CS 747, Autumn 2023: Lecture 4

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Understanding Thompson Sampling
- Concentration bounds
- Analysis of UCB
- Other bandit problems

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Understanding Thompson Sampling
- Concentration bounds
- Analysis of UCB
- Other bandit problems

Thompson Sampling (Thompson, 1933)

- At time t, arm a has s_{a}^{t} successes (1 's) and f_{a}^{t} failures (0 's).

Thompson Sampling (Thompson, 1933)

- At time t, arm a has s_{a}^{t} successes (1 's) and f_{a}^{t} failures (0 's).
- Beta($s_{a}^{t}+1, f_{a}^{t}+1$) represents a "belief" about p_{a}.

Thompson Sampling (Thompson, 1933)

- At time t, arm a has s_{a}^{t} successes (1 's) and f_{a}^{t} failures (0 's).
- Beta($s_{a}^{t}+1, f_{a}^{t}+1$) represents a "belief" about p_{a}.

- Computational step: For every arm a, draw a sample

$$
x_{a}^{t} \sim \operatorname{Beta}\left(s_{a}^{t}+1, f_{a}^{t}+1\right) .
$$

- Sampling step: Pull an arm a for which x_{a}^{t} is maximum.

Thompson Sampling (Thompson, 1933)

- At time t, arm a has s_{a}^{t} successes (1 's) and f_{a}^{t} failures (0 's).
- Beta($s_{a}^{t}+1, f_{a}^{t}+1$) represents a "belief" about p_{a}.

- Computational step: For every arm a, draw a sample

$$
x_{a}^{t} \sim \operatorname{Beta}\left(s_{a}^{t}+1, f_{a}^{t}+1\right) .
$$

- Sampling step: Pull an arm a for which x_{a}^{t} is maximum.

Bayesian Inference

- Bayes' Rule of Probability for events A and B :

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{B \mid A\} \mathbb{P}\{A\}}{\mathbb{P}\{B\}} .
$$

Bayesian Inference

- Bayes' Rule of Probability for events A and B :

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{B \mid A\} \mathbb{P}\{A\}}{\mathbb{P}\{B\}} .
$$

- Application: there is an unknown world w from among possible worlds W, in which we live.
- We maintain a belief distribution over $w \in W$.

$$
\text { Belief }_{0}(w)=\mathbb{P}\{w\} .
$$

Bayesian Inference

- Bayes' Rule of Probability for events A and B :

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{B \mid A\} \mathbb{P}\{A\}}{\mathbb{P}\{B\}} .
$$

- Application: there is an unknown world w from among possible worlds W, in which we live.
- We maintain a belief distribution over $w \in W$.

$$
\text { Belief }_{0}(w)=\mathbb{P}\{w\} .
$$

- The process by/probability with which each w produces evidence e is known.
- Evidence samples $e_{1}, e_{2}, \ldots, e_{m}$ are produced i.i.d. by the unknown world w.

Bayesian Inference

- Bayes' Rule of Probability for events A and B :

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{B \mid A\} \mathbb{P}\{A\}}{\mathbb{P}\{B\}} .
$$

- Application: there is an unknown world w from among possible worlds W, in which we live.
- We maintain a belief distribution over $w \in W$.

$$
\text { Belief }_{0}(w)=\mathbb{P}\{w\} .
$$

- The process by/probability with which each w produces evidence e is known.
- Evidence samples $e_{1}, e_{2}, \ldots, e_{m}$ are produced i.i.d. by the unknown world w.
- How to refine our belief distribution based on incoming evidence?

$$
\operatorname{Belief}_{m}(w)=\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m}\right\}
$$

Bayesian Inference

$$
\text { Belief }_{m+1}(w)=\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}}
\end{aligned}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m} \mid w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}}
\end{aligned}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m} \mid w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}, w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}}
\end{aligned}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m} \mid w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}, w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m}\right\} \mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}}
\end{aligned}
$$

Bayesian Inference

$$
\begin{aligned}
\operatorname{Belief}_{m+1}(w) & =\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m+1}\right\} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m} \mid w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\} \mathbb{P}\{w\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}, w\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\mathbb{P}\left\{w \mid e_{1}, e_{2}, \ldots, e_{m}\right\} \mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m}\right\} \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\mathbb{P}\left\{e_{1}, e_{2}, \ldots, e_{m+1}\right\}} \\
& =\frac{\operatorname{Belief}_{m}(w) \mathbb{P}\left\{e_{m+1} \mid w\right\}}{\sum_{w^{\prime} \in w} \operatorname{Belief}_{m}\left(w^{\prime}\right) \mathbb{P}\left\{e_{m+1} \mid w^{\prime}\right\}} .
\end{aligned}
$$

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).
- Belief f_{0} over p_{a} is typically set to $\operatorname{Uniform}(0,1)$, but need not.

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).
- Belief $_{0}$ over p_{a} is typically set to Uniform $(0,1)$, but need not.
- If e_{m+1} is a 1-reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot x}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot y}
$$

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).
- Belief over p_{a} is typically set to $\operatorname{Uniform}(0,1)$, but need not.
- If e_{m+1} is a 1 -reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot x}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot y} .
$$

- If e_{m+1} is a 0 -reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot(1-x)}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot(1-y)}
$$

Bayesian Inference in Thompson Sampling

- View each arm a's mean p_{a} as world w, estimated from rewards (evidence).
- Belief f_{0} over p_{a} is typically set to Uniform $(0,1)$, but need not.
- If e_{m+1} is a 1 -reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot x}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot y}
$$

- If e_{m+1} is a 0-reward, we must set for $x \in[0,1]$

$$
\operatorname{Belief}_{m+1}(x)=\frac{\operatorname{Belief}_{m}(x) \cdot(1-x)}{\int_{y=0}^{1} \operatorname{Belief}_{m}(y) \cdot(1-y)}
$$

- We achieve exactly that by taking

$$
\operatorname{Belief}_{m}(x)=\operatorname{Beta}_{s+1, f+1}(x) d x
$$

when the first m pulls yield $s 1$'s and $f 0$'s!

Principle of Selecting Arm to Pull

- We have a belief distribution for each arm's mean.
- Together, these distributions represent a belief distribution over bandit instances.
- We sample a bandit instance / from the joint belief distribution, and
- We act optimally w.r.t. I.

Principle of Selecting Arm to Pull

- We have a belief distribution for each arm's mean.
- Together, these distributions represent a belief distribution over bandit instances.
- We sample a bandit instance / from the joint belief distribution, and
- We act optimally w.r.t. I.
- Alternative view: the probability with which we pick an arm is our belief that it is optimal. For example, if $A=\{1,2\}$, the probability of pulling 1 is

$$
\mathbb{P}\left\{x_{1}^{t}>x_{2}^{t}\right\}=\int_{x_{1}=0}^{1} \int_{x_{2}=0}^{x_{1}} \operatorname{Beta}_{s_{1}^{t}+1, f_{1}^{f}+1,}\left(x_{1}\right) \operatorname{Beta}_{s_{2}^{t}+1, f_{2}^{t}+1,}\left(x_{2}\right) d x_{2} d x_{1} .
$$

Multi-armed Bandits

1. Understanding Thompson Sampling

2. Concentration bounds

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

- Then, for or any fixed $\epsilon>0$, we have

$$
\begin{aligned}
& \mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 u \epsilon^{2}}, \text { and } \\
& \mathbb{P}\{\bar{x} \leq \mu-\epsilon\} \leq e^{-2 u \epsilon^{2}}
\end{aligned}
$$

Hoeffding's Inequality (Hoeffding, 1963)

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

- Then, for or any fixed $\epsilon>0$, we have

$$
\begin{aligned}
& \mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 U \epsilon^{2}}, \text { and } \\
& \mathbb{P}\{\bar{x} \leq \mu-\epsilon\} \leq e^{-2 U \epsilon^{2}} .
\end{aligned}
$$

- Note the bounds are trivial for large ϵ, since $\bar{x} \in[0,1]$.

Applications

- For given mistake probability δ and tolerance ϵ, how many samples u_{0} of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more?

Applications

- For given mistake probability δ and tolerance ϵ, how many samples u_{0} of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_{0}=\left\lceil\frac{1}{2 \epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right\rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$
\mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 u_{0} \epsilon^{2}} \leq \delta
$$

Applications

- For given mistake probability δ and tolerance ϵ, how many samples u_{0} of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_{0}=\left\lceil\frac{1}{2 \epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right\rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$
\mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 u_{0} \epsilon^{2}} \leq \delta
$$

- We have u samples of X. How do we fill up this blank?: With probability at least $1-\delta$, the empirical mean \bar{x} exceeds the true mean μ by at most $\epsilon_{0}=$ \qquad .

Applications

- For given mistake probability δ and tolerance ϵ, how many samples u_{0} of X do we need to guarantee that with probability at least $1-\delta$, the empirical mean \bar{x} will not exceed the true mean μ by ϵ or more? $u_{0}=\left\lceil\frac{1}{2 \epsilon^{2}} \ln \left(\frac{1}{\delta}\right)\right\rceil$ pulls are sufficient, since Hoeffding's Inequality gives

$$
\mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-2 u_{0} \epsilon^{2}} \leq \delta
$$

- We have u samples of X. How do we fill up this blank?:

With probability at least $1-\delta$, the empirical mean \bar{x} exceeds the true mean μ by at most $\epsilon_{0}=$ \qquad .
We can write $\epsilon_{0}=\sqrt{\frac{1}{2 u} \ln \left(\frac{1}{\delta}\right)}$; by Hoeffding's Inequality:

$$
\mathbb{P}\left\{\bar{x} \geq \mu+\epsilon_{0}\right\} \leq e^{-2 u\left(\epsilon_{0}\right)^{2}} \leq \delta
$$

Arbitrary Bounded Range

- Suppose X is a random variable bounded in $[a, b]$. Can we still apply Hoeffding's Inequality?

Arbitrary Bounded Range

- Suppose X is a random variable bounded in [a,b]. Can we still apply Hoeffding's Inequality?
Yes. Assume $u ; x_{1}, x_{2}, \ldots, x_{u} ; \epsilon$ as defined earlier.

Arbitrary Bounded Range

- Suppose X is a random variable bounded in $[a, b]$. Can we still apply Hoeffding's Inequality?
Yes. Assume $u ; x_{1}, x_{2}, \ldots, x_{u} ; \epsilon$ as defined earlier.
Consider $Y=\frac{X-a}{b-a}$; for $1 \leq i \leq u, y_{i}=\frac{x_{i}-a}{b-a} ; \bar{y}=\frac{1}{u} \sum_{i=1}^{u} y_{i}$.

Arbitrary Bounded Range

- Suppose X is a random variable bounded in $[a, b]$. Can we still apply Hoeffding's Inequality?
Yes. Assume $u ; x_{1}, x_{2}, \ldots, x_{u} ; \epsilon$ as defined earlier.
Consider $Y=\frac{X-a}{b-a}$; for $1 \leq i \leq u, y_{i}=\frac{x_{i}-a}{b-a} ; \bar{y}=\frac{1}{u} \sum_{i=1}^{u} y_{i}$.
Since Y is bounded in $[0,1]$, we get

$$
\begin{aligned}
& \mathbb{P}\{\bar{x} \geq \mu+\epsilon\}=\mathbb{P}\left\{\bar{y} \geq \frac{\mu-a}{b-a}+\frac{\epsilon}{b-a}\right\} \leq e^{-\frac{2 u \epsilon^{2}}{(b-a)^{2}}}, \text { and } \\
& \mathbb{P}\{\bar{x} \leq \mu-\epsilon\}=\mathbb{P}\left\{\bar{y} \leq \frac{\mu-a}{b-a}-\frac{\epsilon}{b-a}\right\} \leq e^{-\frac{2 u \epsilon^{2}}{(b-a)^{2}} .}
\end{aligned}
$$

A "KL" Inequality

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

A "KL" Inequality

- Let X be a random variable bounded in $[0,1]$, with $\mathbb{E}[X]=\mu$;
- Let $u \geq 1$;
- Let $x_{1}, x_{2}, \ldots, x_{u}$ be i.i.d. samples of X; and
- Let \bar{x} be the mean of these samples (an empirical mean):

$$
\bar{x}=\frac{1}{u} \sum_{i=1}^{u} x_{i} .
$$

- Then, for or any fixed $\epsilon \in[0,1-\mu]$, we have

$$
\mathbb{P}\{\bar{x} \geq \mu+\epsilon\} \leq e^{-u K L(\mu+\epsilon, \mu)}
$$

and for or any fixed $\epsilon \in[0, \mu]$, we have

$$
\mathbb{P}\{\bar{x} \leq \mu-\epsilon\} \leq e^{-u K L(\mu-\epsilon, \mu)}
$$

where for $p, q \in[0,1], K L(p, q) \stackrel{\text { def }}{=} p \ln \left(\frac{p}{q}\right)+(1-p) \ln \left(\frac{1-p}{1-q}\right)$.

Some Observations

- The KL inequality gives a tighter upper bound:

For $p, q \in[0,1]$,

$$
K L(p, q) \geq 2(p-q)^{2} \Longrightarrow e^{-u K L(p, q)} \leq e^{-2 u(p-q)^{2}} .
$$

- Both bounds are instances of "Chernoff bounds", of which there are many more forms.
- Similar bounds can also be given when X has infinite support (such as a Gaussian), but might need additional assumptions.

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Understanding Thompson Sampling
- Concentration bounds
- Analysis of UCB
- Other bandit problems

