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Faculties of Human Intelligence

Visual processing
Speech, language processing
Planning, problem solving
Learning
Communication, social interaction
Dexterity, physical skill

What enables humans to do all these things?
Why aren’t other animals able to do (all) the same?
We are born with human bodies and brains!
And how did we get those?
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Theory of Biological Evolution

Charles Darwin (1809–1882) [1]

1. https://commons.wikimedia.org/wiki/File:Charles_Darwin_photograph_by_Herbert_Rose_Barraud,_1881.jpg.
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Natural Selection

[1]

[2]

1. https://commons.wikimedia.org/wiki/File:
Rothschild%27s_Giraffe_(Giraffa_camelopardalis_rothschildi)_male_(7068054987),_crop_%26_edit.jpg. CC image courtesy of
Bernard DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.

2. https://commons.wikimedia.org/wiki/File:Giraffe_male_browsing_..._(33225462676).jpg CC image courtesy of Bernard
DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.
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Coevolution

Angraecum

Long “spur” [2]
Xanthopan morganii

sesquipedale [1]

praedicta [3]

1. https://commons.wikimedia.org/wiki/File:Darwin%27s_Orchid_(Angraecum_sesquipedale)_(8562029223).jpg. CC image
courtesy of Bernard DUPONT on WikiMedia Commons licensed under CC-BY-SA-2.0.

2. https://commons.wikimedia.org/wiki/File:Angraecum_sesquipedale_spur.jpg. CC image courtesy of Orchideen100 on WikiMedia
Commons licensed under CC-BY-SA-4.0.
3. https://commons.wikimedia.org/wiki/File:NHM_Xanthopan_morgani.jpg. CC image courtesy of Esculapio on WikiMedia Commons
licensed under CC-BY-SA-3.0.
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Artificial Selection

[1]
1. https://commons.wikimedia.org/wiki/File:Dog_morphological_variation.png. CC image courtesy of Mary Bloom, American Kennel
Club on WikiMedia Commons licensed under CC-BY-SA-4.0.
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Artificial Selection

[1]
1. https://upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Wild_Mustard_Plant_Selective_Breeding.svg/
1000px-Wild_Mustard_Plant_Selective_Breeding.svg.png. CC image courtesy of Liwnoc on WikiMedia Commons licensed under
CC-BY-SA-4.0.
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Evolutionary Algorithms in Computing

SELECT

GENERATE EVALUATE

π

π

π

π

π

π

π
π

π

π

ππ

π

π

45 2

−6
10

0

5

−7

3

3

21

2

6

4

−5

45

10
−6

−5

21

0

4

2

5

2

6

3

3

−7

Inspired by efficiency of selection
paradigm in natural world.

Usually much less complex in
terms of representation, scale,
parallelisation.

Validated by several empirical
successes, although theory not
very strong.

Means for black box optimisation
or policy search.
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Evolution and Learning

Evolutionary Function Approximation for Reinforcement Learning.
Shimon Whiteson and Peter Stone, Journal of Machine Learning Research,
7: 877–917, 2006.

NEAT

NEAT+Q

Experiments

Discussion
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NeuroEvolution of Augmenting Topologies

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877–917, 2006.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 26



11/26

Additional Details
Mutation by adding nodes and links.

Crossover based on a system to track the evolution of individual genes.

Speciation based on explicit fitness sharing to preserve diversity in
population.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11 / 26



12/26

Does Learning Help Evolution?

Jean-Baptiste Charles James Mark
de Lamarck Darwin Baldwin
(1744–1829) (1809–1882) (1861–1934)

[1] [2] [3]

1. https://en.wikipedia.org/wiki/Jean-Baptiste_Lamarck#/media/File:Jean-Baptiste_de_Lamarck.jpg.
2. https://commons.wikimedia.org/wiki/File:Charles_Darwin_photograph_by_Herbert_Rose_Barraud,_1881.jpg.
3. https://en.wikipedia.org/wiki/James_Mark_Baldwin#/media/File:James_Mark_Baldwin_1917.jpg.
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Does Learning Help Evolution?
In Lamarckian evolution, weight changes during an agent’s lifetime get
passed on to offspring.

In Darwinian evolution, weight changes during an agent’s lifetime do not get
passed on to offspring.
We now know that nature primarily implements Darwinian evolution:
information flows through genes.
Is the Darwinian model preferable for the synthetic field of evolutionary
computation, too?
The Baldwin effect, which examines learning in the Darwinian context,
suggests that populations that learn evolve more quickly (since the starting
weights only need to be approximately right, learning can “adjust”
appropriately).
Over time, the starting weights themselves become more favourable (will
enjoy higher fitness).
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Evolution and Learning

NEAT

NEAT+Q

Experiments

Discussion
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Algorithm

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877–917, 2006.
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On-line Evolutionary Computation
By default, evolutionary computation operates in the off-line or pure
exploration mode.
To some extent the randomness in creating a population results in some
exploration, and fitness-based selection amounts to exploitation.
Yet evaluating a fixed population usually gives each member the same
number of episodes.

What if the rewards are counted on-line: that is, each fitness evaluation adds
to the overall reward?

Under ϵec-greedy selection, we pick the current best (highest empirical
average of fitness) individual w.p. 1 − ϵec; w.p. ϵec we pick an individual
uniformly at random.
Under Softmax selection, we pick individual with fitness f w.p. proportional to
ef/τ , where τ is the “temperature”.
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Evolution and Learning

NEAT

NEAT+Q

Experiments

Discussion
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Task 1: Mountain Car

Reinforcement Learning: An Introduction. Richard S. Sutton and Andrew G. Barto, 1st edition, MIT Press, 1998.
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Task 2: Server Job Scheduling

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877–917, 2006.
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NEAT+Q vs. NEAT

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877–917, 2006.
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Topologies Evolved by NEAT+Q

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877–917, 2006.
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On-line NEAT+Q

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877–917, 2006.
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Darwinian vs. Lamarckian Variants

Evolutionary Function Approximation for Reinforcement Learning. Shimon Whiteson and Peter Stone, Journal of
Machine Learning Research, 7: 877–917, 2006.
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Evolution and Learning

NEAT

NEAT+Q

Experiments

Discussion

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 24 / 26



25/26

Conclusion

Evolution plays a primary role in animal intelligence.
Modern ML has mostly focused on within-lifetime learning, with evolutionary
computation treated as an approach for policy search.
This week’s article considers evolution as an outer loop and learning within
an inner loop.
Evolutionary computation highly parallelisable, even if it usually takes a much
higher aggregate number of samples.
Synthetic approaches need not be faithful to nature, yet there are many
factors in biological evolution to be understood better and incorporated:

▶ Cooperation and competition among individuals, species;
▶ Implicit and explicit communication;
▶ Steady-state populations.
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