CS 747, Autumn 2022: Lecture 11

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

Markov Decision Problems

1. Policy iteration: variants and complexity bounds

- 2. Analysis of bounds
 - Basic tools
 - Howard's PI with k = 2
 - BSPI with k = 2
 - Open problems
- 3. Review of MDP planning

Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds

- Basic tools
- Howard's PI with k = 2
- BSPI with k = 2
- Open problems
- 3. Review of MDP planning

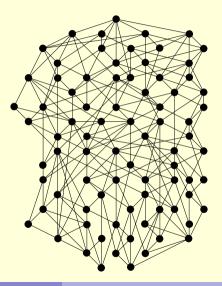
```
\pi \leftarrow Arbitrary policy.

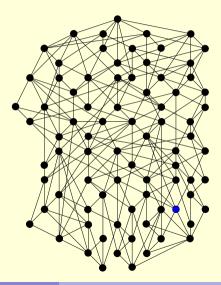
While \pi has improvable states:

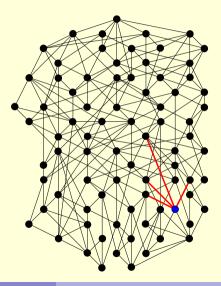
\pi' \leftarrow PolicyImprovement(\pi).

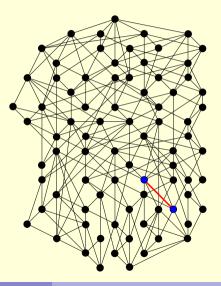
\pi \leftarrow \pi'.

Return \pi.
```

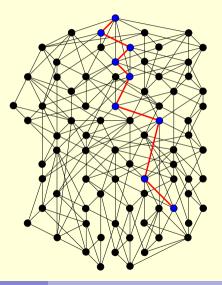






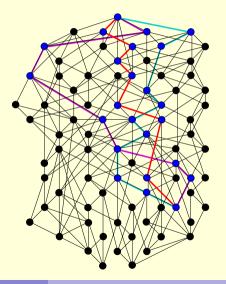






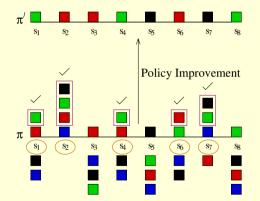
 $\pi \leftarrow$ Arbitrary policy. **While** π has improvable states: $\pi' \leftarrow$ PolicyImprovement(π). $\pi \leftarrow \pi'$. **Return** π .

Path taken (and hence the number of iterations) in general depends on the switching strategy.



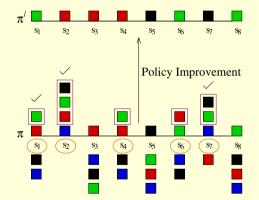
Howard's Policy Iteration

- Reference: Howard (1960).
- Greedy; switch all improvable states.



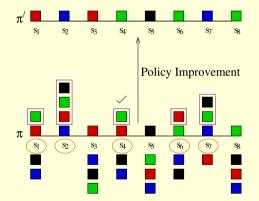
Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.



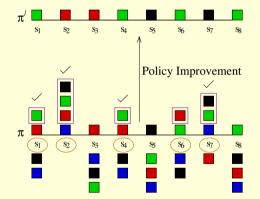
Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.



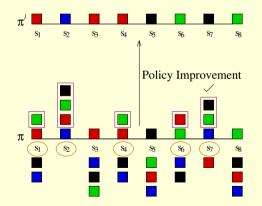
Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.



Simple Policy Iteration

- Reference: Melekopoglou and Condon (1994).
- Assume a fixed indexing of states.
- Switch the improvable state with the highest index.



Upper and Lower Bounds

U(n, k) is an upper bound applicable to a set of PI variants \mathcal{L} if

- for each *n*-state, *k*-action MDP $M = (S, A, T, R, \gamma)$,
- for each policy $\pi: S \to A$,
- for each algorithm $L \in \mathcal{L}$,

the expected number of policy evaluations performed by *L* on *M* if initialised at π is at most U(n, k).

Upper and Lower Bounds

U(n, k) is an upper bound applicable to a set of PI variants \mathcal{L} if

- for each *n*-state, *k*-action
 MDP *M* = (*S*, *A*, *T*, *R*, γ),
- for each policy $\pi: S \to A$,
- for each algorithm $L \in \mathcal{L}$,

the expected number of policy evaluations performed by *L* on *M* if initialised at π is at most U(n, k). L(n, k) is a lower bound applicable to a set of PI variants \mathcal{L} if

- there exists an *n*-state, *k*-action
 MDP *M* = (*S*, *A*, *T*, *R*, γ),
- there exists a policy $\pi : S \rightarrow A$,
- there exists an algorithm $L \in \mathcal{L}$,

such that the expected number of policy evaluations performed by *L* on *M* if initialised at π is at least L(n, k).

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant	Туре	<i>k</i> = 2	General k
Howard's (Greedy) PI [H60, MS99]	Deterministic	$O\left(\frac{2^n}{n}\right)$	$O\left(\frac{k^n}{n}\right)$
Mansour and Singh's Random PI [MS99]	Randomised	1.7172 ⁿ	$pprox O\left(rac{k}{2} ight)^n$
Mansour and Singh's Random PI [HPZ14]	Randomised	$poly(n) \cdot 1.5^n$	_

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant	Туре	<i>k</i> = 2	General k
Howard's (Greedy) PI [H60, MS99]	Deterministic	$O\left(\frac{2^n}{n}\right)$	$O\left(\frac{k^n}{n}\right)$
Mansour and Singh's Random PI [MS99]	Randomised	1.7172 ⁿ	$pprox O\left(rac{k}{2} ight)^n$
Mansour and Singh's Random PI [HPZ14]	Randomised	$poly(n) \cdot 1.5^n$	-

Lower bounds on number of iterations

 $\Omega(n)$ Howard's PI on *n*-state, 2-action MDPs [HZ10].

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant	Туре	<i>k</i> = 2	General k
Howard's (Greedy) PI [H60, MS99]	Deterministic	$O\left(\frac{2^n}{n}\right)$	$O\left(\frac{k^n}{n}\right)$
Mansour and Singh's Random PI [MS99]	Randomised	1.7172 ⁿ	$pprox O\left(rac{k}{2} ight)^n$
Mansour and Singh's Random PI [HPZ14]	Randomised	$poly(n) \cdot 1.5^n$	_

Lower bounds on number of iterations

Ω(n) Howard's PI on *n*-state, 2-action MDPs [HZ10]. $Ω(2^n)$ Simple PI on *n*-state, 2-action MDPs [MC94].

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

• Kalyanakrishnan, <u>Mall</u>, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^n for k = 2.

- Kalyanakrishnan, <u>Mall</u>, and <u>Goyal</u> (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^n for k = 2.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound k^{0.7207n}. Taraviya and Kalyanakrishnan (2019) improve to k^{0.7019n}.

- Kalyanakrishnan, <u>Mall</u>, and Goyal (2016) devise the Batch-switching Pl algorithm (deterministic), and show an upper bound of 1.6479^n for k = 2.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound k^{0.7207n}. Taraviya and Kalyanakrishnan (2019) improve to k^{0.7019n}.
- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of $(2 + \ln(k 1))^n$ for a randomised PI variant.

- Kalyanakrishnan, <u>Mall</u>, and Goyal (2016) devise the Batch-switching Pl algorithm (deterministic), and show an upper bound of 1.6479^n for k = 2.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound k^{0.7207n}. Taraviya and Kalyanakrishnan (2019) improve to k^{0.7019n}.
- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of $(2 + \ln(k 1))^n$ for a randomised PI variant.
- Taraviya and Kalyanakrishnan (2019) show an upper bound of $(O(\sqrt{k \log(k)}))^n$ for a randomised variant of Howard's PI.

- Kalyanakrishnan, <u>Mall</u>, and Goyal (2016) devise the Batch-switching Pl algorithm (deterministic), and show an upper bound of 1.6479^n for k = 2.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound k^{0.7207n}. Taraviya and Kalyanakrishnan (2019) improve to k^{0.7019n}.
- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of $(2 + \ln(k 1))^n$ for a randomised PI variant.
- Taraviya and Kalyanakrishnan (2019) show an upper bound of $(O(\sqrt{k \log(k)}))^n$ for a randomised variant of Howard's PI.
- <u>Ashutosh</u>, <u>Consul</u>, <u>Dedhia</u>, <u>Khirwadkar</u>, <u>Shah</u>, and Kalyanakrishnan (2020) show a *lower bound* of \sqrt{k}^n iterations for a deterministic variant of PI.

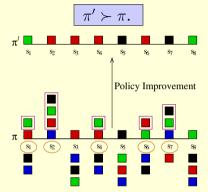
Markov Decision Problems

1. Policy iteration: variants and complexity bounds

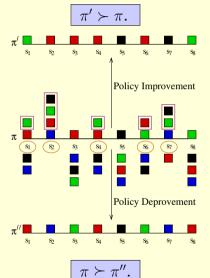
2. Analysis of bounds

- Basic tools
- Howard's PI with k = 2
- BSPI with k = 2
- Open problems
- 3. Review of MDP planning

1. Policy Improvement and Policy "Deprovement"



1. Policy Improvement and Policy "Deprovement"



Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

12/25

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

Markov Decision Problems

1. Policy iteration: variants and complexity bounds

- 2. Analysis of bounds
 - Basic tools
 - Howard's PI with k = 2
 - BSPI with k = 2
 - Open problems
- 3. Review of MDP planning

Switch actions in every improvable state.

Switch actions in every improvable state.

π 0 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2022)

CS 747, Autumn 2022

Switch actions in every improvable state.

π′ 0 0 0 0 0 0 0 0 1 1 1 1 1

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2022)

CS 747, Autumn 2022

Switch actions in every improvable state.

 Possible?

 π' 0
 0
 0
 0
 1
 1
 1
 1

π 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2022)

CS 747, Autumn 2022

Switch actions in every improvable state.

π' 0 0 0 0 0 0 1 1 1 1 1

π 0 0 0 0 0 0 0 0 0 0 0 0 0

Shivaram Kalyanakrishnan (2022)

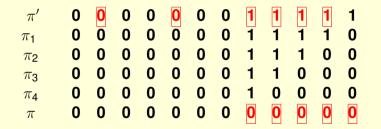
CS 747, Autumn 2022

Switch actions in every improvable state.

Shivaram Kalyanakrishnan (2022)

CS 747, Autumn 2022

Switch actions in every improvable state.



If π has *m* improvable states and $\pi \xrightarrow{\text{Howard's PI}} \pi'$, then there exist *m* policies π'' such that $\pi' \succeq \pi'' \succ \pi$.

• Take $m^* = \frac{n}{3}$.

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

- Take $m^* = \frac{n}{3}$.
- Number of policies with *m*^{*} or more improvable states visited

$$\leq rac{2^n}{m^\star} = rac{2^n}{n/3}.$$

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

$$\leq \frac{2^n}{m^\star} = \frac{2^n}{n/3}.$$

• Number of policies with fewer than m^* improvable states visited

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

$$\leq rac{2^n}{m^\star} = rac{2^n}{n/3}.$$

• Number of policies with fewer than *m*^{*} improvable states visited

$$\leq \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{m^{\star} - 1}$$

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

$$\leq rac{2^n}{m^\star} = rac{2^n}{n/3}.$$

• Number of policies with fewer than *m*^{*} improvable states visited

$$\leq \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{m^{\star} - 1} \leq 3\frac{2^{n}}{n}.$$

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

$$\leq rac{2^n}{m^\star} = rac{2^n}{n/3}.$$

• Number of policies with fewer than *m*^{*} improvable states visited

$$\leq \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{m^{\star} - 1} \leq 3\frac{2^{n}}{n}$$

Number of iterations taken by Howard's PI: $O\left(\frac{2^n}{n}\right)$ [MS99, HGDJ14].

Markov Decision Problems

1. Policy iteration: variants and complexity bounds

- 2. Analysis of bounds
 - Basic tools
 - Howard's PI with k = 2
 - BSPI with k = 2
 - Open problems
- 3. Review of MDP planning

Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

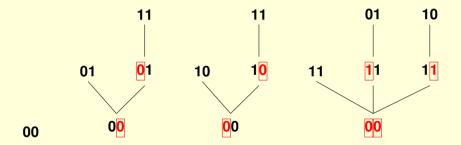
Howard's Policy Iteration takes at most _____ iterations on a 2-state MDP!

Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard's Policy Iteration takes at most <u>3</u> iterations on a 2-state MDP!

Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

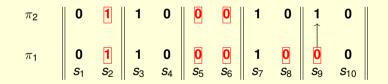
Howard's Policy Iteration takes at most <u>3</u> iterations on a 2-state MDP!



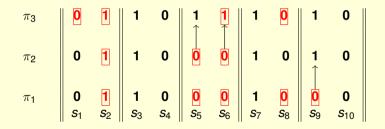
Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

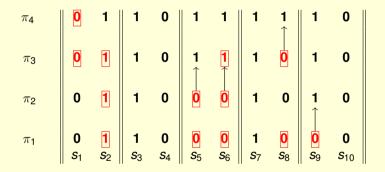
Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.



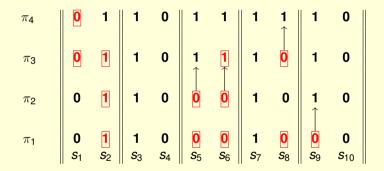
Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.



Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

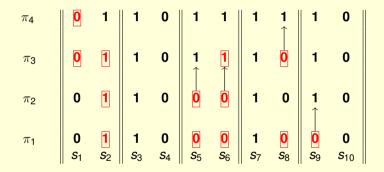


Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.



• Left-most batch can change only when all other columns are non-improvable.

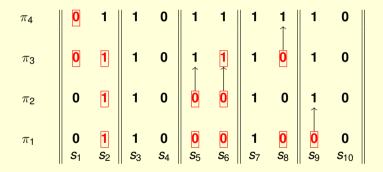
Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.



• Left-most batch can change only when all other columns are non-improvable.

• Left-most batch can change at most 3 times (following previous result).

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.



• Left-most batch can change only when all other columns are non-improvable.

• Left-most batch can change at most 3 times (following previous result).

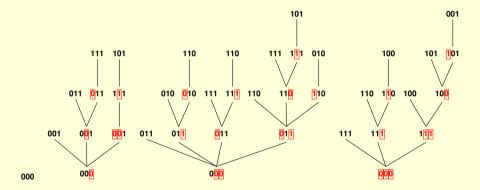
•
$$T(n) \leq 3 \times T(n-2) \leq v$$

Shivaram Kalyanakrishnan (2022)

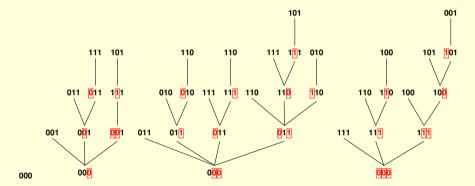
CS 747, Autumn 2022

Howard's Policy Iteration takes at most 5 iterations on a 3-state MDP!

Howard's Policy Iteration takes at most 5 iterations on a 3-state MDP!

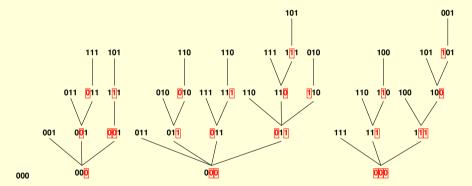


Howard's Policy Iteration takes at most 5 iterations on a 3-state MDP!



The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a] (and correspond to the Order Regularity Problem [H12, GHDJ15]).

Howard's Policy Iteration takes at most 5 iterations on a 3-state MDP!



The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a] (and correspond to the Order Regularity Problem [H12, GHDJ15]). BSPI with 3-sized batches gives $T(n) \le 5 \times T(n-3) \le 1.71^n$.

Shivaram Kalyanakrishnan (2022)

CS 747, Autumn 2022

Batch size	Depth of TBT	Bound on number of iterations
1	2	2 ⁿ
2	3	1.7321 ^{<i>n</i>}
3	5	1.7100 ⁿ
4	8	1.6818 ⁿ
5	13	1.6703 ^{<i>n</i>}
6	21	1.6611 ^{<i>n</i>}
7	33	1.6479 ^{<i>n</i>}

Batch size	Depth of TBT	Bound on number of iterations
1	2	2 ⁿ
2	3	1.7321 ^{<i>n</i>}
3	5	1.7100 ⁿ
4	8	1.6818 ⁿ
5	13	1.6703 ⁿ
6	21	1.6611 ^{<i>n</i>}
7	33	1.6479 ^{<i>n</i>}

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Batch size	Depth of TBT	Bound on number of iterations
1	2	2 ⁿ
2	3	1.7321 ^{<i>n</i>}
3	5	1.7100 ⁿ
4	8	1.6818 ⁿ
5	13	1.6703 ⁿ
6	21	1.6611 ^{<i>n</i>}
7	33	1.6479 ^{<i>n</i>}

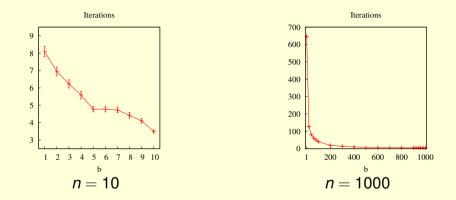
Depth of TBT for batch size 7 due to Gerencsér *et al.* [GHDJ15]. Will the bound continue to be non-increasing in the batch size?

Batch size	Depth of TBT	Bound on number of iterations
1	2	2 ⁿ
2	3	1.7321 ^{<i>n</i>}
3	5	1.7100 ⁿ
4	8	1.6818 ⁿ
5	13	1.6703 ^{<i>n</i>}
6	21	1.6611 ^{<i>n</i>}
7	33	1.6479 ^{<i>n</i>}

Depth of TBT for batch size 7 due to Gerencsér *et al.* [GHDJ15]. Will the bound continue to be non-increasing in the batch size? If so, 1.6479^{*n*} would be a bound for Howard's Policy Iteration!

CS 747, Autumn 2022

BSPI: Effect of Batch Size b



Averaged over *n*-state, 2-action MDPs with randomly generated transition and reward functions. Each point is an average over 100 randomly-generated MDP instances and initial policies [KMG16a].

Shivaram Kalyanakrishnan (2022)

CS 747, Autumn 2022

Markov Decision Problems

1. Policy iteration: variants and complexity bounds

- 2. Analysis of bounds
 - Basic tools
 - Howard's PI with k = 2
 - BSPI with k = 2
 - Open problems
- 3. Review of MDP planning

Open Problems

- Is the complexity of Howard's PI on 2-action MDPs upper-bounded by the Fibonacci sequence (≈ 1.6181ⁿ)?
- Is Howard's PI the most efficient among deterministic PI algorithms (worst case over all MDPs)?
- Is there a super-linear lower bound on the number of iterations taken by Howard's PI on 2-action MDPs?
- Is Howard's PI strongly polynomial on deterministic MDPs?
- Is there a variant of PI that can visit all kⁿ policies in some n-state, k-action MDP—implying an Ω(kⁿ) lower bound?
- Is there a strongly polynomial algorithm for MDP planning?

Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds

- Basic tools
- Howard's PI with k = 2
- BSPI with k = 2
- Open problems

3. Review of MDP planning

Summary of MDP Planning

- MDPs are an abstraction of sequential decision making.
- Many applications; many different formulations.
- Essential solution concept: optimal policy (known to exist).
- Three main families of planning algorithms: value iteration, linear programming, policy iteration.
- Have strengths and weaknesses in theory and in practice. Can combine.
- We showed correctness of all three methods.
- Used Banach's fixed-point theorem, Bellman (optimality) operator.
- What if *T*, *R* were not given, but have to be *learned* from interaction? Can we still learn to act optimally?
- Yes: that's the reinforcement learning problem. Next week!