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Faculties of Human Intelligence

@ Visual processing

@ Speech, language processing

@ Planning, problem solving

@ Learning

@ Communication, social interaction
@ Dexterity, physical skill

@ What enables humans to do all these things?

@ Why aren’t other animals able to do (all) the same?
@ We are born with human bodies and brains!

@ And how did we get those?
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Theory of Biological Evolution

Charles Darwin (1809-1882) [1]

1. https://commons.wikimedia.org/wiki/File:Charles_Darwin_photograph_by_Herbert_ Rose_Barraud,_1881.jpg.
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Natural Selection

1. https://commons.wikimedia.org/wiki/File:
Rothschild%27s_Giraffe_(Giraffa_camelopardalis_rothschildi)_male_(7068054987), crop_%26_edit.jpg. CC image courtesy of
Bernard DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.
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Natural Selection

2]

1. https://commons.wikimedia.org/wiki/File:
Rothschild%27s_Giraffe_(Giraffa_camelopardalis_rothschildi)_male_(7068054987), crop_%26_edit.jpg. CC image courtesy of

Bernard DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.
2. https://commons.wikimedia.org/wiki/File:Giraffe_male_browsing_..._(33225462676) .jpg CC image courtesy of Bernard

DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.
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Coevolution

Angraecum
sesquipedale [1]

1. https://commons.wikimedia.org/wiki/File:Darwin%27s_Orchid_ (Angraecum_sesquipedale)_(8562029223) .jpg. CC image
courtesy of Bernard DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.
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Angraecum
sesquipedale [1]

1. https://commons.wikimedia.org/wiki/File:Darwin%27s_Orchid_ (Angraecum_sesquipedale)_(8562029223) .jpg. CC image

courtesy of Bernard DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.
2. https://commons.wikimedia.org/wiki/File:Angraecum_sesquipedale_spur. jpg. CC image courtesy of Orchideen100 on WikiMedia

Commons licensed under CC-BY-SA-4.0.

Long “spur” [2]
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Coevolution

/

Angraecum Lona “sour” [2 Xanthopan morganii
sesquipedale [1] 9 spur[2] praedicta [3]

1. https://commons.wikimedia.org/wiki/File:Darwin%27s_Orchid_ (Angraecum_sesquipedale)_(8562029223) .jpg. CC image

courtesy of Bernard DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.
2. https://commons.wikimedia.org/wiki/File:Angraecum_sesquipedale_spur. jpg. CC image courtesy of Orchideen100 on WikiMedia

Commons licensed under CC-BY-SA-4.0.
3. https://commons.wikimedia.org/wiki/File:NHM_Xanthopan_morgani.jpg. CC image courtesy of Esculapio on WikiMedia Commons

licensed under CC-BY-SA-3.0.
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(1]

1. https://commons.wikimedia.org/wiki/File:Dog_morphological_variation.png. CC image courtesy of Mary Bloom, American Kennel
Club on WikiMedia Commons licensed under CC-BY-SA-4.0.
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Artificial Selection
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: | Wild Mustard Plant
(Brassica oleracea)

(1]

1. https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wild Mustard_Plant_Selective_Breeding.svg/
1000px-Wild_Mustard_Plant_Selective_Breeding.svg.png. CC image courtesy of Liwnoc on WikiMedia Commons licensed under
CC-BY-SA-4.0.
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Evolutionary Algorithms in Computing

@ Inspired by efficiency of selection
paradigm in natural world.

@ Usually much less complex in
terms of representation, scale,
parallelisation.

@ Validated by several empirical
successes, although theory not
very strong.

@ Means for black box optimisation
or policy search.
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Evolution and Learning
Evolutionary Function Approximation for Reinforcement Learning.

Shimon Whiteson and Peter Stone, Journal of Machine Learning Research,
7: 877-917, 2006.
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Evolution and Learning

Evolutionary Function Approximation for Reinforcement Learning.
Shimon Whiteson and Peter Stone, Journal of Machine Learning Research,
7: 877-917, 2006.

o NEAT
e NEAT+Q
@ Experiments

@ Discussion
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NeuroEvolution of Augmenting Topologies

Algorithm 2 NEAT(S, A, p,itn, 11, 8, €)
1= /I'S: set of all states, A: set of all actions, p: population size, my: node mutation rate
2 /'y link mutation rate, g: number of generations, e: episodes per generation

3

4 P[] — INIT-POPULATION(S, A, p) // create new population P with random networks
5 fori+— 1to gdo

6 for j—ltoedo

7 N,s,s’ « RANDOM(P D), null, INIT-STATE(S) /I select a network randomly
8 repeat

9: Q[] «— EVAL-NET(V,s") /! evaluate selected network on current state
10: a' + argmax;Qli /I select action with highest activation
1L s,a—s'.d

12- 7,s' «+ TAKE-ACTION(a) /! take action and transition to new state
13: N.fitness + N. fitness+r / update total reward accrued by N
14 until TERMINAL-STATE ?(s)

15: N.episodes +— N.episodes+1 / update total number of episodes for N
16 P'[] « new array of size p / new array will store next generation
17.  for j« 1to p do

18 P'[j] — BREED-NET(P[)) 1/ make a new network based on fit parents in P
19: with-probability /n,: ADD-NODE-MUTATION(P'[j]) // add a node to new network

20 with-probability ;: ADD-LINK-MUTATION(P [ j]) /! add a link to new network
2. PP

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877-917, 2006.
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Additional Details

@ Mutation by adding nodes and links.

Outputs Outputs
Add Node Add Link
Hidden Mutation Hidden :
Nodes Nodes Mutation
— —
Inputs Inputs
(a) A mutation operator for adding new nodes (b) A mutation operator for adding new links

Figure 1: Examples of NEAT s mutation operators for adding structure to networks. In (a), a hidden
node is added by splitting a link in two. In (b), a link, shown with a thicker black line, is
added to connect two nodes.

@ Crossover based on a system to track the evolution of individual genes.

@ Speciation based on explicit fithess sharing to preserve diversity in
population.
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Does Learning Help Evolution?

Jean-Baptiste Charles James Mark
de Lamarck Darwin Baldwin
(1744—-1829) (1809-1882) (1861-1934)

[1] [2] (3]

1. https://en.wikipedia.org/wiki/Jean-Baptiste_Lamarck#/media/File:Jean-Baptiste_de_Lamarck. jpg.
2. https://commons.wikimedia.org/wiki/File:Charles_Darwin_photograph_by_Herbert_ Rose_Barraud, _1881.jpg.
3. https://en.wikipedia.org/wiki/James_Mark_Baldwin#/media/File:James_Mark_Baldwin_1917. jpg.
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Does Learning Help Evolution?

@ In Lamarckian evolution, weight changes during an agent’s lifetime get
passed on to offspring.
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Does Learning Help Evolution?

@ In Lamarckian evolution, weight changes during an agent’s lifetime get
passed on to offspring.

@ In Darwinian evolution, weight changes during an agent’s lifetime do not get
passed on to offspring.

@ We now know that nature primarily implements Darwinian evolution:
information flows through genes.

@ Is the Darwinian model preferable for the synthetic field of evolutionary
computation, too?

@ The Baldwin effect, which examines learning in the Darwinian context,
suggests that populations that learn evolve more quickly (since the starting
weights only need to be approximately right, learning can “adjust”
appropriately).

@ Over time, the starting weights themselves become more favourable (will
enjoy higher fitness).
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Evolution and Learning

o NEAT
o NEAT+Q
@ Experiments

@ Discussion
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Algorithm

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of

Algorithm 3 NEAT+Q(S,A,c, p,ma,m;, g, e,00.Y, X, 84)

Ve oy e W

1/ S: set of all states, A: set of all actions, c: output scale, p: population size
1 My node mutation rate, my: link mutation rate, g: number of generations
1 e: number of episodes per generation, ©.: learning rate, y: discount factor
ke eligibility decay rate, &:4: exploration rate

P[] — INIT-POPULATION(S, A, p) /1 create new population P with random networks
for i 1togdo
for j«— 1toedo
N,s,s' — RANDOM(P]]), null, INTT-STATE(S)
repeat
QO[] + ex EVAL-NET(N,s")

1/ select a network randomly

1/ compute value estimates for current state

with-prob(e.4) @' — RANDOM(A) 1 select random exploratory action

else @’ «— argmax;O[k] 1/ or select greedy action
if 5 % null then
BACKPROP(N, 5, a, (r + ymax;Q[k]) /c, 0, Y, k) 11 adjust weights toward target
sa—s.a
r,s’ — TAKE-ACTION(a') /l take action and transition to new state
N._fitness — N.fitness +r /1 update total reward accrued by N
until TERMINAL-STATE ?(s)

N.episodes — N.episodes+1 /1 update total number of episodes for N
P[] — new array of size p 1/ new array will store next generation
for j« 1topdo

P'[j] +— BREED-NET(P[)) 1/ make a new network based on fit parents in P

with-probability m,: ADD-NODE-MUTATION(P'[}]) // add a node to new network

with-probability m;- ADD-LINK-MUTATION(P'[j]) 1/ add a link to new network
PP

Machine Learning Research, 7: 877-917, 2006.
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On-line Evolutionary Computation
@ By default, evolutionary computation operates in the off-line or pure
exploration mode.
@ To some extent the randomness in creating a population results in some
exploration, and fitness-based selection amounts to exploitation.
@ Yet evaluating a fixed population usually gives each member the same
number of episodes.
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On-line Evolutionary Computation
@ By default, evolutionary computation operates in the off-line or pure
exploration mode.
@ To some extent the randomness in creating a population results in some
exploration, and fitness-based selection amounts to exploitation.
@ Yet evaluating a fixed population usually gives each member the same
number of episodes.

@ What if the rewards are counted on-line: that is, each fitness evaluation adds
to the overall reward?

@ Under ¢..-greedy selection, we pick the current best (highest empirical
average of fitness) individual w.p. 1 — €o¢; W.p. €5 We pick an individual
uniformly at random.

@ Under Softmax selection, we pick individual with fitness f w.p. proportional to

e'/7, where 7 is the “temperature”.
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Evolution and Learning

o NEAT
e NEAT+Q
@ Experiments

@ Discussion
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Task 1: Mountain Car
MOUNTAIN CAR Goal

Reinforcement Learning: An Introduction. Richard S. Sutton and Andrew G. Barto, 1! edition, MIT Press, 1998.
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Task 2: Server Job Scheduling

Utility Functions for All Four Job Types

N Job Type #2

Utility

Job Type #4

160 L I I
0 50 100 150 200

Completion Time
Figure 3: The four utility functions used in our experiments.

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877-917, 2006.
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NEAT+Q vs. NEAT

Uniform Moving Average Score Per Episode

-10000

Uniform Moving Average Score Per Episode

-10500

-11000

-11500
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-13000

-13500

-14000

-14500

-15000

Q-Learning

Episode (x1000)
(a) Mountain Car

Episode (1000}

(b) Server Job Scheduling

Figure 4: A comparison of the performance of manual and evolutionary function approximators in

the mountain car and server job scheduling domains.

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of

Machine Learning Research, 7: 877-917, 2006.
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Topologies Evolved by NEAT+Q

eoeo eodecoo0o00
(a) Mountain Car (b) Server Job Scheduling

Figure 5: Typical examples of the topologies of the best networks evolved by NEAT+Q in both the
mountain car and scheduling domains. Input nodes are on the bottom, hidden nodes in
the middle, and output nodes on top. In addition to the links shown, each input node
is directly connected to each output node. Note that two output nodes can be directly
comnected, in which case the activation of one node serves not only as an output of the
network, but as an input to the other node.

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877-917, 2006.
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On-line NEAT+Q

Uniform Moving Average Score Per Episode

-10000
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Softmax NEAT+Q

/o-tine NEAT+Q
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a0 . . . L 15000 L .
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(a) Mountain Car

Figure 7: The performance of combining evolutionary function approximation with on-line evolu-
tionary computation compared to using each individually in the mountain car and server

job scheduling domains.

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of

Machine Learning Research, 7: 877-917, 2006.

(b) Server Job Scheduling
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Darwinian vs. Lamarckian Variants

Uniform Moving Average Score Per Episode

-10000

Uniform Moving Average Scor Per Episode

Lamarckiap NEAT+Q

v§ er Darwinian NEAT+Q

-10500

-11000

11500

-12000 |

-12500 |

~13000

-13500

~14000 [

-14500

-15000

Darwinian NEAT+Q

Lamarckian NEAT+Q

Episode (x1000)
(a) Mountain Car

Figure 10: A comparison of Darwinian and Lamarckian NEAT+Q in the mountain car and server

job scheduling domains.

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of

Machine Learning Research, 7: 877-917, 2006.

200 400 600
Episode (x1000)

(b) Server Job Scheduling
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Evolution and Learning

o NEAT
e NEAT+Q
@ Experiments

@ Discussion
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Conclusion

@ Evolution plays a primary role in animal intelligence.

@ Modern ML has mostly focused on within-lifetime learning, with evolutionary
computation treated as an approach for policy search.

@ This week’s article considers evolution as an outer loop and learning within
an inner loop.

@ Evolutionary computation highly parallelisable, even if it usually takes a much
higher aggregate number of samples.

@ Synthetic approaches need not be faithful to nature, yet there are many
factors in biological evolution to be understood better and incorporated:

» Cooperation and competition among individuals, species;

» Implicit and explicit communication;
» Steady-state populations.
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