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Markov Decision Problems

1. Action value function

2. Policy iteration
- Policy improvement
- Policy improvement theorem and proof
- Policy iteration algorithm

3. History-dependent and stochastic policies
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Action Value Function
For π ∈ Π, s ∈ S,a ∈ A:

Qπ(s,a) def
=E[r 0 + γr 1 + γ2r 2 + . . . |s0 = s;a0 = a;at = π(st) for t ≥ 1].

Qπ(s,a) is the expected long-term reward from starting at state s, taking
action a at t = 0, and following policy π for t ≥ 1.
Qπ : S × A→ R is called the action value function of π.
Observe that Qπ satisfies, for s ∈ S,a ∈ A:

Qπ(s,a) =
∑
s′∈S

T (s,a, s′){R(s,a, s′) + γV π(s′)}.

For π ∈ Π, s ∈ S: Qπ(s, π(s)) = V π(s).
Qπ needs O(n2k) operations to compute if V π is available.
All optimal policies have the same (optimal) action value function Q⋆.
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Markov Decision Problems

1. Action value function

2. Policy iteration
- Policy improvement
- Policy improvement theorem and proof
- Policy iteration algorithm

3. History-dependent and stochastic policies
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Policy Improvement

s s s s s s ss1 2 3 4 5 6 7 8

π

Given π,
- Pick one or more improvable
states, and in these states,
- Switch to an arbitrary
improving action.

Let the resulting policy be π′.
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Policy Improvement Theorem
For π ∈ Π, s ∈ S,

IA(π, s) def
={a ∈ A : Qπ(s,a) > V π(s)}.

For π ∈ Π,
IS(π) def

={s ∈ S : |IA(π, s)| ≥ 1}.

Suppose IS(π) ̸= ∅ and π′ ∈ Π is obtained by policy improvement on π. Thus,
π′ satisfies

∀s ∈ S : [π′(s) = π(s) or π′(s) ∈ IA(π, s)] and ∃s ∈ S : π′(s) ∈ IA(π, s).

Policy Improvement Theorem:
(1) If IS(π) = ∅, then π is optimal, else
(2) if π′ is obtained by policy improvement on π, then π′ ≻ π.
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Implication of Policy Improvement Theorem

Policy Improvement Theorem:
(1) If IS(π) = ∅, then π is optimal, else
(2) if π′ is obtained by policy improvement on π, then π′ ≻ π.

If π ∈ Π is such that IS(π) ̸= ∅, then there exists π′ ∈ Π such that π′ ≻ π.
But Π has a finite number of policies (kn).
Hence, there must exist a policy π⋆ ∈ Π such that IS(π⋆) = ∅.
The theorem itself also tells us that π⋆ must be optimal.
Observe that IS(π⋆) = ∅ ⇐⇒ B⋆(V π⋆

) = V π⋆.
In other words, V π⋆ satisfies the Bellman optimality equations—which we
know has a unique solution. It is a convention to denote V π⋆

= V ⋆.
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Bellman Operator Bπ

For π ∈ Π, we define Bπ : Rn → Rn as follows.
For X : S → R and for s ∈ S,

(Bπ(X ))(s) def
=
∑
s′∈S

T (s, π(s), s′) (R(s, π(s), s′) + γX (s′)) .

One Bellman operator for each π ∈ Π. No “max” like B⋆.

Some facts about Bπ for all π ∈ Π. Similar proofs as for B⋆.
- Bπ is a contraction mapping with contraction factor γ.
- For X : S → R : lim

l→∞
(Bπ)l(X ) = V π.

- For X : S → R, Y : S → R: X ⪰ Y =⇒ Bπ(X ) ⪰ Bπ(Y ).

Observe that for π, π′ ∈ Π,∀s ∈ S: Bπ′
(V π)(s) = Qπ(s, π′(s)).
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Proof of Policy Improvement Theorem

IS(π) = ∅

=⇒ ∀π′ ∈ Π : V π ⪰ Bπ′
(V π)

=⇒ ∀π′ ∈ Π : V π ⪰ Bπ′
(V π) ⪰ (Bπ′

)2(V π)

=⇒ ∀π′ ∈ Π : V π ⪰ Bπ′
(V π) ⪰ (Bπ′

)2(V π) ⪰ · · · ⪰ lim
l→∞

(Bπ′
)l(V π)

=⇒ ∀π′ ∈ Π : V π ⪰ V π′
.

IS(π) ̸= ∅; π P.I.−→ π′ =⇒ Bπ′
(V π) ≻ V π

=⇒ (Bπ′
)2(V π) ⪰ Bπ′

(V π) ≻ V π

=⇒ lim
l→∞

(Bπ′
)l(V π) ⪰ · · · ⪰ (Bπ′

)2(V π) ⪰ Bπ′
(V π) ≻ V π

=⇒ V π′ ≻ V π.
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Markov Decision Problems

1. Action value function

2. Policy iteration
- Policy improvement
- Policy improvement theorem and proof
- Policy iteration algorithm

3. History-dependent and stochastic policies
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Policy Iteration Algorithm

π ← Arbitrary policy.
While π has improvable states:

π′ ← PolicyImprovement(π).
π ← π′.

Return π.

Path taken (and hence the number of
iterations) in general depends on the
switching strategy.
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Markov Decision Problems

1. Action value function

2. Policy iteration
- Policy improvement
- Policy improvement theorem and proof
- Policy iteration algorithm
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A More General Class of Policies

In principle, an agent can follow a policy λ that maps every possible history
s0,a0, r 0, s1,a1, r 1, . . . , st for t ≥ 0 to a probability distribution over A.
Let Λ be the set of such policies λ (which are in general non-Markovian,
non-stationary, and stochastic).

Recall that we only considered Π, the set of all policies π : S → A (which are
Markovian, stationary, and deterministic). Observe that Π ⊂ Λ.
We have shown that there exists π⋆ ∈ Π such that for all π ∈ Π, π⋆ ⪰ π.

Could there exist λ ∈ Λ \ Π such that ¬(π⋆ ⪰ λ)? No.
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History and Stochasticity
In MDPs, the agent can sense state, and the consequence of each action
depends solely on state.

We are maximising an infinite sum of expected discounted rewards—the
challenge at each time step is the same: to maximise the expected long-term
reward starting from the current state!

History and stochasticity can help if the agent is unable to sense state
perfectly. Such a situation arises in an abstraction called the Partially
Observable MDP (POMDP).
Optimal policies for the finite horizon reward setting are in general
non-stationary (time-dependent).
Optimal policies (“strategies”) in many types of multi-player games are in
general stochastic (“mixed”) because the next state depends on all the
players’ actions, but each player chooses only their own.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15 / 16



15/16

History and Stochasticity
In MDPs, the agent can sense state, and the consequence of each action
depends solely on state.
We are maximising an infinite sum of expected discounted rewards—the
challenge at each time step is the same: to maximise the expected long-term
reward starting from the current state!

History and stochasticity can help if the agent is unable to sense state
perfectly. Such a situation arises in an abstraction called the Partially
Observable MDP (POMDP).
Optimal policies for the finite horizon reward setting are in general
non-stationary (time-dependent).
Optimal policies (“strategies”) in many types of multi-player games are in
general stochastic (“mixed”) because the next state depends on all the
players’ actions, but each player chooses only their own.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15 / 16



15/16

History and Stochasticity
In MDPs, the agent can sense state, and the consequence of each action
depends solely on state.
We are maximising an infinite sum of expected discounted rewards—the
challenge at each time step is the same: to maximise the expected long-term
reward starting from the current state!

History and stochasticity can help if the agent is unable to sense state
perfectly. Such a situation arises in an abstraction called the Partially
Observable MDP (POMDP).

Optimal policies for the finite horizon reward setting are in general
non-stationary (time-dependent).
Optimal policies (“strategies”) in many types of multi-player games are in
general stochastic (“mixed”) because the next state depends on all the
players’ actions, but each player chooses only their own.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15 / 16



15/16

History and Stochasticity
In MDPs, the agent can sense state, and the consequence of each action
depends solely on state.
We are maximising an infinite sum of expected discounted rewards—the
challenge at each time step is the same: to maximise the expected long-term
reward starting from the current state!

History and stochasticity can help if the agent is unable to sense state
perfectly. Such a situation arises in an abstraction called the Partially
Observable MDP (POMDP).
Optimal policies for the finite horizon reward setting are in general
non-stationary (time-dependent).

Optimal policies (“strategies”) in many types of multi-player games are in
general stochastic (“mixed”) because the next state depends on all the
players’ actions, but each player chooses only their own.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15 / 16



15/16

History and Stochasticity
In MDPs, the agent can sense state, and the consequence of each action
depends solely on state.
We are maximising an infinite sum of expected discounted rewards—the
challenge at each time step is the same: to maximise the expected long-term
reward starting from the current state!

History and stochasticity can help if the agent is unable to sense state
perfectly. Such a situation arises in an abstraction called the Partially
Observable MDP (POMDP).
Optimal policies for the finite horizon reward setting are in general
non-stationary (time-dependent).
Optimal policies (“strategies”) in many types of multi-player games are in
general stochastic (“mixed”) because the next state depends on all the
players’ actions, but each player chooses only their own.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15 / 16



16/16

Markov Decision Problems

1. Action value function

2. Policy iteration
- Policy improvement
- Policy improvement theorem and proof
- Policy iteration algorithm

3. History-dependent and stochastic policies

Next class: Running time of policy iteration, review of MDP planning.
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