
1/21

CS 747, Autumn 2022: Lecture 24

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2022

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 1 / 21



2/21

Navigation System
How to go from IIT Bombay to Marine Drive?

Start

Destination

Action

[1]

[1] https://www.flickr.com/photos/nat507/16088993607. CC image courtesy of Nathan Hughes Hamilton on Flickr licensed under CC BY 2.0.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 2 / 21

https://www.flickr.com/photos/nat507/16088993607


2/21

Navigation System
How to go from IIT Bombay to Marine Drive?

Start

Destination

Action

[1]

[1] https://www.flickr.com/photos/nat507/16088993607. CC image courtesy of Nathan Hughes Hamilton on Flickr licensed under CC BY 2.0.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 2 / 21

https://www.flickr.com/photos/nat507/16088993607


3/21

Some Popular Puzzles
How to solve?

Start

Destination

Action

Sudoku [1]

15-puzzle [2] Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png.
CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.

[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic on WikiMedia Commons licensed
under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3 / 21

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg


3/21

Some Popular Puzzles
How to solve?

Start

Destination

Action

Sudoku [1] 15-puzzle [2]

Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png.
CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.
[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic on WikiMedia Commons licensed
under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3 / 21

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg


3/21

Some Popular Puzzles
How to solve?

Start

Destination

Action

Sudoku [1] 15-puzzle [2] Same abstraction?

[1] https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png.
CC image courtesy of LithiumFlash on WikiCommons licensed under CC-BY-SA-4.0.
[2] https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg. CC image courtesy of Stannic on WikiMedia Commons licensed
under CC-BY-SA-3.0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3 / 21

https://upload.wikimedia.org/wikipedia/commons/e/eb/Sudoku_Puzzle_%28a_symmetrical_puzzle_with_17_clues%29.png
https://commons.wikimedia.org/wiki/File:15-puzzle-solvable.svg


4/21

Classical Search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4 / 21



4/21

Classical Search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4 / 21



5/21

Elements of a Search Problem Instance

Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when applied from start
state:

▶ reaches a goal state, and
▶ (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is branching factor b.
Length of optimal path to reach goal state is depth d of the search instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5 / 21



5/21

Elements of a Search Problem Instance
Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when applied from start
state:

▶ reaches a goal state, and
▶ (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is branching factor b.
Length of optimal path to reach goal state is depth d of the search instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5 / 21



5/21

Elements of a Search Problem Instance
Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when applied from start
state:

▶ reaches a goal state, and
▶ (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is branching factor b.
Length of optimal path to reach goal state is depth d of the search instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5 / 21



5/21

Elements of a Search Problem Instance
Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when applied from start
state:

▶ reaches a goal state, and
▶ (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is branching factor b.
Length of optimal path to reach goal state is depth d of the search instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5 / 21



5/21

Elements of a Search Problem Instance
Set of states, including designated start state.
Set of actions available from each state.
NextState(s, a) for each state s and action a.
Cost(s, a) for each state s and action a (assumed ≥ 0).
IsGoal(s) for each state s.

Expected output: a sequence of actions, which when applied from start
state:

▶ reaches a goal state, and
▶ (optionally) has minimum path-cost.

Note: Sometimes there might be no solution!

Number of available actions in each state is branching factor b.
Length of optimal path to reach goal state is depth d of the search instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5 / 21



6/21

Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the
least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6 / 21



6/21

Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the
least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6 / 21



6/21

Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the
least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6 / 21



6/21

Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the
least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6 / 21



6/21

Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the
least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6 / 21



6/21

Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the
least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6 / 21



6/21

Problem Formulation: Navigation System

Start

Destination

Action

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the
least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6 / 21



6/21

Problem Formulation: Navigation System

Start

Destination

Action

(Least−cost) Path

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the
least-cost path.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6 / 21



7/21

Problem Formulation: 15 Puzzle

5 15

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

4

15

4

13 2 3 12

11 1 10

5 14

8 7 6

4

15

4

13 2 3 12

9 11 1 10

14

8 7 6

44

13 2 3 12

9 11 1 10

5 14

8 7 6

9

32

14

1 4

5 6 7 8

9 10 11 12

13 15

. . .

Start state

Goal state

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the shortest
path to goal state.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7 / 21



7/21

Problem Formulation: 15 Puzzle

5 15

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

4

15

4

13 2 3 12

11 1 10

5 14

8 7 6

4

15

4

13 2 3 12

9 11 1 10

14

8 7 6

44

13 2 3 12

9 11 1 10

5 14

8 7 6

9

32

14

1 4

5 6 7 8

9 10 11 12

13 15

. . .

Start state

Goal state

States?

Start state?

Actions?

NextState()?

Cost()?

IsGoal()?

A solver needs to find the shortest
path to goal state.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7 / 21



8/21

Classical Search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8 / 21



9/21

Generic Search Template: Pseudocode

Primary data element is a Node, which a tuple of the form

(state,pathFromStartState,pathCost).

At every stage of the search,
- some states have been explored
- some states remain unexplored, and
- The Frontier is a set of nodes due for imminent expansion.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 21



9/21

Generic Search Template: Pseudocode

Primary data element is a Node, which a tuple of the form

(state,pathFromStartState,pathCost).

At every stage of the search,
- some states have been explored
- some states remain unexplored, and
- The Frontier is a set of nodes due for imminent expansion.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 21



9/21

Generic Search Template: Pseudocode

Frontier ← {Node(startState, (startState),0)}.
Repeat for ever:

Select a node n from Frontier .

//Which one?

//Expand n.
If isGoal(n.state):

Return n.
For each action a available from n.state:

s ← NextState(n.state,a).
c ← Cost(n.state,a).
n′ ← Node(s,n.path + (a, s),n.pathCost + c).
Merge n′ with Frontier .//Typically insertion;might also allow deletions.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 21



9/21

Generic Search Template: Pseudocode

Frontier ← {Node(startState, (startState),0)}.
Repeat for ever:

Select a node n from Frontier .//Which one?
//Expand n.
If isGoal(n.state):

Return n.
For each action a available from n.state:

s ← NextState(n.state,a).
c ← Cost(n.state,a).
n′ ← Node(s,n.path + (a, s),n.pathCost + c).
Merge n′ with Frontier .//Typically insertion;might also allow deletions.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9 / 21



10/21

Generic Search Template: Illustration

Start

Destination

Action

Which frontier node to expand?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 21



10/21

Generic Search Template: Illustration

Explored

Frontier

Unexplored

Which frontier node to expand?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 21



10/21

Generic Search Template: Illustration

Explored

Frontier

Unexplored

Which frontier node to expand?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 21



10/21

Generic Search Template: Illustration

Explored

Frontier

Unexplored

Which frontier node to expand?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 21



10/21

Generic Search Template: Illustration

Explored

Frontier

Unexplored

Which frontier node to expand?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 21



10/21

Generic Search Template: Illustration

Explored

Frontier

Unexplored

Goal

Which frontier node to expand?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 21



10/21

Generic Search Template: Illustration

Explored

Frontier

Unexplored

Goal

Which frontier node to expand?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10 / 21



11/21

Classical Search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).
No need to explicitly
maintain frontier (construct
on-line).
Guaranteed to terminate on
finite search instances.
Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).
No need to explicitly
maintain frontier (construct
on-line).
Guaranteed to terminate on
finite search instances.
Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).
No need to explicitly
maintain frontier (construct
on-line).
Guaranteed to terminate on
finite search instances.
Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).
No need to explicitly
maintain frontier (construct
on-line).
Guaranteed to terminate on
finite search instances.
Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).
No need to explicitly
maintain frontier (construct
on-line).
Guaranteed to terminate on
finite search instances.
Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).

No need to explicitly
maintain frontier (construct
on-line).
Guaranteed to terminate on
finite search instances.
Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).
No need to explicitly
maintain frontier (construct
on-line).

Guaranteed to terminate on
finite search instances.
Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).
No need to explicitly
maintain frontier (construct
on-line).
Guaranteed to terminate on
finite search instances.

Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



12/21

Depth-first Search (DFS)
Expand frontier node with longest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a stack
(LIFO).
No need to explicitly
maintain frontier (construct
on-line).
Guaranteed to terminate on
finite search instances.
Memory requirement linear
in depth d .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).

Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.

Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



13/21

Breadth-first Search (BFS)
Expand frontier node with shortest path from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

Frontier treated like a queue
(FIFO).
Guaranteed to terminate if
search depth is finite.
Memory requirement O(bd).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13 / 21



14/21

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
g(n).
Guaranteed to terminate if
search depth is finite and
each cost exceeds ϵ > 0.
Memory requirement
depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14 / 21



14/21

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
g(n).
Guaranteed to terminate if
search depth is finite and
each cost exceeds ϵ > 0.
Memory requirement
depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14 / 21



14/21

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
g(n).
Guaranteed to terminate if
search depth is finite and
each cost exceeds ϵ > 0.
Memory requirement
depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14 / 21



14/21

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
g(n).
Guaranteed to terminate if
search depth is finite and
each cost exceeds ϵ > 0.
Memory requirement
depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14 / 21



14/21

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
g(n).
Guaranteed to terminate if
search depth is finite and
each cost exceeds ϵ > 0.
Memory requirement
depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14 / 21



14/21

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
g(n).

Guaranteed to terminate if
search depth is finite and
each cost exceeds ϵ > 0.
Memory requirement
depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14 / 21



14/21

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
g(n).
Guaranteed to terminate if
search depth is finite and
each cost exceeds ϵ > 0.

Memory requirement
depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14 / 21



14/21

Lowest-cost-first Search (LCFS)
Expand frontier node with lowest path-cost from start state.

61 2

4

12 146

2 2 1

1 3 3 6 1

Explored Frontier

2 1 4 2 5 2

For node n, denote
path-cost from start state
g(n). Frontier treated as
priority queue based on
g(n).
Guaranteed to terminate if
search depth is finite and
each cost exceeds ϵ > 0.
Memory requirement
depends heavily on
instance.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14 / 21



15/21

Classical Search

Problem instances

Generic search template

Uninformed search

Informed search (a.k.a. heuristic search)

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 15 / 21



16/21

Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

Mahim

Powai

First you expand the Powai node. Which node will you expand next?
L&T and Hiranandani are geographically closer to Mahim: should that count?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16 / 21



16/21

Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

L&T

Ghatkopar

Kanjur Marg

Vikhroli

Mahim

Hiranandani

Powai

First you expand the Powai node.

Which node will you expand next?
L&T and Hiranandani are geographically closer to Mahim: should that count?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16 / 21



16/21

Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

L&T

Ghatkopar

Kanjur Marg

Vikhroli

Mahim

Hiranandani

Powai

First you expand the Powai node. Which node will you expand next?

L&T and Hiranandani are geographically closer to Mahim: should that count?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16 / 21



16/21

Incorporating Domain Knowledge into Search
Have to travel from Powai to Mahim.

L&T

Ghatkopar

Kanjur Marg

Vikhroli

Mahim

Hiranandani

Powai

First you expand the Powai node. Which node will you expand next?
L&T and Hiranandani are geographically closer to Mahim: should that count?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 16 / 21



17/21

Heuristic Functions and A⋆ Search Algorithm
A heuristic function h(n) is a guess of c⋆(n), the optimal path-cost-to-goal of
(the state in) node n.

h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) =
√
(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A⋆ search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the future (unknown).
The addition of h(n) makes A⋆ an informed or heuristic search algorithm.
A⋆ search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17 / 21



17/21

Heuristic Functions and A⋆ Search Algorithm
A heuristic function h(n) is a guess of c⋆(n), the optimal path-cost-to-goal of
(the state in) node n.
h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A⋆ search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the future (unknown).
The addition of h(n) makes A⋆ an informed or heuristic search algorithm.
A⋆ search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17 / 21



17/21

Heuristic Functions and A⋆ Search Algorithm
A heuristic function h(n) is a guess of c⋆(n), the optimal path-cost-to-goal of
(the state in) node n.
h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).

In A⋆ search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the future (unknown).
The addition of h(n) makes A⋆ an informed or heuristic search algorithm.
A⋆ search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17 / 21



17/21

Heuristic Functions and A⋆ Search Algorithm
A heuristic function h(n) is a guess of c⋆(n), the optimal path-cost-to-goal of
(the state in) node n.
h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A⋆ search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the future (unknown).
The addition of h(n) makes A⋆ an informed or heuristic search algorithm.
A⋆ search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17 / 21



17/21

Heuristic Functions and A⋆ Search Algorithm
A heuristic function h(n) is a guess of c⋆(n), the optimal path-cost-to-goal of
(the state in) node n.
h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A⋆ search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the future (unknown).

The addition of h(n) makes A⋆ an informed or heuristic search algorithm.
A⋆ search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17 / 21



17/21

Heuristic Functions and A⋆ Search Algorithm
A heuristic function h(n) is a guess of c⋆(n), the optimal path-cost-to-goal of
(the state in) node n.
h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A⋆ search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the future (unknown).
The addition of h(n) makes A⋆ an informed or heuristic search algorithm.

A⋆ search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17 / 21



17/21

Heuristic Functions and A⋆ Search Algorithm
A heuristic function h(n) is a guess of c⋆(n), the optimal path-cost-to-goal of
(the state in) node n.
h(n) is usually easy to compute. On the previous slide, we implicitly used
straight line distance:

h(n) =
√

(n.state.x −Mahim.x)2 + (n.state.y −Mahim.y)2.

Recall that in LCFS, we expand argminn∈Frontier g(n).
In A⋆ search, we expand argminn∈Frontier (g(n) + h(n)) .

g(n) summarises the past (known); h(n) anticipates the future (unknown).
The addition of h(n) makes A⋆ an informed or heuristic search algorithm.
A⋆ search originally conceived for robotic path planning.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 17 / 21



18/21

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c⋆(n),

where c⋆(n) is the optimal cost-to-goal of n.state.

Key result. If A⋆ search is run using an admissible heuristic (and some
minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for navigation? Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18 / 21



18/21

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c⋆(n),

where c⋆(n) is the optimal cost-to-goal of n.state.

Key result. If A⋆ search is run using an admissible heuristic (and some
minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for navigation? Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18 / 21



18/21

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c⋆(n),

where c⋆(n) is the optimal cost-to-goal of n.state.

Key result. If A⋆ search is run using an admissible heuristic (and some
minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for navigation?

Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18 / 21



18/21

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c⋆(n),

where c⋆(n) is the optimal cost-to-goal of n.state.

Key result. If A⋆ search is run using an admissible heuristic (and some
minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for navigation? Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18 / 21



18/21

Admissible Heuristics
A heuristic h is admissible if for all nodes n,

0 ≤ h(n) ≤ c⋆(n),

where c⋆(n) is the optimal cost-to-goal of n.state.

Key result. If A⋆ search is run using an admissible heuristic (and some
minor technical conditions hold), then the first goal node it expands will have
optimal path-cost from the start state (and the algorithm can terminate).

Is straight line distance an admissible heuristic for navigation? Yes.

For a given task, which is the best heuristic function to use?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 18 / 21



19/21

Effect of Heuristic

Start Destination

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 19 / 21



19/21

Effect of Heuristic

Start ExpandedDestination

h(n) = c⋆(n). Will only expand
nodes along optimal path!
Unfortunately c⋆(n) is not known!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 19 / 21



19/21

Effect of Heuristic

Start ExpandedDestination

h(n) = 0. Identical to LCFS.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 19 / 21



19/21

Effect of Heuristic

Start ExpandedDestination

Intermediate/typical h(n) expands
fewer nodes than LCFS.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 19 / 21



20/21

Admissible Heuristics
How to design an effective admissible heuristic for a task?

For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next class on search in games. But try to avoid.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20 / 21



20/21

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next class on search in games. But try to avoid.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20 / 21



20/21

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next class on search in games. But try to avoid.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20 / 21



20/21

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next class on search in games. But try to avoid.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20 / 21



20/21

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

Can we make do with inadmissible heuristics?

Yes—example coming up in next class on search in games. But try to avoid.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20 / 21



20/21

Admissible Heuristics
How to design an effective admissible heuristic for a task?
For many tasks people have already done so. A general strategy is to solve
the task with relaxed constraints.

What’s a good heuristic for 15-puzzle?

4

15

4

13 2 3 12

9 11 1 10

5 14

8 7 6

32

14

1 4

5 6 7 8

9 10 11 12

13 15

Start state Goal state

Sum of Manhattan distances between each number’s position in start state
and its position in goal state.

Can we make do with inadmissible heuristics?
Yes—example coming up in next class on search in games. But try to avoid.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 20 / 21



21/21

Discussion
Classical search a well-studied topic in AI.

Compute time measured by number of nodes expanded.

Heuristic guides search towards goal, improves efficiency.

What if actions have stochastic outcomes?

Studied as “decision-time planning” in MDPs.
Technical problem: compute a near-optimal action for a particular “current”
state in o(|S|) time (that is, without visiting all states in the MDP).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 21 / 21


