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Markov Decision Problems

1. Banach’s fixed-point theorem

2. Bellman optimality operator

3. Value iteration
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Complete, Normed Vector Spaces

A vector space X has objects called vectors
that can be added and scaled.

A norm ∥·∥ associates a length with each
vector (and satisfies some conditions).
A complete, normed vector space (X , ∥·∥) is
one in which every Cauchy sequence has a
limit in X .
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A complete, normed vector space is called a Banach space.
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Two Definitions

Let (X , ∥·∥) be a normed vector space, and
let 0 ≤ ℓ < 1.

Contraction mapping. A mapping
Z : X → X is called a contraction mapping
with contraction factor ℓ if ∀u, v ∈ X ,

∥Zv − Zu∥ ≤ ℓ∥v − u∥.

Fixed-point. x⋆ ∈ X is called a fixed-point
of Z if Zx⋆ = x⋆.
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Banach’s Fixed-point Theorem
(Adapted from Szepesvári, 2009 (see Appendix A.1).)

Let (X , ∥·∥) be a Banach space, and let Z : X → X be a contraction mapping
with contraction factor ℓ ∈ [0,1). Then:
1. Z has a unique fixed point x⋆ ∈ X .
2. For x ∈ X ,m ≥ 0: ∥Z mx − x⋆∥ ≤ ℓm∥x − x⋆∥.
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Bellman Optimality Operator
Take S = {s1, s2, . . . , sn}. A function F : S → R is equivalently a point in Rn.

The Bellman optimality operator B⋆ : Rn → Rn for MDP (S,A,T ,R, γ) is
defined as follows. For F ∈ Rn, s ∈ S:

(B⋆(F ))(s) def
=max

a∈A

∑
s′∈S

T (s,a, s′){R(s,a, s′) + γF (s′)}.

Recall that the max norm ∥·∥∞ of F = (f1, f2, . . . , fn) ∈ Rn is
∥F∥∞ = max{|f1|, |f2|, . . . , |fn|}.

It is an established result that (Rn, ∥·∥∞) is a Banach space.

Fact. B⋆ is a contraction mapping in the (Rn, ∥·∥∞) Banach space
with contraction factor γ.
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Proof that B⋆ is a Contraction Mapping
We use: |maxa f (a)−maxa g(a)| ≤ maxa |f (a)− g(a)|.

∥B⋆(F )− B⋆(G)∥∞ = max
s∈S
|(B⋆(F ))(s)− (B⋆(G))(s)|

= max
s∈S

∣∣∣∣∣max
a∈A

∑
s′∈S

T (s,a, s′){R(s,a, s′) + γF (s′)}−

max
a∈A

∑
s′∈S

T (s,a, s′){R(s,a, s′) + γG(s′)}

∣∣∣∣∣
≤ γ max

(s,a)∈S×A

∣∣∣∣∣∑
s′∈S

T (s,a, s′){F (s′)−G(s′)}

∣∣∣∣∣
≤ γ max

(s,a)∈S×A

∑
s′∈S

T (s,a, s′)|F (s′)−G(s′)|

≤ γ max
(s,a)∈S×A

∑
s′∈S

T (s,a, s′)∥F −G∥∞ = γ∥F −G∥∞.
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The Fixed-point of B⋆

Banach’s Fixed-point Theorem implies there is a unique fixed point for B⋆.

Denote the fixed point V ⋆ : S → R. Note that B⋆(V ⋆) = V ⋆. In other words,
for s ∈ S:

V ⋆(s) = maxa∈A
∑

s′∈S T (s,a, s′) {R(s,a, s′) + γV ⋆(s′)}.
These are the Bellman optimality equations for MDP (S,A,T ,R, γ).
n equations, n unknowns, but non-linear!
Value iteration, linear programming, and policy iteration are three distinct
families of algorithms to compute V ⋆.
Fact. V ⋆ is the value function of every policy π⋆ : S → A such that for s ∈ S:

π⋆(s) = argmaxa∈A
∑

s′∈S T (s,a, s′) {R(s,a, s′) + γV ∗(s′)}.
We shall prove next week that every such policy π⋆ is an optimal policy.
Hence V ⋆ is the optimal value function.
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Markov Decision Problems

1. Banach’s fixed-point theorem

2. Bellman optimality operator

3. Value iteration
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Value Iteration

Iterative approach to compute V ⋆.

V0
B⋆

−→ V1
B⋆

−→ V2
B⋆

−→ . . . .

V0 ← Arbitrary, element-wise bounded, n-length vector.
t ← 0.
Repeat:

For s ∈ S:
Vt+1(s)← maxa∈A

∑
s′∈S T (s,a, s′) (R(s,a, s′) + γVt(s′)).

t ← t + 1.
Until Vt ≈ Vt−1 (up to machine precision).

Popular; easy to implement; quick to converge in practice.
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Markov Decision Problems

1. Banach’s fixed-point theorem

2. Bellman optimality operator

3. Value iteration

Next class: MDP planning through linear programming.
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