
CS 747 (Autumn 2022)
End-semester Examination

Instructor: Shivaram Kalyanakrishnan

8.30 a.m. – 11.30 a.m., November 17, 2022, LA 001 and LA 002

Note. This exam has 8 questions, given on the pages following this one. Provide justifica-
tions/calculations/steps along with each answer to illustrate how you arrived at the answer.
You will not receive credit for giving an answer without sufficient explanation.

General instructions.

1. Students whose roll number is odd must sit in LA001; students whose roll number is
even must sit in LA002.

2. Barring emergencies, students will be allowed toilet breaks only in these slots.

• From LA 001: 10.15 a.m. – 10.30 a.m. and 10.45 a.m. – 11.00 a.m.

• From LA 002: 10.30 a.m. – 10.45 a.m. and 11.00 a.m. – 11.15 a.m.

At most one student will be allowed at a time; they must enter their name and roll
number in the invigilators’ register before leaving the room for the break.

Steps for submission.

1. Bring your phone in a pouch or bag, and keep it on the table you are using.

2. Before the exam begins, turn on “flight mode” on the phone, so it cannot communicate.
Do not touch the phone while you are writing the exam.

3. When you are finished writing, put your pen away and stand up.

4. Remain standing while retrieving your phone, scanning your paper, turning off “flight
mode”, then uploading the scanned pdf to Moodle.

5. You will get 15 extra minutes after the test end time for scanning and uploading (you
can do it earlier if you have finished). If you are unable to scan and upload your paper,
you will be given a slot later to do so.

6. Before leaving, you must turn in your answer paper to the invigilators in the room.

7. We will only evaluate submissions for which the scanned copy matches the physical
answer paper that has been turned in.

1



Question 1. The pseudocode below describes an iterative procedure to update random
variable V based on (1) random samples x, y drawn from a finite set X and (2) a real-valued
random sample r drawn uniformly from [0, 1].

X ← {3, 6, 0, 5}.
V 0 ← 0.
For t = 0, 1, 2, . . . :

αt ← 1
t+1

.
xt ← Element of X selected uniformly at random.
yt ← Element of X selected uniformly at random.
//Note that xt and yt need not be distinct.
rt ← Element of [0, 1] drawn uniformly at random.
zt ← max{xt, yt}+ rt.
V t+1 ← V t(1− αt) + αtzt.

Describe the limiting behaviour of the sequence (V t)∞t=0, with an argument for its conver-
gence or non-convergence. If you claim convergence, also provide the limit of the sequence.
[4 marks]

Question 2. In an MDP with states S = {s1, s2, s3} and actions A = {a1, a2, }, an agent
goes along the following state-action-reward trajectory (superscript indicating time step).

t = 0 t = 1 t = 2
s0 a0 r0 s1 a1 r1 s2 a2 r2

s1 a1 2 s2 a2 −1 s1 a2 4
Q0 Q1 Q2

The agent keeps a Q-table, with all entries initialised to 0. This table Q0 = 0 gets
updated to Q1 after the first transition, and to Q2 after the second transition. Updates are
made with learning rate α = 1

4
and no discounting.

2a. Write down Q1 and Q2 if the update is made according to Q-learning. [2 marks]

2b. Write down Q1 and Q2 if the update is made according to Sarsa. [2 marks]

Question 3. An agent interacting with an MDP with non-terminal states {s1, s2} and
terminal state s⊤ encounters the following state-reward trajectory while following policy π.

s1, 1, s1, 2, s2, 2, s1, 2, s2, 1, s⊤.

3a. Explain the “Batch TD(0)” algorithm. [1 mark]

3b. What is the estimated value function V π if Batch TD(0) is run on the episodic data
given above? Assume discount factor γ = 3

4
. [3 marks]

2



Question 4. An MDP with a single non-terminal state s and terminal state s⊤ is shown
in the figure below. With policy π fixed, the agent transitions from s to s with probability
p ∈ (0, 1), and terminates with probability 1− p. Each transition yields a reward of 1. The
value of s under π is the expected sum of rewards until termination, with no discounting.

s s⊤

p, 1

1− p, 1

Each episode starts at s and terminates after a random number of steps, according to
the transition probabilities. The agent records the trajectories from N ≥ 1 episodes, based
on which it estimates V π(s).

For i ∈ {1, 2, . . . , N}, let Mi denote the number of occurrences of s in episode i. Let
G(i, j) denote the long-term reward on episode i starting from the j-th occurrence of s (hence
G(i, j) is defined for j ∈ {1, 2, . . . ,Mi}). Notice that G(i, j) = Mi − j + 1.

4a. The “first-visit” Monte Carlo estimate of V π(s) is given by

VFV =
1

N

N∑
i=1

G(i, 1).

What is E[VFV]? [1 mark]

4b. A “random-visit” Monte Carlo estimate of V π(s) is given by

VRV =
1

N

N∑
i=1

G(i, ri),

where ri is drawn uniformly at random from {1, 2, . . . ,Mi}. In other words, the
random-visit estimator selects a “G” from each episode by selecting uniformly at ran-
dom from the ones available, and then computes the average (across episodes) of the
selected G’s. What is E[VRV]? [4 marks]

Question 5. A “soft-max” policy for an n-armed bandit, n ≥ 2, maintains a parameter
wa ∈ R for each arm a ∈ {1, 2, . . . , n}, and selects arm a with probability

πw(a) =
ewa∑n
i=1 e

wi
.

Observe that the policy is parameterised by n-dimensional vector w = (w1, w2, . . . , wn).
An agent interacting with the bandit would like to update its policy based on the Re-

inforce algorithm. Suppose the agent’s current policy is parameterised by w ∈ Rn. The
agent pulls arm a sampled according to πw, and receives reward r. Describe how the agent
must update to a new parameter vector w′ based on this sample, if applying Reinforce
with learning rate α > 0. [5 marks]

3



Question 6. An MDP M = (S,A, T,R, γ), with notations as usual, has a finite but large
set of states S. Hence, a learning agent resorts to using generalisation to approximate the
value function of policy π : S → A that it is following. In particular, the agent uses a linear
scheme with the approximation V : S → R given by

V (s) = w · ϕ(s) for s ∈ S,

where w ∈ Rd for some d ≥ 1 is the weight vector, and ϕ : S → Rd gives the d-dimensional
feature vector for state s ∈ S.

6a. Recall that we defined the mean-squared value error (MSVE) of V (and hence of w)
in the class lecture. Write down the formula for MSVE(w); recall that Linear TD(1)
converges to its minimiser w⋆ = argminw∈Rd MSVE(w). [1 mark]

6b. Regularisation is a commonly-used technique in machine learning to contain “overfit-
ting”. It is accomplished by constraining w to have “small” coefficients. For regulari-
sation parameter β ≥ 0, the generalised objective function is

MSVEβ(w) = MSVE(w) + β∥w∥22,

where for w = (w1, w2, . . . , wd), ∥w∥22 =
∑d

i=1(wi)
2. Notice that our original objective

function is MSVE0. Generalise the update rule for Linear TD(1) if the aim is to
minimise the regularised objective function MSVEβ. [1 mark]

6c. Suppose w⋆
1 = argminw∈Rd MSVEβ1(w) and w⋆

2 = argminw∈Rd MSVEβ2(w), where β1 >
β2 > 0. Is it guaranteed that ∥w⋆

1∥22 ≤ ∥w⋆
2∥22? Justify your answer. [3 marks]

Question 7. Several black box optimisation methods involve the step of selection. Given
n ≥ 2 candidate solutions w1, w2, . . . , wn, the aim is to select some m ∈ {1, 2, . . . , n − 1}
with the highest fitness values. For candidate solution w, let f(w) denote the fitness. Now,
in many cases, simulations are stochastic, hence f(w) is the expected value of real-valued
random variable F (w), which has support [0, fmax]. One natural approach is to approximate
f(w) by f̄(w), the sample average of N ≥ 1 i.i.d. draws of F (w), obtained by running N
simulations using w. Note that this approach would entail Nn total simulations to evaluate
the n candidate solutions. Let α denote the probability that the m candidate solutions with
the highest f̄ values are not the m with the highest f values (for convenience we assume no
ties in either f or f̄). Derive an upper bound on α in terms of f , N , n, m, w1, w2, . . . , wn,
and fmax; the upper bound must go to 0 as N →∞. [4 marks]

Question 8. This question is based on the paper by Ng et al. (2003), presented in class,
on the application of reinforcement learning for helicopter control.

8a. Describe the state and action spaces in the MDP formulation adopted by the authors.
Write no more than 8 lines; anything beyond will be ignored. [2marks]

8b. Provide a summary of the methodology used to train a policy for flying the helicopter.
Write no more than 12 lines; anything beyond will be ignored. [2 marks]

4



Solutions

1. By the result of Robbins and Monro, the update must converge to E[z] (each zt for t ≥ 0 is
an i.i.d. sample of z). Now, E[z] = E[max{x, y}]+E[r], where x, y, r are again corresponding
random variables being repeatedly sampled i.i.d. Since

max{x, y} =


0 with probability 1

16
,

3 with probability 3
16
,

5 with probability 5
16
,

6 with probability 7
16
,

we have E[max{x, y}] = 0+9+25+42
16

= 19
4
. Also E[r] = 1

2
. Hence E[z] = 21

4
.

2a. Q-learning. Q0 is a table with all zeroes. Q1 remains the same except for

Q1(s1, a1) =
1

2
.

Q2 is the same as Q1 except for

Q2(s2, a2) =
1

4

(
−1 + 1

2

)
= −1

8
.

2b. Sarsa. Q0 is a table with all zeroes. Q1 remains the same except for

Q1(s1, a1) =
1

2
.

Q2 is the same as Q1 except for

Q2(s2, a2) =
1

4
(−1 + 0) = −1

4
.

5



3a. Batch TD(0) is a prediction algorithm, which involves performing TD(0) updates to a
batch of data (that is, to a set of transitions) collected by following some fixed policy π.
TD(0) updates are performed in round robin on the set of samples essentially an infinite
number of times. The learning rate is annealed appropriately, and hence the method is
guaranteed to converge. In the limit, the estimate becomes the value function of π on M̂ ,
which is the MDP with the maximum likelihood of generating the data.

3b. M̂ is obtained by setting transition probabilities based on the empirical fraction observed
in the data. In this case, we obtain the following MDP, with transitions annotated with
“probability, reward”. Transitions with zero probability are not shown.

s1 s2 s⊤

1
3, 1

2
3, 2

1
2, 2

1
2, 1

On M̂ , we obtain the following Bellman equations.

V π
M̂
(s1) =

1

3
(1 + γV π

M̂
(s1)) +

2

3
(2 + γV π

M̂
(s2)),

V π
M̂
(s2) =

1

2
(2 + γV π

M̂
(s1)) +

1

2
(1 + γV π

M̂
(s⊤)).

Substituting values, we observe:

V π
M̂
(s1) =

1

3
(1 +

3

4
V π
M̂
(s1)) +

2

3
(2 +

3

4
V π
M̂
(s2)),

V π
M̂
(s2) =

1

2
(2 +

3

4
V π
M̂
(s1)) +

1

2
.

Simplifying:

9V π
M̂
(s1) = 20 + 6V π

M̂
(s2),

8V π
M̂
(s2) = 12 + 3V π

M̂
(s1).

Solving these linear equations yields

V π
M̂
(s1) =

116

27
, V π

M̂
(s2) =

28

9
.

6



4a.

E[VFV] =
1

N

N∑
i=1

E[G(i, 1)]

=
1

N

N∑
i=1

((1− p)1 + p(1− p)2 + p2(1− p)3 + . . . )

=
1

1− p
.

4b.

E[VRV] =
1

N

N∑
i=1

E[G(i, ri)]

=
1

N

N∑
i=1

∞∑
Mi=1

P{Episode i lasts Mi steps}
1

Mi

Mi∑
r=1

(Mi − r + 1)

=
1

N

N∑
i=1

∞∑
Mi=1

pMi−1(1− p) · Mi + 1

2

=
∞∑
k=1

pk−1(1− p) · k + 1

2

= 1 +
p

2(1− p)
.

5. Since the task in question is a bandit (with no states and inter-state transitions), the
episodic reward simply amounts to J(w) = E[r], where r is the reward obtained by pulling
arm a ∼ πw. Hence the policy update must be

w′ ← w + α{∇w ln(πw(a))}r.

Now,

∂

∂wi

ln(πw(a)) =
∂

∂wi

ln(
ewa∑n
j=1 e

wj
)

=
∂

∂wi

(wa)−
∑n

j=1 e
wj

(
∑n

j=1 e
wj)2

∂

∂wi

(
n∑

j=1

ewj)

=

{
1− πw(a) i = a,

−πw(a) i ̸= a.

Hence ∇w ln(πw(a)) is a vector whose element of a is 1−πw(a), and whose elements for i ̸= a
are all −πw(a).

7



6a.
MSVE(w)

def
=
∑
s∈S

µπ(s)(V π(s)− w · ϕ(s))2,

where µπ : S → [0, 1] is the stationary distribution of π.

6b. Notice that ∇wMSVEβ(w) = ∇wMSVE(w) + 2βw. For t = 0, 1, . . . , we get the update

wt+1 ← wt − αt

(
(Gt:∞ − wt · ϕ(st))ϕ(st) + 2βwt

)
where (1) st is the state encountered at time step t, (2) Gt:∞ is the long-term reward from t
onwards, and (3) αt is the learning rate at time step t.

6c. Yes. Since w⋆
1 minimises MSVEβ1(·), we have

MSVEβ1(w
⋆
1) ≤ MSVEβ1(w

⋆
2).

Since w⋆
2 minimises MSVEβ2(·), we have

MSVEβ2(w
⋆
2) ≤ MSVEβ2(w

⋆
1).

Adding the inequalities above yields

MSVEβ1(w
⋆
1) + MSVEβ2(w

⋆
2) ≤ MSVEβ1(w

⋆
2) + MSVEβ2(w

⋆
1)

=⇒
MSVE(w⋆

1) + β1∥w⋆
1∥22 +MSVE(w⋆

2) + β2∥w⋆
2∥22 ≤ MSVE(w⋆

2) + β1∥w⋆
2∥22 +MSVE(w⋆

1) + β2∥w⋆
1∥22

=⇒
(β1 − β2)(∥w⋆

1∥22 − ∥w⋆
2∥22) ≤ 0

=⇒
∥w⋆

1∥22 ≤ ∥w⋆
2∥22.

8



7. Without loss of generality, assume

f(w1) > f(w2) > · · · > f(wn).

The idea is that if N is large enough, each f̄(w) will be “close” to the corresponding f(w),
and hence the top m w’s according to f̄ will be w1, w2, . . . , wm. Let c be an arbitrary number
in (f(wm+1), f(wm)). We can be sure that the selection is accurate if for i ∈ {1, 2, . . . ,m},
f̄(wi) > c, and for i ∈ {m+ 1,m+ 2, . . . , n}, f̄(wi) ≤ c.. By separately upper-bounding the
probability of deviation for each candidate solution (using Hoeffding’s inequality), and then
combining them, we get

α ≤
m∑
i=1

P{f̄(wi) > c}+
n∑

i=m+1

P{f̄(wi) ≤ c}

≤
n∑

i=1

e
−2N

(f(wi)−c)2

(fmax)2 .

Since the bound holds for arbitrary c ∈ (f(wm+1), f(wm)), we have

α ≤ min
c∈(f(wm+1),f(wm))

n∑
i=1

e
−2N

(f(wi)−c)2

(fmax)2 .

Alternatively, we may upper-bound α by upper-bounding the probabilities for each pair
i ∈ {1, 2, . . . ,m} and j ∈ {m + 1,m + 2, . . . , n} that f̄(wi) > f̄(wj)—in turn by enforcing
that each f̄ fall on the appropriate side of a constant cij ∈ (fwj

, fw1). This reasoning would
yield the following upper bound:

α ≤
m∑
i=1

n∑
i=m+1

min
cij∈(f(wj),f(wi))

(
e
−2N

(f(wi)−cij)
2

(fmax)2 + e
−2N

(f(wj)−cij)
2

(fmax)2

)
.

8a. A total of 12 state features are used, including position (three coordinates), orientation
(three coordinates), and the rates of change of the position and orientation (another three
plus three coordinates). The action is four-dimensional. For each of the two rotors, there is
one control corresponding to speed and one corresponding to tilt.

8b. A human pilot flies the helicopter, and the trajectory is logged. Thereafter a model is
trained using supervised learning. The predictor used is locally-weighted linear regression.
On this model, policy search (through hill climbing) is performed to obtain a successful con-
trol policy. The policy is represented a a neural network, whose weights are the parameters
being optimised. Domain knowlegde is incorporated into the policy by setting or removing
network connections; reward functions are carefully designed to guide training towards ef-
fective policies. Learned policies for hovering and trajectory-following are evaluated on the
real helicopter.

9


