CS 747, Autumn 2022: Lecture 16

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2022

Reinforcement Learning

1. Multi-step returns
2. $\operatorname{TD}(\lambda)$
3. Control with TD learning

Reinforcement Learning

1. Multi-step returns
2. $\operatorname{TD}(\lambda)$
3. Control with TD learning

Multi-step Returns

- We consider prediction—estimating V^{π}.

Multi-step Returns

- We consider prediction-estimating V^{π}.
- Suppose we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}
$$

Multi-step Returns

- We consider prediction-estimating V^{π}.
- Suppose we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}
$$

- With TD(0), our first update would be:

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma V^{\text {old }}\left(s_{3}\right)-V^{\text {old }}\left(s_{2}\right)\right\} .
$$

Multi-step Returns

- We consider prediction-estimating V^{π}.
- Suppose we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}
$$

- With TD(0), our first update would be:

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma V^{\text {old }}\left(s_{3}\right)-V^{\text {old }}\left(s_{2}\right)\right\}
$$

- With First-visit Monte Carlo, our update would be

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma \cdot 1+\gamma^{2} \cdot 1+\gamma^{3} \cdot 2+\gamma^{4} \cdot 1-V^{\text {old }}\left(s_{2}\right)\right\} .
$$

Multi-step Returns

- We consider prediction-estimating V^{π}.
- Suppose we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}
$$

- With TD(0), our first update would be:

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma V^{\text {old }}\left(s_{3}\right)-V^{\text {old }}\left(s_{2}\right)\right\}
$$

- With First-visit Monte Carlo, our update would be

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma \cdot 1+\gamma^{2} \cdot 1+\gamma^{3} \cdot 2+\gamma^{4} \cdot 1-V^{\text {old }}\left(s_{2}\right)\right\}
$$

- Can we make this update instead?

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma \cdot 1+\gamma^{2} V^{\text {old }}\left(s_{3}\right)-V^{\text {old }}\left(s_{2}\right)\right\}
$$

Multi-step Returns

- We consider prediction-estimating V^{π}.
- Suppose we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}
$$

- With TD(0), our first update would be:

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma V^{\text {old }}\left(s_{3}\right)-V^{\text {old }}\left(s_{2}\right)\right\} .
$$

- With First-visit Monte Carlo, our update would be

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma \cdot 1+\gamma^{2} \cdot 1+\gamma^{3} \cdot 2+\gamma^{4} \cdot 1-V^{\text {old }}\left(s_{2}\right)\right\} .
$$

- Can we make this update instead?

$$
V^{\text {new }}\left(s_{2}\right) \leftarrow V^{\text {old }}\left(s_{2}\right)+\alpha\left\{2+\gamma \cdot 1+\gamma^{2} V^{\text {old }}\left(s_{3}\right)-V^{\text {old }}\left(s_{2}\right)\right\}
$$

Yes. It uses a 2-step return as target.

n-step Returns

- Trajectory: $s^{0}, r^{0}, s^{1}, r^{1}, \ldots$

n-step Returns

- Trajectory: $s^{0}, r^{0}, s^{1}, r^{1}, \ldots$
- For $t \geq 0, n \geq 1$, the n-step return $G_{t: t+n}$ is

$$
G_{t: t+n} \stackrel{\text { def }}{=} r^{t}+\gamma r^{t+1}+\gamma^{2} r^{t+2}+\cdots+\gamma^{n-1} r^{t+n-1}+\gamma^{n} V^{t+n-1}\left(s^{t+n}\right)
$$

n-step Returns

- Trajectory: $s^{0}, r^{0}, s^{1}, r^{1}, \ldots$
- For $t \geq 0, n \geq 1$, the n-step return $G_{t: t+n}$ is

$$
G_{t: t+n} \xlongequal{\text { def }} r^{t}+\gamma r^{t+1}+\gamma^{2} r^{t+2}+\cdots+\gamma^{n-1} r^{t+n-1}+\gamma^{n} V^{t+n-1}\left(s^{t+n}\right)
$$

- Convention: on episodic tasks, if a terminal state is encountered at $t+n^{\prime}$ for $1 \leq n^{\prime}<n$, take $G_{t: t+n}=G_{t: t+n^{\prime}}$.

n-step Returns

- Trajectory: $s^{0}, r^{0}, s^{1}, r^{1}, \ldots$
- For $t \geq 0, n \geq 1$, the n-step return $G_{t: t+n}$ is

$$
G_{t: t+n} \xlongequal{\text { def }} r^{t}+\gamma r^{t+1}+\gamma^{2} r^{t+2}+\cdots+\gamma^{n-1} r^{t+n-1}+\gamma^{n} V^{t+n-1}\left(s^{t+n}\right)
$$

- Convention: on episodic tasks, if a terminal state is encountered at $t+n^{\prime}$ for $1 \leq n^{\prime}<n$, take $G_{t: t+n}=G_{t: t+n^{\prime}}$.
- n-step TD makes updates of the form

$$
V^{t+n}\left(s^{t}\right) \leftarrow V^{t+n-1}\left(s^{t}\right)+\alpha\left\{G_{t: t+n}-V^{t+n-1}\left(s^{t}\right)\right\}
$$

n-step Returns

- Trajectory: $s^{0}, r^{0}, s^{1}, r^{1}, \ldots$
- For $t \geq 0, n \geq 1$, the n-step return $G_{t: t+n}$ is

$$
G_{t: t+n} \xlongequal{\text { def }} r^{t}+\gamma r^{t+1}+\gamma^{2} r^{t+2}+\cdots+\gamma^{n-1} r^{t+n-1}+\gamma^{n} V^{t+n-1}\left(s^{t+n}\right)
$$

- Convention: on episodic tasks, if a terminal state is encountered at $t+n^{\prime}$ for $1 \leq n^{\prime}<n$, take $G_{t: t+n}=G_{t: t+n^{\prime}}$.
- n-step TD makes updates of the form

$$
V^{t+n}\left(s^{t}\right) \leftarrow V^{t+n-1}\left(s^{t}\right)+\alpha\left\{G_{t: t+n}-V^{t+n-1}\left(s^{t}\right)\right\} .
$$

- For each $n \geq 1$, we have $\lim _{t \rightarrow \infty} V^{t}=V^{\pi}$.

n-step Returns

- Trajectory: $s^{0}, r^{0}, s^{1}, r^{1}, \ldots$
- For $t \geq 0, n \geq 1$, the n-step return $G_{t: t+n}$ is

$$
G_{t: t+n} \xlongequal{\text { def }} r^{t}+\gamma r^{t+1}+\gamma^{2} r^{t+2}+\cdots+\gamma^{n-1} r^{t+n-1}+\gamma^{n} V^{t+n-1}\left(s^{t+n}\right)
$$

- Convention: on episodic tasks, if a terminal state is encountered at $t+n^{\prime}$ for $1 \leq n^{\prime}<n$, take $G_{t: t+n}=G_{t: t+n^{\prime}}$.
- n-step TD makes updates of the form

$$
V^{t+n}\left(s^{t}\right) \leftarrow V^{t+n-1}\left(s^{t}\right)+\alpha\left\{G_{t: t+n}-V^{t+n-1}\left(s^{t}\right)\right\}
$$

- For each $n \geq 1$, we have $\lim _{t \rightarrow \infty} V^{t}=V^{\pi}$.
- What is the effect of n on bootstrapping?

n-step Returns

- Trajectory: $s^{0}, r^{0}, s^{1}, r^{1}, \ldots$
- For $t \geq 0, n \geq 1$, the n-step return $G_{t: t+n}$ is

$$
G_{t: t+n} \xlongequal{\text { def }} r^{t}+\gamma r^{t+1}+\gamma^{2} r^{t+2}+\cdots+\gamma^{n-1} r^{t+n-1}+\gamma^{n} V^{t+n-1}\left(s^{t+n}\right)
$$

- Convention: on episodic tasks, if a terminal state is encountered at $t+n^{\prime}$ for $1 \leq n^{\prime}<n$, take $G_{t: t+n}=G_{t: t+n^{\prime}}$.
- n-step TD makes updates of the form

$$
V^{t+n}\left(s^{t}\right) \leftarrow V^{t+n-1}\left(s^{t}\right)+\alpha\left\{G_{t: t+n}-V^{t+n-1}\left(s^{t}\right)\right\}
$$

- For each $n \geq 1$, we have $\lim _{t \rightarrow \infty} V^{t}=V^{\pi}$.
- What is the effect of n on bootstrapping? Small n means more bootstrapping.

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
G_{t: t+3}
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
G_{t: t+3} . \text { Yes. }
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
G_{t: t+3} . \text { Yes. }
$$

$$
G_{t: t+1} .
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
G_{t: t+3} \text {. Yes. } \quad G_{t: t+1} \text {. Yes. }
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
\begin{aligned}
& G_{t: t+3} . \text { Yes. } \\
& \frac{G_{t: t+1}+G_{t: t+2}}{2}
\end{aligned}
$$

$$
G_{t: t+1} . \text { Yes. }
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
\begin{aligned}
& G_{t: t+3} . \text { Yes. } \\
& \frac{G_{t: t+1}+G_{t: t+2}}{2} . \text { Yes. }
\end{aligned}
$$

$$
G_{t: t+1} . \text { Yes. }
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\}
$$

- Can we use this as our target?

$$
\begin{array}{ll}
G_{t: t+3} . \text { Yes. } & G_{t: t+1} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}}{2} . \text { Yes. } & \frac{2 G_{t: t+1}+3 G_{t: t+2}+G_{t: t+3}}{6}
\end{array}
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\}
$$

- Can we use this as our target?

$$
\begin{array}{lr}
G_{t: t+3} . \text { Yes. } & G_{t: t+1} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}}{2} . \text { Yes. } & \frac{2 G_{t: t+1}+3 G_{t: t+2}+G_{t: t+3}}{6} . \text { Yes. }
\end{array}
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\}
$$

- Can we use this as our target?

$$
\begin{aligned}
& G_{t: t+3} \text {. Yes. } \\
& \frac{G_{t: t+1}+G_{t: t+2}}{2} . \text { Yes. } \\
& \frac{G_{t: t+1}+G_{t: t+2}+3 G_{t: t+3}}{4}
\end{aligned}
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
\begin{array}{lr}
G_{t: t+3} . \text { Yes. } & \quad G_{t: t+1} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}}{2} . \text { Yes. } & \frac{2 G_{t: t+1}+3 G_{t: t+2}+G_{t: t+3}}{6} \text {. Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}+3 G_{t: t+3}}{4} . \text {. No. } &
\end{array}
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
\begin{array}{lc}
G_{t: t+3} \text {. Yes. } & G_{t: t+1} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}}{2} . \text { Yes. } & \frac{2 G_{t: t+1}+3 G_{t: t+2}+G_{t: t+3}}{6} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}+3 G_{t: t+3}}{4} . \text { No. } & \frac{G_{t: t+1}-2 G_{t: t+2}+4 G_{t: t+3}}{3}
\end{array}
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
\begin{array}{lc}
G_{t: t+3} . \text { Yes. } & G_{t: t+1} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}}{2} . \text { Yes. } & \frac{2 G_{t: t+1}+3 G_{t: t+2}+G_{t: t+3}}{6} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}+3 G_{t: t+3}}{4} . \text { No. } & \frac{G_{t: t+1}-2 G_{t: t+2}+4 G_{t: t+3}}{3}
\end{array}
$$

Combining Returns

- Consider updating the estimate of s^{t} at step $t+3$ using

$$
V^{t+3}\left(s^{t}\right) \leftarrow V^{t+2}\left(s^{t}\right)+\alpha\left\{\text { Target }-V^{t+2}\left(s^{t}\right)\right\} .
$$

- Can we use this as our target?

$$
\begin{array}{lc}
G_{t: t+3} . \text { Yes. } & G_{t: t+1} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}}{2} . \text { Yes. } & \frac{2 G_{t: t+1}+3 G_{t: t+2}+G_{t: t+3}}{6} . \text { Yes. } \\
\frac{G_{t: t+1}+G_{t: t+2}+3 G_{t: t+3}}{4} . \text { No. } & \frac{G_{t: t+1}-2 G_{t: t+2}+4 G_{t: t+3}}{3}
\end{array}
$$

- Can use any convex combination of the applicable G's.

The λ-return

- A particular convex combination is the λ-return, $\lambda \in[0,1]$:

$$
G_{t}^{\lambda} \stackrel{\text { def }}{=}(1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t: t+n}+\lambda^{T-t-1} G_{t: T}
$$

where $s^{T}=\boldsymbol{s}_{\top}$ (otherwise $T=\infty$).

The λ-return

- A particular convex combination is the λ-return, $\lambda \in[0,1]$:

$$
G_{t}^{\lambda} \stackrel{\text { def }}{=}(1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t: t+n}+\lambda^{T-t-1} G_{t: T}
$$

where $s^{T}=s_{T}$ (otherwise $T=\infty$).

- Observe that $G_{t}^{0}=G_{t: t+1}$, yielding full bootstrapping.
- Observe that $G_{t}^{1}=G_{t: \infty}$, a Monte Carlo estimate.
- In general, λ controls the amount of bootstrapping.

The λ-return

- A particular convex combination is the λ-return, $\lambda \in[0,1]$:

$$
G_{t}^{\lambda} \xlongequal{\text { def }}(1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t: t+n}+\lambda^{T-t-1} G_{t: T}
$$

where $s^{T}=s_{\top}$ (otherwise $T=\infty$).

- Observe that $G_{t}^{0}=G_{t: t+1}$, yielding full bootstrapping.
- Observe that $G_{t}^{1}=G_{t: \infty}$, a Monte Carlo estimate.
- In general, λ controls the amount of bootstrapping.
- If $\lambda>0$, transition $\left(s^{t}, r^{t}, s^{t+1}\right)$ contributes to the update of every previously-visited state: that is, $s^{0}, s^{1}, s^{2}, \ldots, s^{t}$.
- The amount of contribution falls of geometrically.
- Updating with the λ-return as target can be implemented elegantly by keeping track of the "eligibility" of each previous state to be updated.

Reinforcement Learning

1. Multi-step returns
2. $T D(\lambda)$
3. Control with TD learning

TD (λ) algorithm

- Maintains an eligibility trace $z: S \rightarrow \mathbb{R}$.
- Implementation often called the backward view.

$\mathrm{TD}(\lambda)$ algorithm

- Maintains an eligibility trace $z: S \rightarrow \mathbb{R}$.
- Implementation often called the backward view.

Initialise $V: S \rightarrow \mathbb{R}$ arbitrarily.
Repeat for each episode:
Set $z \rightarrow \mathbf{0}$.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:
Take action a; obtain reward r, next state s^{\prime}. $\delta \leftarrow r+\gamma V\left(s^{\prime}\right)-V(s)$. $z(s) \leftarrow z(s)+1$. For all s :
$V(s) \leftarrow V(s)+\alpha \delta z(s)$. $z(s) \leftarrow \gamma \lambda z(s)$.
$s \leftarrow s^{\prime}$.

Effect of λ

- Lower λ : more bootstrapping, more bias (less variance).
- Higher λ : more dependence on empirical rewards, more variance (less bias).
- For finite t, error is usually lowest for intermediate λ value.

Reinforcement Learning

1. Multi-step returns
2. $\operatorname{TD}(\lambda)$
3. Control with TD learning

Sketch

1. Maintain action value function estimate $\hat{Q}^{t}: S \times A \rightarrow \mathbb{R}$ for $t \geq 0$, initialised arbitrarily.
We would like to get \hat{Q}^{t} to converge to Q^{\star}.

Sketch

1. Maintain action value function estimate $\hat{Q}^{t}: S \times A \rightarrow \mathbb{R}$ for $t \geq 0$, initialised arbitrarily.
We would like to get \hat{Q}^{t} to converge to Q^{\star}.
2. Follow policy π^{t} at time step $t \geq 0$, for example one that is ϵ_{t}-greedy with respect to \hat{Q}^{t}.
Set ϵ_{t} to ensure infinite exploration of every state-action pair and also being greedy in the limit.

Sketch

1. Maintain action value function estimate $\hat{Q}^{t}: S \times A \rightarrow \mathbb{R}$ for $t \geq 0$, initialised arbitrarily.
We would like to get \hat{Q}^{t} to converge to Q^{\star}.
2. Follow policy π^{t} at time step $t \geq 0$, for example one that is ϵ_{t}-greedy with respect to \hat{Q}^{t}.
Set ϵ_{t} to ensure infinite exploration of every state-action pair and also being greedy in the limit.
3. Every transition $\left(s^{t}, a^{t}, r^{t}, s^{t+1}\right)$ conveys information about the underlying MDP. Update \hat{Q}^{t} based on the transition.
Can use TD learning (suitably adapted) to make the update.

Sketch

1. Maintain action value function estimate $\hat{Q}^{t}: S \times A \rightarrow \mathbb{R}$ for $t \geq 0$, initialised arbitrarily.
We would like to get \hat{Q}^{t} to converge to Q^{\star}.
2. Follow policy π^{t} at time step $t \geq 0$, for example one that is ϵ_{t}-greedy with respect to \hat{Q}^{t}.
Set ϵ_{t} to ensure infinite exploration of every state-action pair and also being greedy in the limit.
3. Every transition $\left(s^{t}, a^{t}, r^{t}, s^{t+1}\right)$ conveys information about the underlying MDP. Update \hat{Q}^{t} based on the transition.
Can use TD learning (suitably adapted) to make the update.

We consider three different update rules.

Three Control Algorithms

- From state s^{t}, action taken is $a^{t} \sim \pi^{t}\left(s^{t}\right)$.

Three Control Algorithms

- From state s^{t}, action taken is $a^{t} \sim \pi^{t}\left(s^{t}\right)$.
- Update made to \hat{Q}^{t} after observing transition $s^{t}, a^{t}, r^{t}, s^{t+1}$:

$$
\hat{\boldsymbol{Q}}^{t+1}\left(\boldsymbol{s}^{t}, \boldsymbol{a}^{t}\right) \leftarrow \hat{\boldsymbol{Q}}^{t}\left(\boldsymbol{s}^{t}, \boldsymbol{a}^{t}\right)+\alpha_{t+1}\left\{\text { Target }-\hat{\boldsymbol{Q}}^{t}\left(\boldsymbol{s}_{t}, \boldsymbol{a}^{t}\right)\right\} .
$$

Three Control Algorithms

- From state s^{t}, action taken is $a^{t} \sim \pi^{t}\left(s^{t}\right)$.
- Update made to \hat{Q}^{t} after observing transition $s^{t}, a^{t}, r^{t}, s^{t+1}$:

$$
\hat{\boldsymbol{Q}}^{t+1}\left(\boldsymbol{s}^{t}, \boldsymbol{a}^{t}\right) \leftarrow \hat{\boldsymbol{Q}}^{t}\left(\boldsymbol{s}^{t}, \boldsymbol{a}^{t}\right)+\alpha_{t+1}\left\{\text { Target }-\hat{\boldsymbol{Q}}^{t}\left(\boldsymbol{s}_{t}, \boldsymbol{a}^{t}\right)\right\} .
$$

$$
\begin{aligned}
\text { Q-learning: Target } & =r^{t}+\gamma \max _{a \in A} \hat{Q}^{t}\left(s^{t+1}, a\right) . \\
\text { Sarsa: Target } & =r^{t}+\gamma \hat{Q}^{t}\left(s^{t+1}, a^{t+1}\right) . \\
\text { Expected Sarsa: Target } & =r^{t}+\gamma \sum_{a \in A} \pi^{t}\left(s^{t+1}, a\right) \hat{Q}^{t}\left(s^{t+1}, a\right) .
\end{aligned}
$$

Three Control Algorithms

- From state s^{t}, action taken is $a^{t} \sim \pi^{t}\left(s^{t}\right)$.
- Update made to \hat{Q}^{t} after observing transition $s^{t}, a^{t}, r^{t}, s^{t+1}$:

$$
\hat{Q}^{t+1}\left(s^{t}, \boldsymbol{a}^{t}\right) \leftarrow \hat{Q}^{t}\left(s^{t}, \boldsymbol{a}^{t}\right)+\alpha_{t+1}\left\{\text { Target }-\hat{Q}^{t}\left(s_{t}, a^{t}\right)\right\} .
$$

$$
\begin{aligned}
\text { Q-learning: Target } & =r^{t}+\gamma \max _{a \in A} \hat{Q}^{t}\left(s^{t+1}, a\right) . \\
\text { Sarsa: Target } & =r^{t}+\gamma \hat{Q}^{t}\left(s^{t+1}, a^{t+1}\right) . \\
\text { Expected Sarsa: Target } & =r^{t}+\gamma \sum_{a \in A} \pi^{t}\left(s^{t+1}, a\right) \hat{Q}^{t}\left(s^{t+1}, a\right) .
\end{aligned}
$$

- Q-learning's update is off-policy; the other two are on-policy.

Three Control Algorithms

- From state s^{t}, action taken is $a^{t} \sim \pi^{t}\left(s^{t}\right)$.
- Update made to \hat{Q}^{t} after observing transition $s^{t}, a^{t}, r^{t}, s^{t+1}$:

$$
\hat{Q}^{t+1}\left(s^{t}, \boldsymbol{a}^{t}\right) \leftarrow \hat{Q}^{t}\left(s^{t}, \boldsymbol{a}^{t}\right)+\alpha_{t+1}\left\{\text { Target }-\hat{Q}^{t}\left(s_{t}, a^{t}\right)\right\} .
$$

$$
\begin{aligned}
\text { Q-learning: Target } & =r^{t}+\gamma \max _{a \in A} \hat{Q}^{t}\left(s^{t+1}, a\right) . \\
\text { Sarsa: Target } & =r^{t}+\gamma \hat{Q}^{t}\left(s^{t+1}, a^{t+1}\right) . \\
\text { Expected Sarsa: Target } & =r^{t}+\gamma \sum_{a \in A} \pi^{t}\left(s^{t+1}, a\right) \hat{Q}^{t}\left(s^{t+1}, a\right) .
\end{aligned}
$$

- Q-learning's update is off-policy; the other two are on-policy.
- $\lim _{t \rightarrow \infty} \hat{Q}^{t}=Q^{\star}$ for all three algorithms if π^{t} is ϵ_{t}-greedy w.r.t. \hat{Q}^{t}.

Three Control Algorithms

- From state s^{t}, action taken is $a^{t} \sim \pi^{t}\left(s^{t}\right)$.
- Update made to \hat{Q}^{t} after observing transition $s^{t}, a^{t}, r^{t}, s^{t+1}$:

$$
\hat{\boldsymbol{Q}}^{t+1}\left(\boldsymbol{s}^{t}, \boldsymbol{a}^{t}\right) \leftarrow \hat{\boldsymbol{Q}}^{t}\left(\boldsymbol{s}^{t}, \boldsymbol{a}^{t}\right)+\alpha_{t+1}\left\{\text { Target }-\hat{\boldsymbol{Q}}^{t}\left(\boldsymbol{s}_{t}, \boldsymbol{a}^{t}\right)\right\} .
$$

$$
\begin{aligned}
\text { Q-learning: Target } & =r^{t}+\gamma \max _{a \in A} \hat{Q}^{t}\left(s^{t+1}, a\right) . \\
\text { Sarsa: Target } & =r^{t}+\gamma \hat{Q}^{t}\left(s^{t+1}, a^{t+1}\right) . \\
\text { Expected Sarsa: Target } & =r^{t}+\gamma \sum_{a \in A} \pi^{t}\left(s^{t+1}, a\right) \hat{Q}^{t}\left(s^{t+1}, a\right) .
\end{aligned}
$$

- Q-learning's update is off-policy; the other two are on-policy.
- $\lim _{t \rightarrow \infty} \hat{Q}^{t}=Q^{\star}$ for all three algorithms if π^{t} is ϵ_{t}-greedy w.r.t. \hat{Q}^{t}.
- If $\pi^{t}=\pi$ (time-invariant) and it still visits every state-action pair infinitely often, then $\lim _{t \rightarrow \infty} \hat{Q}^{t}$ is Q^{π} for Sarsa and Expected Sarsa, but is Q^{\star} for Q-learning!

Temporal Difference Learning: Review

- Temporal difference (TD) learning is at the heart of RL.
- It is an instance of on-line learning (computationally cheap updates after each interaction).

Temporal Difference Learning: Review

- Temporal difference (TD) learning is at the heart of RL.
- It is an instance of on-line learning (computationally cheap updates after each interaction).
- Bootstrapping exploits the underlying Markovian structure, which Monte Carlo methods ignore.
- The $\operatorname{TD}(\lambda)$ family of algorithms, $\lambda \in[0,1]$, allows for controlling the extent of bootstrapping: $\lambda=0$ implements "full bootstrapping" and $\lambda=1$ is "no bootstrapping."

Temporal Difference Learning: Review

- Temporal difference (TD) learning is at the heart of RL.
- It is an instance of on-line learning (computationally cheap updates after each interaction).
- Bootstrapping exploits the underlying Markovian structure, which Monte Carlo methods ignore.
- The $\operatorname{TD}(\lambda)$ family of algorithms, $\lambda \in[0,1]$, allows for controlling the extent of bootstrapping: $\lambda=0$ implements "full bootstrapping" and $\lambda=1$ is "no bootstrapping."
- TD learning applies to both prediction and control.
- Q-learning, Sarsa, Expected Sarsa are all model-free (use $\theta(|S||A|)$-sized memory); can still be optimal in the limit.
- Sarsa(λ) commonly used in practice.

