CS 747, Autumn 2022: Lecture 14

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

Reinforcement Learning

1. Prediction with Monte Carlo methods
2. On-line implementation

Reinforcement Learning

\author{

1. Prediction with Monte Carlo methods
}
2. On-line implementation

Prediction

- Assume we have an episodic task. $S=\left\{s_{1}, s_{2}, s_{3}\right\}, \gamma=1$. On each episode, start state picked uniformly at random.

Prediction

- Assume we have an episodic task. $S=\left\{s_{1}, s_{2}, s_{3}\right\}, \gamma=1$. On each episode, start state picked uniformly at random.
- Here are the first 5 episodes.

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{T}$.
> Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$

Prediction

- Assume we have an episodic task. $S=\left\{s_{1}, s_{2}, s_{3}\right\}, \gamma=1$. On each episode, start state picked uniformly at random.
- Here are the first 5 episodes.

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{T}$.
> Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$

- What is your estimate of V^{π} (call it \hat{V}^{5})?

Prediction

- Assume we have an episodic task. $S=\left\{s_{1}, s_{2}, s_{3}\right\}, \gamma=1$. On each episode, start state picked uniformly at random.
- Here are the first 5 episodes.

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{T}$.
> Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{T}$

- What is your estimate of V^{π} (call it \hat{V}^{5})?

Monte Carlo (MC) methods estimate based on sample averages.

Defining Relevant Quantities

- For $s \in S, i \geq 1, j \geq 1$, let
- $\mathbf{1}(s, i, j)$ be 1 if s is visited at least j times on episode i (else $\mathbf{1}(s, i, j)=0$), and
- $G(s, i, j)$ be the discounted long-term reward starting from the j-th visit of s on episode i,
- Taking $G(s, i, j)=0$ if $\mathbf{1}(s, i, j)=0$; also $0 / 0=0$.

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$.
Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$.
Episode 4: $s_{3}, 1, s_{\boldsymbol{T}}$.
Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{T}$

Defining Relevant Quantities

- For $s \in S, i \geq 1, j \geq 1$, let
- $\mathbf{1}(s, i, j)$ be 1 if s is visited at least j times on episode i (else $\mathbf{1}(s, i, j)=0$), and
- $G(s, i, j)$ be the discounted long-term reward starting from the j-th visit of s on episode i,
- Taking $G(s, i, j)=0$ if $\mathbf{1}(s, i, j)=0$; also $0 / 0=0$.
Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{T}$.
Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$.
Episode 4: $s_{3}, 1, s_{\top}$.
Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$
- $1\left(s_{1}, 1,1\right)=1, G\left(s_{1}, 1,1\right)=5+\gamma \cdot 2+\gamma^{2} \cdot 3+\gamma^{3} \cdot 1=11$.
- $\mathbf{1}\left(s_{1}, 1,3\right)=0$.
- $1\left(s_{2}, 5,1\right)=1, G\left(s_{2}, 5,1\right)=3+\gamma \cdot 3+\gamma^{2} \cdot 1=7$.
- $1\left(s_{2}, 5,2\right)=1, G\left(s_{2}, 5,2\right)=3+\gamma \cdot 1=4$.

Some Standard Estimates of $V^{\pi}(s)$

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$.
Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$.
Episode 4: $s_{3}, 1, s_{\top}$.
Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$
Let \hat{V}^{N} denote estimate after N episodes.
First-visit MC: Average the G's of every first occurrence of s in an episode.

$$
\hat{V}_{\text {First-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, 1)}{\sum_{i=1}^{N} \mathbf{1}(s, i, 1)} .
$$

Some Standard Estimates of $V^{\pi}(s)$

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$.
Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$.
Episode 4: $s_{3}, 1, s_{\top}$.
Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$
Let \hat{V}^{N} denote estimate after N episodes.
First-visit MC: Average the G's of every first occurrence of s in an episode.

$$
\begin{gathered}
\hat{V}_{\text {First-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, 1)}{\sum_{i=1}^{N} 1(s, i, 1)} \\
\text { Hence } \hat{V}_{\text {First-visit }}^{5}\left(s_{2}\right)=\frac{4+7+8+7}{4}=6.5 .
\end{gathered}
$$

Some Standard Estimates of $V^{\pi}(s)$

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$. Episode 4: $s_{3}, 1, s_{T}$.
Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{T}$
Let \hat{V}^{N} denote estimate after N episodes.
Every-visit MC: Average the G's of every occurrence of s in an episode.

$$
\hat{V}_{\text {Every-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} \sum_{j=1}^{\infty} G(s, i, j)}{\sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j)}
$$

Some Standard Estimates of $V^{\pi}(s)$

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{\top}$. Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\text {T }}$
Let \hat{V}^{N} denote estimate after N episodes.
Every-visit MC: Average the G's of every occurrence of s in an episode.

$$
\hat{V}_{\text {Every-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} \sum_{j=1}^{\infty} G(s, i, j)}{\sum_{i=1}^{N} \sum_{j=1}^{\infty} 1(s, i, j)}
$$

$$
\text { Hence } \hat{V}_{\text {Every-visit }}^{5}\left(s_{2}\right)=\frac{(4+1)+(7+1)+8+(7+4)}{7} \approx 4.57
$$

Some Not-so-standard Estimates of $V^{\pi}(s)$

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$. Episode 4: $s_{3}, 1, s_{T}$. Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{T}$

Let \hat{V}^{N} denote estimate after N episodes.
Second-visit MC: Average the G's of every second occurrence of s in an episode.

$$
\hat{V}_{\text {Second-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, 2)}{\sum_{i=1}^{N} \mathbf{1}(s, i, 2)}
$$

Some Not-so-standard Estimates of $V^{\pi}(s)$

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$. Episode 4: $s_{3}, 1, s_{T}$. Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$

Let \hat{V}^{N} denote estimate after N episodes.
Second-visit MC: Average the G's of every second occurrence of s in an episode.

$$
\begin{gathered}
\hat{V}_{\text {Second-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, 2)}{\sum_{i=1}^{N} 1(s, i, 2)} \\
\text { Hence } \hat{V}_{\text {Second-visit }}^{5}\left(s_{2}\right)=\frac{1+1+4}{3}=2
\end{gathered}
$$

Some Not-so-standard Estimates of $V^{\pi}(s)$

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{T}$. Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$

Let \hat{V}^{N} denote estimate after N episodes.
Last-visit MC: Average the G's of every last occurrence of s in episode i (assume times(s, i) visits).

$$
\hat{V}_{\text {Last-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, \text { times }(s, i))}{\sum_{i=1}^{N} \mathbf{1}(s, i, \text { times }(s, i))}
$$

Some Not-so-standard Estimates of $V^{\pi}(s)$

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{T}$. Episode 5: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$

Let \hat{V}^{N} denote estimate after N episodes.
Last-visit MC: Average the G's of every last occurrence of s in episode i (assume times(s, i) visits).

$$
\begin{gathered}
\hat{V}_{\text {Last-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, \text { times }(s, i))}{\sum_{i=1}^{N} 1(s, i, \text { times }(s, i))} \\
\text { Hence } \hat{V}_{\text {Last-visit }}^{5}\left(s_{2}\right)=\frac{1+1+8+4}{4}=3.5 .
\end{gathered}
$$

Question

- Recall that we generate N episodes.
- Which claims below are true?

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{V}_{\text {First-visit }}^{N} & =V^{\pi} . \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Every-visit }}^{N} & =V^{\pi} . \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Second-visit }}^{N} & =V^{\pi} . \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Last-visit }}^{N} & =V^{\pi} .
\end{aligned}
$$

Question

- Recall that we generate N episodes.
- Which claims below are true?

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{V}_{\text {First-visit }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Everr-visit }}^{N} & =V^{\pi} . \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Second-visit }}^{N} & =V^{\pi} . \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Last-visit }}^{N} & =V^{\pi} .
\end{aligned}
$$

Question

- Recall that we generate N episodes.
- Which claims below are true?

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{V}_{\text {First-visit }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Every-visit }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Second-visit }}^{N} & =V^{\pi} . \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Last-visit }}^{N} & =V^{\pi} .
\end{aligned}
$$

Question

- Recall that we generate N episodes.
- Which claims below are true?

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{V}_{\text {First-visit }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Everr-visit }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Second-visiti }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Last-visit }}^{N} & =V^{\pi} .
\end{aligned}
$$

Question

- Recall that we generate N episodes.
- Which claims below are true?

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{V}_{\text {First-visit }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Every-visit }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Second-visit }}^{N} & =V^{\pi} . \text { True. } \\
\lim _{N \rightarrow \infty} \hat{V}_{\text {Last-visit }}^{N} & =V^{\pi} . \text { False. }
\end{aligned}
$$

Reinforcement Learning

1. Prediction with Monte Carlo methods
2. On-line implementation

First-visit MC Again

- Assume episodic task with $S=\left\{s_{1}, s_{2}, s_{3}\right\}$; following π.
- Say we start each episode with state s (for illustration s_{2}).

Episode 1: $s_{2}, 3, s_{2}, 1, s_{T}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\text {T }}$.
Episode 3: $s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$.
Episode 4: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{T}$

First-visit MC Again

- Assume episodic task with $S=\left\{s_{1}, s_{2}, s_{3}\right\}$; following π.
- Say we start each episode with state s (for illustration s_{2}).

Episode 1: $s_{2}, 3, s_{2}, 1, s_{\top}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\text {T }}$.
Episode 3: $s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$.
Episode 4: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{T}$

- $\hat{V}^{1}=G\left(s_{2}, 1,1\right)=4$.

First-visit MC Again

- Assume episodic task with $S=\left\{s_{1}, s_{2}, s_{3}\right\}$; following π.
- Say we start each episode with state s (for illustration s_{2}).

Episode 1: $s_{2}, 3, s_{2}, 1, s_{\top}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\text {T }}$.
Episode 3: $s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$.
Episode 4: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{T}$

- $\hat{V}^{1}=G\left(s_{2}, 1,1\right)=4$.
- $\hat{V}^{2}=\frac{1}{2}\left\{G\left(s_{2}, 1,1\right)+G\left(s_{2}, 2,1\right)\right\}=5.5$.

First-visit MC Again

- Assume episodic task with $S=\left\{s_{1}, s_{2}, s_{3}\right\}$; following π.
- Say we start each episode with state s (for illustration s_{2}).

Episode 1: $s_{2}, 3, s_{2}, 1, s_{\top}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\text {T }}$.
Episode 3: $s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$.
Episode 4: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{\top}$.

- $\hat{V}^{1}=G\left(s_{2}, 1,1\right)=4$.
- $\hat{V}^{2}=\frac{1}{2}\left\{G\left(s_{2}, 1,1\right)+G\left(s_{2}, 2,1\right)\right\}=5.5$.
- $\hat{V}^{3}=\frac{1}{3}\left\{G\left(s_{2}, 1,1\right)+G\left(s_{2}, 2,1\right)+G\left(s_{2}, 3,1\right)\right\} \approx 6.33$.

First-visit MC Again

- Assume episodic task with $S=\left\{s_{1}, s_{2}, s_{3}\right\}$; following π.
- Say we start each episode with state s (for illustration s_{2}).

Episode 1: $s_{2}, 3, s_{2}, 1, s_{T}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$.
Episode 3: $s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$.
Episode 4: $s_{2}, 3, s_{2}, 3, s_{1}, 1, s_{T}$.

- $\hat{V}^{1}=G\left(s_{2}, 1,1\right)=4$.
- $\hat{V}^{2}=\frac{1}{2}\left\{G\left(s_{2}, 1,1\right)+G\left(s_{2}, 2,1\right)\right\}=5.5$.
- $\hat{V}^{3}=\frac{1}{3}\left\{G\left(s_{2}, 1,1\right)+G\left(s_{2}, 2,1\right)+G\left(s_{2}, 3,1\right)\right\} \approx 6.33$.
- In general, for $t \geq 1$:

$$
\hat{V}^{t}(s)=\frac{1}{t} \sum_{i=1}^{t} G(s, i, 1) .
$$

An On-line Implementation

$$
\hat{V}^{t}(s)=\frac{1}{t} \sum_{i=1}^{t} G(s, t, 1)
$$

An On-line Implementation

$$
\begin{aligned}
\hat{V}^{t}(s) & =\frac{1}{t} \sum_{i=1}^{t} G(s, t, 1) \\
& =\frac{1}{t}\left(\sum_{i=1}^{t-1} G(s, i, 1)+G(s, t, 1)\right)
\end{aligned}
$$

An On-line Implementation

$$
\begin{aligned}
\hat{V}^{t}(s) & =\frac{1}{t} \sum_{i=1}^{t} G(s, t, 1) \\
& =\frac{1}{t}\left(\sum_{i=1}^{t-1} G(s, i, 1)+G(s, t, 1)\right) \\
& =\frac{1}{t}\left((t-1) \hat{V}^{t-1}(s)+G(s, t, 1)\right)
\end{aligned}
$$

An On-line Implementation

$$
\begin{aligned}
\hat{V}^{t}(s) & =\frac{1}{t} \sum_{i=1}^{t} G(s, t, 1) \\
& =\frac{1}{t}\left(\sum_{i=1}^{t-1} G(s, i, 1)+G(s, t, 1)\right) \\
& =\frac{1}{t}\left((t-1) \hat{V}^{t-1}(s)+G(s, t, 1)\right) \\
& =\left(1-\alpha_{t}\right) \hat{V}^{t-1}(s)+\alpha_{t} G(s, t, 1) \text { for } \alpha_{t}=\frac{1}{t}, \hat{V}^{0}(s)=0 .
\end{aligned}
$$

An On-line Implementation

$$
\begin{aligned}
\hat{V}^{t}(s) & =\frac{1}{t} \sum_{i=1}^{t} G(s, t, 1) \\
& =\frac{1}{t}\left(\sum_{i=1}^{t-1} G(s, i, 1)+G(s, t, 1)\right) \\
& =\frac{1}{t}\left((t-1) \hat{V}^{t-1}(s)+G(s, t, 1)\right) \\
& =\left(1-\alpha_{t}\right) \hat{V}^{t-1}(s)+\alpha_{t} G(s, t, 1) \text { for } \alpha_{t}=\frac{1}{t}, \hat{V}^{0}(s)=0 .
\end{aligned}
$$

- We already know that $\lim _{t \rightarrow \infty} \hat{V}^{t}(s)=V^{\pi}(s)$.

An On-line Implementation

$$
\begin{aligned}
\hat{V}^{t}(s) & =\frac{1}{t} \sum_{i=1}^{t} G(s, t, 1) \\
& =\frac{1}{t}\left(\sum_{i=1}^{t-1} G(s, i, 1)+G(s, t, 1)\right) \\
& =\frac{1}{t}\left((t-1) \hat{V}^{t-1}(s)+G(s, t, 1)\right) \\
& =\left(1-\alpha_{t}\right) \hat{V}^{t-1}(s)+\alpha_{t} G(s, t, 1) \text { for } \alpha_{t}=\frac{1}{t}, \hat{V}^{0}(s)=0 .
\end{aligned}
$$

- We already know that $\lim _{t \rightarrow \infty} \hat{V}^{t}(s)=V^{\pi}(s)$.
- Will we get convergence to $V^{\pi}(s)$ for other choices for $\alpha_{t}, \hat{V}^{0}(s)$?

Stochastic Approximation

- Result due to Robbins and Monro (1951).

Stochastic Approximation

- Result due to Robbins and Monro (1951).
- Let the sequence $\left(\alpha_{t}\right)_{t \geq 1}$ satisfy
- $\sum_{t=1}^{\infty} \alpha_{t}=\infty$.
- $\sum_{t=1}^{\infty}\left(\alpha_{t}\right)^{2}<\infty$.

Stochastic Approximation

- Result due to Robbins and Monro (1951).
- Let the sequence $\left(\alpha_{t}\right)_{t \geq 1}$ satisfy
- $\sum_{t=1}^{\infty} \alpha_{t}=\infty$.
- $\sum_{t=1}^{\infty}\left(\alpha_{t}\right)^{2}<\infty$.
- For $t \geq 1$, set

$$
\hat{V}^{t}(s) \leftarrow\left(1-\alpha_{t}\right) \hat{V}^{t-1}(s)+\alpha_{t} \boldsymbol{G}(s, t, 1),
$$

where \hat{V}^{0} is arbitrary (but bounded).

Stochastic Approximation

- Result due to Robbins and Monro (1951).
- Let the sequence $\left(\alpha_{t}\right)_{t \geq 1}$ satisfy
- $\sum_{t=1}^{\infty} \alpha_{t}=\infty$.
- $\sum_{t=1}^{\infty}\left(\alpha_{t}\right)^{2}<\infty$.
- For $t \geq 1$, set

$$
\hat{V}^{t}(s) \leftarrow\left(1-\alpha_{t}\right) \hat{V}^{t-1}(s)+\alpha_{t} \boldsymbol{G}(s, t, 1),
$$

where \hat{V}^{0} is arbitrary (but bounded).

- Then $\lim _{t \rightarrow \infty} \hat{V}^{t}(s)=V^{\pi}(s)$.

Stochastic Approximation

- Result due to Robbins and Monro (1951).
- Let the sequence $\left(\alpha_{t}\right)_{t \geq 1}$ satisfy
- $\sum_{t=1}^{\infty} \alpha_{t}=\infty$.
- $\sum_{t=1}^{\infty}\left(\alpha_{t}\right)^{2}<\infty$.
- For $t \geq 1$, set

$$
\hat{V}^{t}(s) \leftarrow\left(1-\alpha_{t}\right) \hat{V}^{t-1}(s)+\alpha_{t} \boldsymbol{G}(s, t, 1),
$$

where \hat{V}^{0} is arbitrary (but bounded).

- Then $\lim _{t \rightarrow \infty} \hat{V}^{t}(s)=V^{\pi}(s)$.
- $\left(\alpha_{t}\right)_{t \geq 1}$ is the "learning rate" or "step size".

Stochastic Approximation

- Result due to Robbins and Monro (1951).
- Let the sequence $\left(\alpha_{t}\right)_{t \geq 1}$ satisfy
- $\sum_{t=1}^{\infty} \alpha_{t}=\infty$.
- $\sum_{t=1}^{\infty}\left(\alpha_{t}\right)^{2}<\infty$.
- For $t \geq 1$, set

$$
\hat{V}^{t}(s) \leftarrow\left(1-\alpha_{t}\right) \hat{V}^{t-1}(s)+\alpha_{t} \boldsymbol{G}(s, t, 1),
$$

where \hat{V}^{0} is arbitrary (but bounded).

- Then $\lim _{t \rightarrow \infty} \hat{V}^{t}(s)=V^{\pi}(s)$.
- $\left(\alpha_{t}\right)_{t \geq 1}$ is the "learning rate" or "step size".
- Must be large enough, as well as small enough!

Stochastic Approximation

- Result due to Robbins and Monro (1951).
- Let the sequence $\left(\alpha_{t}\right)_{t \geq 1}$ satisfy
- $\sum_{t=1}^{\infty} \alpha_{t}=\infty$.
- $\sum_{t=1}^{\infty}\left(\alpha_{t}\right)^{2}<\infty$.
- For $t \geq 1$, set

$$
\hat{V}^{t}(s) \leftarrow\left(1-\alpha_{t}\right) \hat{V}^{t-1}(s)+\alpha_{t} \boldsymbol{G}(s, t, 1),
$$

where \hat{V}^{0} is arbitrary (but bounded).

- Then $\lim _{t \rightarrow \infty} \hat{V}^{t}(s)=V^{\pi}(s)$.
- $\left(\alpha_{t}\right)_{t \geq 1}$ is the "learning rate" or "step size".
- Must be large enough, as well as small enough!
- No need to store all previous episodes; t and \hat{V}^{t} suffice.

Reinforcement Learning

1. Prediction with Monte Carlo methods
2. On-line implementation

Reinforcement Learning

1. Prediction with Monte Carlo methods
2. On-line implementation

Next class: Bootstrapping.

