CS 747, Autumn 2023: Lecture 3

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ -greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- \bullet ϵ -greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- \bullet ϵ -greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Analysis of UCB
- Understanding Thompson Sampling
- Other bandit problems

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- \bullet ϵ -greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Analysis of UCB
- Understanding Thompson Sampling
- Other bandit problems

A Lower Bound on Regret

Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance $I \in \bar{\mathcal{I}}$ and for every $\alpha > 0$, as $T \to \infty$:

$$R_T(L, I) = o(T^{\alpha}).$$

Then, for every bandit instance $I \in \bar{\mathcal{I}}$, as $T \to \infty$:

$$\frac{R_T(L,I)}{\ln(T)} \geq \sum_{a:p_a(I)\neq p^*(I)} \frac{p^*(I)-p_a(I)}{\mathit{KL}(p_a(I),p^*(I))},$$

where for $x, y \in [0, 1)$, $KL(x, y) \stackrel{\text{def}}{=} x \ln \frac{x}{y} + (1 - x) \ln \frac{1 - x}{1 - y}$.

- 1. UCB, KL-UCB algorithms
- 2. Thompson Sampling algorithm

Upper Confidence Bounds = UCB (Auer et al., 2002) - At time t, for every arm a, define $ucb_a^t = \hat{p}_a^t + \sqrt{\frac{2 \ln(t)}{u_a^t}}$.

- \hat{p}_a^t is the empirical mean of rewards from arm a.
- u_0^t the number of times a has been sampled at time t.

Upper Confidence Bounds = UCB (Auer et al., 2002) - At time t, for every arm a, define $ucb_a^t = \hat{p}_a^t + \sqrt{\frac{2 \ln(t)}{u_a^t}}$.

- \hat{p}_a^t is the empirical mean of rewards from arm a.
- u_a^t the number of times a has been sampled at time t.
- Pull an arm a for which ucb a is maximum.

Upper Confidence Bounds = UCB (Auer et al., 2002)

- At time t, for every arm a, define $\operatorname{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.
- \hat{p}_a^t is the empirical mean of rewards from arm a.
- u_a^t the number of times a has been sampled at time t.
- Pull an arm a for which ucb_a^t is maximum.

Upper Confidence Bounds = UCB (Auer et al., 2002)

- At time t, for every arm a, define $\mathrm{ucb}_a^t = \hat{p}_a^t + \sqrt{\frac{2\ln(t)}{u_a^t}}$.
- \hat{p}_a^t is the empirical mean of rewards from arm \hat{a} .
- u_a^t the number of times a has been sampled at time t.
- Pull an arm a for which ucb_a^t is maximum.

Achieves regret of $O(\log(T))$: optimal dependence on T up to a constant factor.

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

 $\mathsf{ucb} ext{-}\mathsf{kl}_a^t = \mathsf{max}\{q \in [\hat{p}_a^t, 1] \text{ s. t. } u_a^t \mathsf{KL}(\hat{p}_a^t, q) \leq \mathsf{ln}(t) + c \, \mathsf{ln}(\mathsf{ln}(t))\}, \text{ where } c \geq 3.$

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

```
ucb-kl<sub>a</sub><sup>t</sup> = max{q \in [\hat{p}_a^t, 1] s. t. u_a^t KL(\hat{p}_a^t, q) \leq \ln(t) + c \ln(\ln(t))}, where c \geq 3. Equivalently, ucb-kl<sub>a</sub><sup>t</sup> is the solution q \in [\hat{p}_a^t, 1] to KL(\hat{p}_a^t, q) = \frac{\ln(t) + c \ln(\ln(t))}{u_a^t}.
```

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

```
ucb-kl<sub>a</sub><sup>t</sup> = max{q \in [\hat{p}_a^t, 1] s. t. u_a^t KL(\hat{p}_a^t, q) \leq \ln(t) + c \ln(\ln(t))}, where c \geq 3. Equivalently, ucb-kl<sub>a</sub><sup>t</sup> is the solution q \in [\hat{p}_a^t, 1] to KL(\hat{p}_a^t, q) = \frac{\ln(t) + c \ln(\ln(t))}{u_a^t}. KL-UCB algorithm: at step t, pull \underset{a \in A}{\operatorname{argmax}} = ucb-kl<sub>a</sub><sup>t</sup>.
```

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

```
ucb-kl<sub>a</sub><sup>t</sup> = max{q \in [\hat{p}_a^t, 1] s. t. u_a^t KL(\hat{p}_a^t, q) \leq \ln(t) + c \ln(\ln(t))}, where c \geq 3. Equivalently, ucb-kl<sub>a</sub><sup>t</sup> is the solution q \in [\hat{p}_a^t, 1] to KL(\hat{p}_a^t, q) = \frac{\ln(t) + c \ln(\ln(t))}{u_a^t}. KL-UCB algorithm: at step t, pull \underset{a \in A}{\operatorname{argmax}} = ucb-kl<sub>a</sub><sup>t</sup>.
```

- Observe that $KL(\hat{p}_a^t, q)$ monotonically increases with q, and
 - $\qquad \mathsf{KL}(\hat{p}_{\mathsf{a}}^t,\hat{p}_{\mathsf{a}}^t)=0;$
 - \blacktriangleright $KL(\hat{p}_a^t, 1) = \infty.$

Easy to compute ucb- kl_a^t numerically (for example through binary search).

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

```
ucb-kl<sub>a</sub><sup>t</sup> = max{q \in [\hat{p}_a^t, 1] s. t. u_a^t KL(\hat{p}_a^t, q) \leq \ln(t) + c \ln(\ln(t))}, where c \geq 3. Equivalently, ucb-kl<sub>a</sub><sup>t</sup> is the solution q \in [\hat{p}_a^t, 1] to KL(\hat{p}_a^t, q) = \frac{\ln(t) + c \ln(\ln(t))}{u_a^t}. KL-UCB algorithm: at step t, pull argmax_{a \in A} ucb-kl<sub>a</sub><sup>t</sup>.
```

- Observe that $KL(\hat{p}_a^t, q)$ monotonically increases with q, and
 - $KL(\hat{p}_{a}^{t},\hat{p}_{a}^{t})=0;$
 - $KL(\hat{p}_a^t, 1) = \infty$.

Easy to compute ucb- kl_a^t numerically (for example through binary search).

• ucb-kl_a is a tighter confidence bound than ucb_a.

 Identical to UCB algorithm on previous slide, except for a different definition of the upper confidence bound.

```
ucb-kl<sub>a</sub><sup>t</sup> = max{q \in [\hat{p}_a^t, 1] s. t. u_a^t KL(\hat{p}_a^t, q) \le \ln(t) + c \ln(\ln(t))}, where c \ge 3. Equivalently, ucb-kl<sub>a</sub><sup>t</sup> is the solution q \in [\hat{p}_a^t, 1] to KL(\hat{p}_a^t, q) = \frac{\ln(t) + c \ln(\ln(t))}{u_a^t}. KL-UCB algorithm: at step t, pull \underset{a \in A}{\operatorname{argmax}} = ucb-kl<sub>a</sub><sup>t</sup>.
```

- Observe that $KL(\hat{p}_a^t, q)$ monotonically increases with q, and
 - $KL(\hat{p}_a^t, \hat{p}_a^t) = 0;$
 - $\mathsf{KL}(\hat{p}_a^t, 1) = \infty.$

Easy to compute ucb- kl_a^t numerically (for example through binary search).

ucb-kl_a^t is a tighter confidence bound than ucb_a^t.
Regret of KL-UCB asymptotically matches Lai and Robbins' lower bound!

- 1. UCB, KL-UCB algorithms
- 2. Thompson Sampling algorithm

Background: Beta Distribution

• Beta(α , β) defined on [0, 1]. Two parameters: α and β .

Mean =
$$\frac{\alpha}{\alpha + \beta}$$
; Variance = $\frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

Background: Beta Distribution

• Beta(α , β) defined on [0, 1]. Two parameters: α and β .

Mean =
$$\frac{\alpha}{\alpha + \beta}$$
; Variance = $\frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

- At time t, let arm a have s_a^t successes (1's/heads) and f_a^t failures (0's/tails).

- At time t, let arm a have s_a^t successes (1's/heads) and f_a^t failures (0's/tails).
- $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
- Mean = $\frac{s_a^t+1}{s_a^t+t_a^t+2}$; variance = $\frac{\left(s_a^t+1\right)\left(t_a^t+1\right)}{\left(s_a^t+t_a^t+2\right)^2\left(s_a^t+t_a^t+3\right)}$.

- At time t, let arm a have s_a^t successes (1's/heads) and f_a^t failures (0's/tails).
- $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
- Mean = $\frac{s_a^t + 1}{s_a^t + f_a^t + 2}$; variance = $\frac{(s_a^t + 1)(f_a^t + 1)}{(s_a^t + f_a^t + 2)^2(s_a^t + f_a^t + 3)}$.
- Computational step: For every arm a, draw a sample (in agent's mind) $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Pull (in real world) arm *a* for which x_a^t is maximum.

- At time t, let arm a have s_a^t successes (1's/heads) and f_a^t failures (0's/tails).
- $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
- Mean = $\frac{s_a^t + 1}{s_a^t + f_a^t + 2}$; variance = $\frac{(s_a^t + 1)(f_a^t + 1)}{(s_a^t + f_a^t + 2)^2(s_a^t + f_a^t + 3)}$.
- Computational step: For every arm a, draw a sample (in agent's mind) $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Pull (in real world) arm a for which x_a^t is maximum.

- At time t, let arm a have s_a^t successes (1's/heads) and f_a^t failures (0's/tails).
- $Beta(s_a^t + 1, f_a^t + 1)$ represents a "belief" about the true mean of arm a.
- Mean = $\frac{s_a^t + 1}{s_a^t + f_a^t + 2}$; variance = $\frac{(s_a^t + 1)(f_a^t + 1)}{(s_a^t + f_a^t + 2)^2(s_a^t + f_a^t + 3)}$.
- Computational step: For every arm a, draw a sample (in agent's mind) $x_a^t \sim Beta(s_a^t + 1, f_a^t + 1)$.
- Sampling step: Pull (in real world) arm a for which x_a^t is maximum.

Achieves optimal regret (Kaufmann et al., 2012); is excellent in practice (Chapelle and Li, 2011).

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- \bullet ϵ -greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Analysis of UCB
- Understanding Thompson Sampling
- Other bandit problems