CS 747, Autumn 2022: Lecture 8

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

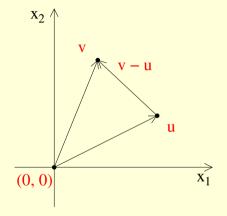
Markov Decision Problems

- 1. Banach's fixed-point theorem
- 2. Bellman optimality operator
- 3. Value iteration

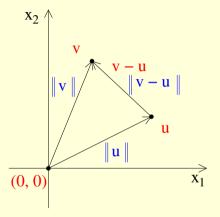
Markov Decision Problems

- 1. Banach's fixed-point theorem
- 2. Bellman optimality operator
- 3. Value iteration

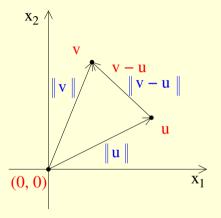
• A vector space X has objects called vectors that can be added and scaled.



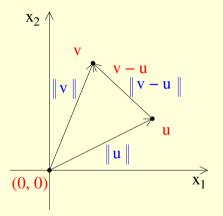
- A vector space X has objects called vectors that can be added and scaled.
- A norm $\|\cdot\|$ associates a length with each vector (and satisfies some conditions).



- A vector space X has objects called vectors that can be added and scaled.
- A norm $\|\cdot\|$ associates a length with each vector (and satisfies some conditions).
- A complete, normed vector space (X, ||·||) is one in which every Cauchy sequence has a limit in X.



- A vector space X has objects called vectors that can be added and scaled.
- A norm $\|\cdot\|$ associates a length with each vector (and satisfies some conditions).
- A complete, normed vector space (X, ∥·∥) is one in which every Cauchy sequence has a limit in X.



• A complete, normed vector space is called a Banach space.

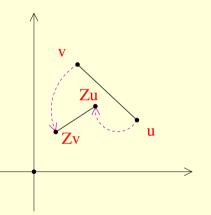
Two Definitions

 Let (X, ||·||) be a normed vector space, and let 0 ≤ ℓ < 1.

Two Definitions

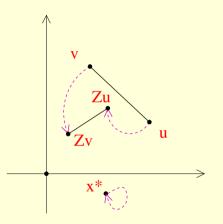
- Let (X, ||·||) be a normed vector space, and let 0 ≤ ℓ < 1.
- Contraction mapping. A mapping
 Z : X → X is called a contraction mapping with contraction factor ℓ if ∀u, v ∈ X,

$$\|\mathbf{Z}\mathbf{v}-\mathbf{Z}\mathbf{u}\|\leq \ell\|\mathbf{v}-\mathbf{u}\|.$$



Two Definitions

- Let (X, ||·||) be a normed vector space, and let 0 ≤ ℓ < 1.
- Contraction mapping. A mapping
 Z : X → X is called a contraction mapping with contraction factor ℓ if ∀u, v ∈ X,
 ||Zv Zu|| < ℓ||v u||.
- Fixed-point. x^{*} ∈ X is called a fixed-point of Z if Zx^{*} = x^{*}.



Banach's Fixed-point Theorem

(Adapted from Szepesvári, 2009 (see Appendix A.1).)

Let $(X, \|\cdot\|)$ be a Banach space, and let $Z : X \to X$ be a contraction mapping with contraction factor $\ell \in [0, 1)$. Then:

1. *Z* has a unique fixed point $x^* \in X$.

2. For $x \in X, m \ge 0$: $||Z^m x - x^*|| \le \ell^m ||x - x^*||$.

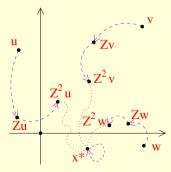
Banach's Fixed-point Theorem

(Adapted from Szepesvári, 2009 (see Appendix A.1).)

Let $(X, \|\cdot\|)$ be a Banach space, and let $Z : X \to X$ be a contraction mapping with contraction factor $\ell \in [0, 1)$. Then:

1. *Z* has a unique fixed point $x^* \in X$.

2. For $x \in X, m \ge 0$: $||Z^m x - x^*|| \le \ell^m ||x - x^*||$.



Markov Decision Problems

- 1. Banach's fixed-point theorem
- 2. Bellman optimality operator
- 3. Value iteration

• Take $S = \{s_1, s_2, \dots, s_n\}$. A function $F : S \to \mathbb{R}$ is equivalently a point in \mathbb{R}^n .

- Take $S = \{s_1, s_2, \dots, s_n\}$. A function $F : S \to \mathbb{R}$ is equivalently a point in \mathbb{R}^n .
- The Bellman optimality operator B^{*} : ℝⁿ → ℝⁿ for MDP (S, A, T, R, γ) is defined as follows. For F ∈ ℝⁿ, s ∈ S:

$$(B^{\star}(F))(s) \stackrel{\text{\tiny def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

- Take $S = \{s_1, s_2, \dots, s_n\}$. A function $F : S \to \mathbb{R}$ is equivalently a point in \mathbb{R}^n .
- The Bellman optimality operator B^{*} : ℝⁿ → ℝⁿ for MDP (S, A, T, R, γ) is defined as follows. For F ∈ ℝⁿ, s ∈ S:

$$(B^{\star}(F))(s) \stackrel{\text{\tiny def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

• Recall that the max norm $\|\cdot\|_{\infty}$ of $F = (f_1, f_2, \dots, f_n) \in \mathbb{R}^n$ is $\|F\|_{\infty} = \max\{|f_1|, |f_2|, \dots, |f_n|\}.$

- Take $S = \{s_1, s_2, \dots, s_n\}$. A function $F : S \to \mathbb{R}$ is equivalently a point in \mathbb{R}^n .
- The Bellman optimality operator B^{*} : ℝⁿ → ℝⁿ for MDP (S, A, T, R, γ) is defined as follows. For F ∈ ℝⁿ, s ∈ S:

$$(B^{\star}(F))(s) \stackrel{\text{\tiny def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

- Recall that the max norm $\|\cdot\|_{\infty}$ of $F = (f_1, f_2, \dots, f_n) \in \mathbb{R}^n$ is $\|F\|_{\infty} = \max\{|f_1|, |f_2|, \dots, |f_n|\}.$
- It is an established result that $(\mathbb{R}^n, \|\cdot\|_{\infty})$ is a Banach space.

- Take $S = \{s_1, s_2, \dots, s_n\}$. A function $F : S \to \mathbb{R}$ is equivalently a point in \mathbb{R}^n .
- The Bellman optimality operator B^{*} : ℝⁿ → ℝⁿ for MDP (S, A, T, R, γ) is defined as follows. For F ∈ ℝⁿ, s ∈ S:

$$(B^{\star}(F))(s) \stackrel{\text{\tiny def}}{=} \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \}.$$

- Recall that the max norm $\|\cdot\|_{\infty}$ of $F = (f_1, f_2, \dots, f_n) \in \mathbb{R}^n$ is $\|F\|_{\infty} = \max\{|f_1|, |f_2|, \dots, |f_n|\}.$
- It is an established result that $(\mathbb{R}^n, \|\cdot\|_{\infty})$ is a Banach space.

Fact. B^* is a contraction mapping in the $(\mathbb{R}^n, \|\cdot\|_{\infty})$ Banach space with contraction factor γ .

Proof that B^* is a Contraction Mapping We use: $|\max_a f(a) - \max_a g(a)| \le \max_a |f(a) - g(a)|$.

Proof that B^* is a Contraction Mapping We use: $|\max_a f(a) - \max_a g(a)| \le \max_a |f(a) - g(a)|$. $||B^*(F) - B^*(G)||_{\infty}$

8/12

Proof that B^* is a Contraction Mapping We use: $|\max_a f(a) - \max_a g(a)| \le \max_a |f(a) - g(a)|$. $||B^*(F) - B^*(G)||_{\infty} = \max_{s \in S} |(B^*(F))(s) - (B^*(G))(s)|$

Proof that B^{*} is a Contraction Mapping We use: $|\max_{a} f(a) - \max_{a} g(a)| < \max_{a} |f(a) - g(a)|$. $\|B^{\star}(F) - B^{\star}(G)\|_{\infty} = \max_{s \in S} |(B^{\star}(F))(s) - (B^{\star}(G))(s)|$ $= \max_{s \in S} \left| \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \} - \right|$ $\max_{a \in A} \sum_{c' \in S} T(s, a, s') \{ R(s, a, s') + \gamma G(s') \}$

Proof that B^* is a Contraction Mapping We use: $|\max_{a} f(a) - \max_{a} g(a)| < \max_{a} |f(a) - g(a)|$. $\|B^{\star}(F) - B^{\star}(G)\|_{\infty} = \max_{s \in S} |(B^{\star}(F))(s) - (B^{\star}(G))(s)|$ $= \max_{s \in S} \left| \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \} - \right|$ $\max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma G(s') \}$ $\leq \gamma \max_{(s,a)\in S imes A} \left| \sum_{s'\in S} T(s,a,s') \{F(s') - G(s')\} \right|$

Proof that B^* is a Contraction Mapping We use: $|\max_{a} f(a) - \max_{a} g(a)| < \max_{a} |f(a) - g(a)|$. $\|B^{\star}(F) - B^{\star}(G)\|_{\infty} = \max_{s \in S} |(B^{\star}(F))(s) - (B^{\star}(G))(s)|$ $= \max_{s \in S} \left| \max_{a \in A} \sum_{c' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \} - \right|$ $\max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma G(s') \}$ $\leq \gamma \max_{(s,a)\in S imes A} \left| \sum_{s'\in S} T(s,a,s') \{F(s') - G(s')\} \right|$ $\leq \gamma \max_{(s,a)\in S imes A} \sum_{s'\in S} T(s,a,s') |F(s') - G(s')|$

Proof that B^* is a Contraction Mapping We use: $|\max_{a} f(a) - \max_{a} g(a)| < \max_{a} |f(a) - g(a)|$. $\|B^{\star}(F) - B^{\star}(G)\|_{\infty} = \max_{s \in S} |(B^{\star}(F))(s) - (B^{\star}(G))(s)|$ $= \max_{s \in S} \left| \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \} - \right|$ $\max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma G(s') \}$ $\leq \gamma \max_{(s,a)\in S imes A} \left| \sum_{\sigma'\in S} T(s,a,s') \{F(s') - G(s')\} \right|$ $\leq \gamma \max_{(s,a)\in S imes A} \sum_{s'\in S} T(s,a,s') |F(s') - G(s')|$ $\leq \gamma \max_{(s,a)\in S imes A} \sum_{s,a,a} T(s,a,s') \|F-G\|_{\infty}$

Proof that B^* is a Contraction Mapping We use: $|\max_{a} f(a) - \max_{a} g(a)| < \max_{a} |f(a) - g(a)|$. $\|B^{\star}(F) - B^{\star}(G)\|_{\infty} = \max_{s \in S} |(B^{\star}(F))(s) - (B^{\star}(G))(s)|$ $= \max_{s \in S} \left| \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma F(s') \} - \right|$ $\max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma G(s') \}$ $\leq \gamma \max_{(s,a)\in S imes A} \left| \sum_{\sigma'\in S} T(s,a,s') \{F(s') - G(s')\} \right|$ $\leq \gamma \max_{(s,a)\in S imes A} \sum_{s'\in S} T(s,a,s') |F(s') - G(s')|$ $\leq \gamma \max_{(\boldsymbol{s}, \boldsymbol{a}) \in \boldsymbol{S} imes \boldsymbol{A}} \sum_{\boldsymbol{t} = \boldsymbol{2}} T(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}') \| \boldsymbol{F} - \boldsymbol{G} \|_{\infty} = \gamma \| \boldsymbol{F} - \boldsymbol{G} \|_{\infty}.$

• Banach's Fixed-point Theorem implies there is a unique fixed point for B^* .

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^* .
- Denote the fixed point V^{*}: S → ℝ. Note that B^{*}(V^{*}) = V^{*}. In other words, for s ∈ S:

$$V^{\star}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\star}(s') \}.$$

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^* .
- Denote the fixed point $V^* : S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$V^{\star}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\star}(s') \}.$$

• These are the Bellman optimality equations for MDP (S, A, T, R, γ) .

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^* .
- Denote the fixed point $V^* : S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$V^{\star}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\star}(s') \}.$$

These are the Bellman optimality equations for MDP (S, A, T, R, γ).
 n equations, n unknowns, but non-linear!

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^* .
- Denote the fixed point $V^* : S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$V^{\star}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\star}(s') \}.$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ).
 n equations, *n* unknowns, but non-linear!
- Value iteration, linear programming, and policy iteration are three distinct families of algorithms to compute *V**.

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^* .
- Denote the fixed point $V^* : S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$V^{\star}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\star}(s') \}.$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ).
 n equations, *n* unknowns, but non-linear!
- Value iteration, linear programming, and policy iteration are three distinct families of algorithms to compute *V**.
- Fact. V^* is the value function of every policy $\pi^* : S \to A$ such that for $s \in S$: $\pi^*(s) = \operatorname{argmax}_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^*(s') \}.$

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^* .
- Denote the fixed point $V^* : S \to \mathbb{R}$. Note that $B^*(V^*) = V^*$. In other words, for $s \in S$:

$$V^{\star}(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\star}(s') \}.$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ).
 n equations, *n* unknowns, but non-linear!
- Value iteration, linear programming, and policy iteration are three distinct families of algorithms to compute *V**.
- Fact. V^* is the value function of every policy $\pi^* : S \to A$ such that for $s \in S$: $\pi^*(s) = \operatorname{argmax}_{a \in A} \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^*(s') \}.$
- We shall prove next week that every such policy π^{*} is an optimal policy. Hence V^{*} is the optimal value function.

Markov Decision Problems

- 1. Banach's fixed-point theorem
- 2. Bellman optimality operator
- 3. Value iteration

• Iterative approach to compute V^* .

- Iterative approach to compute V^* .
- $V_0 \xrightarrow{B^{\star}} V_1 \xrightarrow{B^{\star}} V_2 \xrightarrow{B^{\star}} \dots$

• Iterative approach to compute V^* .

•
$$V_0 \xrightarrow{B^*} V_1 \xrightarrow{B^*} V_2 \xrightarrow{B^*} \dots$$

 $V_0 \leftarrow$ Arbitrary, element-wise bounded, *n*-length vector. $t \leftarrow 0$. **Repeat: For** $s \in S$: $V_{t+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') (R(s, a, s') + \gamma V_t(s')).$ $t \leftarrow t + 1.$ **Until** $V_t \approx V_{t-1}$ (up to machine precision).

• Iterative approach to compute V^* .

•
$$V_0 \xrightarrow{B^*} V_1 \xrightarrow{B^*} V_2 \xrightarrow{B^*} \dots$$

$$V_0 \leftarrow$$
 Arbitrary, element-wise bounded, *n*-length vector.
 $t \leftarrow 0$.
Repeat:
For $s \in S$:
 $V_{t+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') (R(s, a, s') + \gamma V_t(s'))$.
 $t \leftarrow t + 1$.
Until $V_t \approx V_{t-1}$ (up to machine precision).

• Popular; easy to implement; quick to converge in practice.

Markov Decision Problems

- 1. Banach's fixed-point theorem
- 2. Bellman optimality operator
- 3. Value iteration

Markov Decision Problems

- 1. Banach's fixed-point theorem
- 2. Bellman optimality operator
- 3. Value iteration

Next class: MDP planning through linear programming.