
CS 747 (Autumn 2022)
Mid-semester Examination

Instructor: Shivaram Kalyanakrishnan

6.30 p.m. – 8.30 p.m., September 15, 2022, LA 201 and LA 202

Note. This exam has 4 questions, given on the pages following this one. Provide justifica-
tions/calculations/steps along with each answer to illustrate how you arrived at the answer.
You will not receive credit for giving an answer without sufficient explanation.

Steps for submission.

1. Bring your phone in a pouch or bag, and keep it on the table you are using.

2. Before the exam begins, turn on “flight mode” on the phone, so it cannot communicate.
Do not touch the phone while you are writing the exam.

3. When you are finished writing, put your pen away and stand up.

4. Remain standing while retrieving your phone, scanning your paper, turning off “flight
mode”, then uploading the scanned pdf to Moodle.

5. You will get 15 extra minutes after the test end time for scanning and uploading (you
can do it earlier if you have finished). If you are unable to scan and upload your paper,
you will be given a slot later to do so.

6. Before leaving, you must turn in your answer paper to the invigilators in the room.

7. We will only evaluate submissions for which the scanned copy matches the physical
answer paper that has been turned in.
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Question 1. Consider the ϵG1 algorithm described in class, when applied to an n-armed
bandit, n ≥ 2. The arms yield 0 and 1 rewards, with arm a ∈ {1, 2, . . . , n} having mean
reward pa. Given a horizon of T pulls (assume T is sufficiently large), the algorithm first
pulls each arm ⌈ ϵT

n
⌉ times (the version in class gives each arm the same expected number of

pulls, but here the actual number is identical, so subsequent analysis is simplified). Upon
completing this exploratory phase, the algorithm identifies an arm abest with the highest em-
pirical mean, and for the remaining T −n⌈ ϵT

n
⌉ pulls, repeatedly samples abest (not bothering

to check if its empirical mean now falls below any other arm’s.) The parameter ϵ ∈ (0, 1)
controls the amount of exploration.

Let I = (p1, p2, . . . , pn) denote the bandit instance on which ϵG1 is executed for horizon
T . Show that there exists ϵ(I, T )—that is, a setting of ϵ that depends on the bandit instance
and the horizon—such that if run with ϵ = ϵ(I, T ), the expected cumulative regret of the
algorithm is at most C(I) · ln(T ), where C(I) is a quantity that depends only on I.

We have shown such a result in class for the UCB algorithm. Whereas UCB did not
require any parameters to be tuned so as to achieve this result, this question asks you to
furnish the argument that ϵG1 can also achieve logarithmic regret provided it is tuned ap-
propriately. [5 marks]

Question 2. Consider the Thompson Sampling algorithm presented in class for bandits
whose arms yield 0 and 1 rewards. Suppose the algorithm is initialised (as usual) with a
uniform prior as the belief distribution for each arm. Also suppose we run it on a 2-armed
bandit instance, in which the arms 1 and 2 have mean rewards p1 and p2, respectively. What
is the probability that both arms get pulled within the first two pulls? In other words, what
is the probability that the sequence of pulls is either (arm 1, arm 2) or (arm 2, arm 1)?

For your calculations, you can use the following formula for the pdf of the Beta distribu-
tion with integer parameters α, β ≥ 1, evaluated at x ∈ [0, 1].

Beta(x;α, β) =
(α + β − 1)!

(α− 1)!(β − 1)!
xα−1(1− x)β−1.

Take 0! = 00 = 1 in case you encounter these quantities. Your answer should be in terms
of p1 and p2. [5 marks]
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Question 3. X, Y , and Z are nodes in a delivery network, which is shown in the figure
below. X is the source node, and has a set of N ≥ 2 identical packets to be transported to
the target node Z. Y is an intermediate node through which packets can be shipped from
X to Z, over and above the direct XZ link.

X Z

Y
pXY pY Z

pXZ

Shipments are undertaken on a daily basis, at 10.00 a.m., from each node. At most one
packet can be put on any link on any given day. When a packet is sent from a node on a
link, it succeeds with a fixed probability (denoted pXY , pY Z , pXZ for the respective links).
If shipped on day i, a successful delivery reaches the destination by 9.00 a.m. the next day,
and hence is available to be shipped onward from the destination the same day. However,
if the delivery fails, the packet remains “in transit” on the link; its delivery will again be
attempted the next day, and again it succeeds with the same link-success-probability. Thus,
for example, a shipment from X to Y sent out on day i will reach Y on day i + 1 with
probability pXY , on day i+ 2 with probability (1− pXY )pXY , on day i+ 3 with probability
(1− pXY )

2pXY , and so on. When a shipment is stuck on a link, a new shipment cannot be
sent on the same link. However, there is sufficient capacity at each node to hold packets.
Thus, a shipment can be sent from the source to the destination of a link so long as the link
is free, no matter how many packets are already present at the destination.

The shipping company running this network has set up infrastructure so that the location
of each packet (which is one of the nodes or the links) is known to the control room at every
instant of time. The control room must instruct X and Y at 9.30 a.m. every day as to what
they must do: that is, whether or not to send a shipment out on each of their outgoing links.
As you can imagine, the instructions provided by the control room will determine the overall
time taken to transfer all N packets from X to Z.

Your task is to help the control room by formulating an MDP based on the application
described, so that an optimal policy for the MDP will readily yield the actions to be taken
at X and Y during their daily operation. Concretely, the aim is to minimise the expected
number of days to transfer all N packets from X to Z. All links are free to begin. Write
down your formulation, providing sufficient explanation, and stating any assumptions you
might make. [5 marks]
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Question 4. You are given an MDP M = (S,A, T,R, γ), with notation and conventions as
usual. You are also given a function V : S → R. Your task is to come up with an algorithm
to answer the following question:

“Does there exist a policy π for which the value function V π (on M) is identical
to V (that is, for all s ∈ S, V π(s) = V (s))?”

It is not necessary that π be a deterministic policy; if there is a stochastic policy π such that
V π = V , your algorithm must give “Yes” as output (and otherwise “No”). You do not have
to consider time-varying or history-dependent policies: consider only the set of Markovian,
stochastic policies (which, of course, includes all Markovian, deterministic policies).

You are encouraged to use linear programming as a part of your algorithm. In other
words, your algorithm can formulate a linear program based on its inputs M and V , and
assume that a blackbox solver will compute the solution to the linear program. If you
only have to check whether your linear program has a feasible solution (it has no objective
function to maximise), specify a “dummy” objective function such as a constant. If F is the
set of all feasible solutions that maximise the objective function, you can assume that the
the solver will return an arbitrary element of F if F is non-empty, and declare that there is
“No feasible solution” if F is empty.

You are also welcome to present approaches that do not use linear programming as a
subroutine; you will receive full credit for any solution that is correct. In any case, after you
describe your algorithm, provide a few lines arguing for its correctness. [5 marks]
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Solutions
1. If the means p1, p2, . . . , pn are all identical, there is no regret incurred. Let us proceed by
assuming that the arms’ means are not all equal, and let ∆ = pfirst − psecond, where pfirst is
the largest among the means, and psecond the second-largest.

Notice that Rexplore, the regret from the initial exploratory phase of n⌈ ϵT
n
⌉ pulls, is at

least ∆ϵT
n

, since each suboptimal arm gets pulled at least ϵT
n

times in this phase. Rexplore can

only scale as O(log(T )) if ϵ is in the order of O( log(T )
T

). Let us assume ϵ = c lnT
T
. Then we

have Rexplore ≤ ∆(c ln(T ) + n).
The “exploit” phase comprises the T − n⌈ ϵT

n
⌉ pulls given to abest after it has been iden-

tified. Since we have assumed ϵ = c lnT
T
, we conclude that there are Ω(T ) pulls of abest in

the exploit phase. Naturally Rexploit, the regret from this phase, can be O(log T ) only if the
probability that abest is not optimal is sufficiently small. Indeed let δ denote the probability
that abest is not optimal. We can be sure that abest is indeed optimal if after the explore
phase, the empirical mean of some optimal arm did not drop ∆

2
or more below its true mean,

and the empirical mean of every suboptimal arm did not come out ∆
2
or more above its true

mean. Since each arm is pulled ⌈ ϵT
n
⌉ times, we have

δ ≤ ne−2⌈ ϵT
n
⌉(∆

2
)2 ≤ ne−2 ϵT

n
(∆
2
)2 = ne−2 c lnT

n
(∆
2
)2 = n

(
1

T

) c∆2

2n

.

Since Rexploit ≤ δ∆T , we have Rexploit ≤ ∆nT 1− c∆2

2n , which is at most ∆n (a quantity
independent of T ) if c ≥ 2n

∆2 . In summary, by running ϵG1 with ϵ = 2n
∆2

lnT
T
, we observe that

the regret is
Rexploit +Rexplore ≤ ∆(c ln(T ) + n) + ∆n = O(logT ).

2. Let h = (a0, r0, a1) denote the action-reward-action sequence that begins the agent’s
interaction with the bandit instance. We are to calculate the probability that h is from the
set {(1, 0, 2), (1, 1, 2), (2, 0, 1)(2, 1, 1)}. We have:

P{h = (1, 0, 2)} =
1

2
· (1− p1) ·

∫ 1

x=0

∫ 1

y=x

Beta(x; 1, 2)Beta(y; 1, 1)dydx

=
1− p1

2

∫ 1

x=0

2!

1!0!
(1− x)(1− x)dx =

1− p1
3

, and

P{h = (1, 1, 2)} =
1

2
· p1 ·

∫ 1

x=0

∫ 1

y=x

Beta(x; 2, 1)Beta(y; 1, 1)dydx

=
p1
2

∫ 1

x=0

2!

0!1!
x(1− x)dx =

p1
6
.

By symmetry, we have P{h = (2, 0, 1)} = 1−p2
3

, and P{h = (2, 1, 1)} = p2
6
. Consequently

the required probability is

P{h = (1, 0, 2)}+ P{h = (1, 1, 2)}+ P{h = (2, 0, 1)}+ P{h = (2, 1, 1)} =
2

3
− (p1 + p2)

6
.
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3. From the description of the application, we observe that the consequences of actions are
completely determined by the number of packets present at each node and link. Since there
is no decision to make at Z, we can ignore the number of packets present there, and treat
state as (nX , nY , nXY , nY Z , nXZ), where nW denotes the number of packets in node or link
W . This formulation results in Θ(N2) states, since there can be Θ(N)packets at each node
and 0 or 1 at each link.

As specified, the decision to be taken on each day is whether to send a packet from X
and Y on each of their outgoing links. Consequently we can view action as a 3-bit string
conveying whether a packet is to be put on XY (or not), on XZ (or not), and on Y Z (or
not). Hence there are 8 actions (which can possibly be pruned by reasoning that some actions
are inapplicable or suboptimal from some states, but we do not worry about efficiency for
now). The main point to note about the states and actions is that they apply to the entire
network, not to individual nodes/links. This conjunctive modeling is necessary to achieve
efficiency in operation.

The transition function naturally factorises into rules that operate on each node-link and
link-node interface. Consider state (nX , nY , nXY , nY Z , nXZ) and action (aXY , aXZ , aY Z). In
general, multiple possible next states of the form (n′

X , n
′
Y , n

′
XY , n

′
Y Z , n

′
XZ) may be reachable

with non-zero probability. We specify a couple of illustrative transitions. If nX > 0, nXY = 0
and aXY = 1, then we go with probability pXY to a state with n′

Y = nY + 1; with the
remaining probability we reach a state with n′

XY = 1, n′
Y = nY (provided aY Z = 0). If

nXY = 1, then we have nXY = 0, n′
Y = nY +1 with probability pXY , and status quo—nXY =

1, n′
Y = nY—with probability 1 − pXY (provided aY Z = 0). If nX > 1, nXY = 0, nXZ = 0

and aXY = 1, aXZ = 1, then we have n′
X = nX − 2 with probability pXY pXZ , n

′
X = nX with

probability (1 − pXY )(1 − pXZ), and n′
X = nX − 1 with the remaining probability. In each

case nXY , nXZ , and nY are modified suitably.
In order to minimise the expected number of days to complete the transaction, we give a

reward of −1 on each day, leaving the task undiscounted. The task is guaranteed to termi-
nate provided pXZ > 0 or pXY pY Z > 0, and packets are guaranteed to be pushed out from
X and Y (which is easily implemented). We could also use the reward function to eliminate
illegal actions. Thus, for example, setting aXY = 1 when nXY = 1 could be given a reward
of −∞.
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4. Consider the following linear program, with variables π(s, a) for s ∈ S, a ∈ A, and a
dummy objective function.

Maximise 1

subject to

π(s, a) ≥ 0 for s ∈ S, a ∈ A, C1∑
a∈A

π(s, a) = 1 for s ∈ S, C2

V (s) =
∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV (s′)) for s ∈ S. C3

The equality constraints C2 and C3, of the form α = β, can be replaced by inequalities
α ≤ β and β ≤ α if needed. Our proposed algorithm returns “Yes” if this linear program
has a feasible solution, and “No” otherwise.

Now, if indeed there is some policy π whose value function is V , it is clear that π will
satisfy both the policy constraints C1 and C2, and as the Bellman equations encapsulated
in C3. Hence the linear program will have a feasible solution, and our answer will be “Yes”.
Moreover, if π is a feasible solution returned by the linear program solver, it is guaranteed
to satisfy the policy constraints C1 and C2, and satisfy C3, which would imply that V is
indeed the value function of π. Hence, we will answer “Yes” if and only if there exists a
policy π for which V π = V .

It is a good idea to reuse general-purpose tools such a linear programming solvers, but
in this particular case, a closer look at the LP suggests that its feasibility is much simpler
to establish. Notice that for any fixed s ∈ S, the |A| policy variables π(s, a) do not occur
in C3 constraints other than the one for s itself (with V (s) on the LHS). For s ∈ S, a ∈ A,
define Q(s, a) =

∑
s′∈S T (s, a, s

′)(R(s, a, s′ + γV (s′)). The LP is merely posing the question:
for each s ∈ S, can V (s) be expressed as a convex combination of the Q(s, a) values, a ∈ A?
In turn, the answer is affirmative if and only if for each s ∈ S,

min
a∈A

Q(s, a) ≤ V (s) ≤ max
a∈A

Q(s, a),

which can be easily verified.
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