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Multi-armed Bandits
@ The exploration-exploitation dilemma
@ Definitions: Bandit, Algorithm
@ e-greedy algorithms
@ Evaluating algorithms: Regret
@ Achieving sub-linear regret
@ A lower bound on regret
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A Lower Bound on Regret
Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance / € 7
and for every a > 0,as T — oo:

Rr(L, 1) = o(T).

Then, for every bandit instance / € Z, as T — oc:

ArlD) )= pl)

|n(T) s 2p*()) KL(Pa(/),p*(/))’

where for x, y € [0,1), KL(x, y) ZxIn % + (1 — x) In {=%.

<

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3/10



Multi-armed Bandits

1. UCB, KL-UCB algorithms

2. Thompson Sampling algorithm
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Upper Confidence Bounds = UCB (Auer et al., 2002)
- Attime t, for every arm a, define ucb}, = pf + /2%,

- p! is the empirical mean of rewards from arm a.
- u!, the number of times a has been sampled at time t.

ORf

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023

5/10



Upper Confidence Bounds = UCB (Auer et al., 2002)

- At time t, for every arm a, define ucbl, = pf, + 2In()

a

- p! is the empirical mean of rewards from arm a.
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- Pull an arm a for which ucb}, is maximum.
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Upper Confidence Bounds = UCB (Auer et al., 2002)

- Attime t, for every arm a, define ucbfa = pL+ 2In(?)

pL is the empirical mean of rewards from arm a.
u!, the number of times a has been sampled at time .
Pull an arm a for which ucb, is maximum.

ORf

utot

Achieves regret of O (log(T)):
optimal dependence on T
up to a constant factor.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023

5/10



KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.

ucb-kl’, = max{q € [p, 1] s. t. ULKL(PL, q) < In(t) + cIn(In(t))}, where ¢ > 3.
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uch-kl}, = max{q € [}, 1] s. t. ULKL(DL, @) < In(t) + cIn(In(t))}, where ¢ > 3.
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
uch-kl}, = max{q € [}, 1] s. t. ULKL(DL, @) < In(t) + cIn(In(t))}, where ¢ > 3.
Equivalently, ucb-kl, is the solution g € [, 1] to KL(p!, q) = mreintn®)

Ua

KL-UCB algorithm: at step ¢, pull argmax _, uch-k’.
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
ucb-kl, = max{q € [P}, 1] s. t. ULKL(PL, g) < In(t) + cIn(In(t))}, where ¢ > 3.
Equivalently, uch-kl} is the solution g € [, 1] to KL(p}, q) = (0tenlnl),

KL-UCB algorithm: at step ¢, pull argmax _, uch-k’.

@ Observe that KL(p., g) monotonically increases with g, and
» KL(PL, 1) = oo.
Easy to compute ucb-kI, numerically (for example through binary search).
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KL-UCB (Garivier and Cappé, 2011)

@ Identical to UCB algorithm on previous slide, except for a different definition
of the upper confidence bound.
ucb-kl, = max{q € [P}, 1] s. t. ULKL(PL, g) < In(t) + cIn(In(t))}, where ¢ > 3.
Equivalently, uch-kl} is the solution g € [, 1] to KL(p}, q) = (0tenlnl),

KL-UCB algorithm: at step ¢, pull argmax _, uch-k’.

@ Observe that KL(p., g) monotonically increases with g, and
» KL(PL, 1) = oo.
Easy to compute ucb-kI, numerically (for example through binary search).

@ ucb-kl} is a tighter confidence bound than ucb!.
Regret of KL-UCB asymptotically matches Lai and Robbins’ lower bound!
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Multi-armed Bandits

1. UCB, KL-UCB algorithms

2. Thompson Sampling algorithm
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Background: Beta Distribution
@ Beta(a, f) defined on [0, 1]. Two parameters: o and f.
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http://gnuplot.sourceforge.net/demo/prob.5.gnu

Background: Beta Distribution
@ Beta(a, f) defined on [0, 1]. Two parameters: o and f.
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Thompson Sampling (Thompson, 1933)

- Attime t, let arm a have s! successes (1’s/heads) and f! failures (0’s/tails).
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Thompson Sampling (Thompson, 1933)
- Attime t, let arm a have s! successes (1’s/heads) and f! failures (0’s/tails).
- Beta(sl, + 1, f{ + 1) represents a “belief” about the true mean of arm a.

st : (s;+1)(fg,+1)
ooz variance = (o 22) 2[4 A73)

- Mean = <
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Thompson Sampling (Thompson, 1933)
- Attime t, let arm a have s! successes (1’s/heads) and f! failures (0’s/tails).
- Beta(st, + 1, f + 1) represents a “belief” about the true mean of arm a.

st (st+1)(r+1)
Sryzs variance = (o 12) 2(+ 53)"

- Mean = <

- Computational step: For every arm ) N T S B S B
a, draw a sample (in agent’s mind) ‘
x} ~ Beta(s!, +1, fi +1). ?

- Sampling step: Pull (in real world) )
arm a for which x! is maximum.
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Thompson Sampling (Thompson, 1933)
- Attime t, let arm a have s! successes (1’s/heads) and f! failures (0’s/tails).
- Beta(st, + 1, f + 1) represents a “belief” about the true mean of arm a.

st (st+1)(r+1)
Sryzs variance = (o 12) 2(+ 53)"

- Mean = <

- Computational step: For every arm T mnon R0
a, draw a sample (in agent’s mind)
x4 ~ Beta(s,+ 1, fi+1). r

- Sampling step: Pull (in real world) )
arm a for which x! is maximum.

Achieves optimal regret (Kaufmann
et al., 2012); is excellent in practice
(Chapelle and Li, 2011). ol Ul | | S
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