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1. Reinforcement learning problem: prediction and control

2. Some natural assumptions

3. Basic algorithm for control
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Agent-Environment Interaction
Underlying MDP:
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From current state, agent takes action.
Environment (MDP) decides next state and reward.
Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .
History conveys information about the MDP to the agent.
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The Control Problem
For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a t-length history.

A learning algorithm L is a mapping from the set of all histories to the set of
all (probability distributions over) arms.

Actions are selected by the learning algorithm (agent);
next states and rewards by the MDP (environment).

Control problem: Can we construct L such that

lim
H→∞

1
H

(
H−1∑
t=0

P{at ∼ L(ht) is an optimal action for st}

)
= 1?
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The Prediction Problem
We are given a policy π that the agent follows.
The aim is to estimate V π.

For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a t-length history
(note that at ∼ π(st )).

A learning algorithm L is a mapping from the set of all histories to the set of
all mappings of the form S → R.

In other words, at each step t the learning algorithm provides an estimate V̂ t .

Prediction problem: Can we construct L such that

lim
t→∞

V̂ t = V π?
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Reinforcement Learning

1. Reinforcement learning problem: prediction and control

2. Some natural assumptions

3. Basic algorithm for control
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Assumption 1: Irreducibility
Fix an MDP M = (S,A,T ,R, γ) and a policy π.
Draw a graph with states as vertices and every non-zero-probability transition
under π as a directed edge.
Is there a directed path from s to s′ for every s, s′ ∈ S?
If yes, M is irreducible under π.
If M is irreducible under all π ∈ Π, then M is irreducible.

s s
1 2

s
3

s s
1 2

s
3

Reducible Irreducible
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Assumption 2: Aperiodicity
Fix an MDP M = (S,A,T ,R, γ) and a policy π.
For s ∈ S, t ≥ 1, let X (s, t) be the set of all states s′ s. t. there is a non-zero
probability of reaching s′ in exactly t steps by starting at s and following π.
For s ∈ S, let Y (s) be the set of all t ≥ 1 such that s ∈ X (s, t); let
p(s) = gcd(Y (s)).
M is aperiodic under π if for all s ∈ S: p(s) = 1.
If M is aperiodic under all π ∈ Π, then M is aperiodic.

s s
1 2

Y (s1) = {2,4,6, . . . }.

Periodic.

s s
1 2

Y (s1) = {1,2,3, . . . , }.
Y (s2) = {2,3,4, . . . , }.
Aperiodic.
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Ergodicity
An MDP that is irreducible and aperiodic is called an ergodic MDP.

In an ergodic MDP, every policy π induces a unique
steady state distribution µπ : S → (0,1), subject to

∑
s∈S µπ(s) = 1,

which is independent of the start state.

For s ∈ S, t ≥ 0, let p(s, t) be the probability of being in state s at step t , after
starting at some (arbitrarily) fixed state and following π. Then

µπ(s) = lim
t→∞

p(s, t).

We’ll use ergodicity in some of the later lectures.
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Reinforcement Learning

1. Reinforcement learning problem: prediction and control

2. Some natural assumptions

3. Basic algorithm for control
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A Model-based Approach

A model is an estimate of the MDP, which is usually updated based on
experience. We keep estimates T̂ and R̂, and try to get them to converge to
T and R, respectively.

At convergence, acting optimally for MDP (S,A, T̂ , R̂, γ) must be optimal for
the original MDP (S,A,T ,R, γ), too.

We must visit every state-action pair infinitely often.

Remember GLIE?
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Algorithm
Model-based RL

//Initialisation
For s, s′ ∈ S,a ∈ A :

T̂ [s][a][s′]← 0; R̂[s][a][s′]← 0.
For s, s′ ∈ S,a ∈ A :

totalTransitions[s][a][s′]← 0;
totalReward [s][a][s′]← 0.

For s ∈ S,a ∈ A :
totalVisits[s][a]← 0.

modelValid ← False.

Assume that the agent is born in state s0. //Continued on next slide.
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Algorithm
Assume that the agent is born in state s0. //Continued from previous slide.

//For ever
For t = 0,1,2, . . . :

If modelValid :
πopt ← MDPPlan(S,A, T̂ , R̂, γ).

at ←

{
πopt(st) w. p. 1− ϵt ,

UniformRandom(A) w. p. ϵt .

Else:
at ← UniformRandom(A).

Take action at ; obtain reward r t , next state st+1.
UpdateModel(st ,at , r t , st+1).
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Algorithm
UpdateModel(s,a, r,s′)

totalTransitions[s][a][s′]← totalTransitions[s][a][s′] + 1.
totalReward [s][a][s′]← totalReward [s][a][s′] + r .
totalVisits[s][a]← totalVisits[s][a] + 1.

For s′′ ∈ S :
T̂ [s][a][s′′]← totalTransitions[s][a][s′′]

totalVisits[s][a] .

R̂[s][a][s′]← totalReward [s][a][s′]
totalTransitions[s][a][s′] .

If ¬modelValid :
If ∀s′′ ∈ S,∀a′′ ∈ A : totalVisits[s′′][a′′] ≥ 1:

modelValid ← True.
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Discussion

Algorithm takes a sub-linear number of sub-optimal actions. Can still be
optimised in many ways (computational complexity, exploration, etc.).

For convergence to optimal behaviour, does the algorithm need irreducibility
and aperiodicity?
Needs irreducibility, not aperiodicity.

Why is this a “model-based” algorithm?
Uses θ(|S|2|A|) memory. Will soon see a “model-free” method that needs
θ(|S||A|) memory.
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Reinforcement Learning

1. Reinforcement Learning problem: prediction and control

2. Some natural assumptions

3. Basic algorithm for control

Next week: some approaches for prediction.
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