAC formulation: W.p. at least $1-\delta$, must return an ϵ-optimal arm, while incurring a small number of pulls.
- Simple regret formulation: Given a budget of T pulls, must output an arm a such that p_{a} is large, or equivalently, simple regret $=p^{\star}-p_{a}$ is small).
- Limited number of feedback stages.
- Suppose you are given budget T, but your algorithm can look at history only $s<T$ times?
- UCB, Thompson Sampling, etc. are fully sequential $(s=T)$.
- How to manage with fewer "stages" s ?

Other Bandit Problems

- What if the number of arms is large (thousands, millions)?
- If arms can be described using features, mean reward is often treated as a (linear) function of these features.
- Quantile-regret: look for "good", rather than "optimal" arms.

Other Bandit Problems

- What if the number of arms is large (thousands, millions)?
- If arms can be described using features, mean reward is often treated as a (linear) function of these features.
- Quantile-regret: look for "good", rather than "optimal" arms.
- What if we are interacting with many bandits simultaneously?
- Contextual bandits: If the bandits themselves can be described using features (a "context"), data from one can be used to generate estimates about others.

Other Bandit Problems

- What if the number of arms is large (thousands, millions)?
- If arms can be described using features, mean reward is often treated as a (linear) function of these features.
- Quantile-regret: look for "good", rather than "optimal" arms.
- What if we are interacting with many bandits simultaneously?
- Contextual bandits: If the bandits themselves can be described using features (a "context"), data from one can be used to generate estimates about others.
- What if the rewards do not come from a fixed random process?
- Adversarial bandits make no assumption on the rewards.
- Possible to show sub-linear regret when compared against playing a single arm for the entire run.
- Necessary to use a randomised algorithm.

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Analysis of UCB
- Understanding Thompson Sampling
- Other bandit problems

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Analysis of UCB
- Understanding Thompson Sampling
- Other bandit problems
- Next class: Markov Decision Problems

