CS 747, Autumn 2023: Lecture 5

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Multi-armed Bandits

1. Analysis of UCB
2. Other bandit problems

Multi-armed Bandits

1. Analysis of UCB
2. Other bandit problems

UCB (Auer et al., 2002)

- Pull each arm once.
- For $t \in\{n, n+1, \ldots\}$, for $a \in A$, ucb $_{a}^{t} \stackrel{\text { def }}{=} \hat{p}_{a}^{t}+\sqrt{\frac{2 \ln (t)}{u_{a}^{t}}} ;$ pull $_{\operatorname{argmax}}^{a \in A}$ ucb $_{a}^{t}$.

UCB (Auer et al., 2002)

- Pull each arm once.
- For $t \in\{n, n+1, \ldots\}$, for $a \in A$, ucb $_{a}^{t} \stackrel{\text { def }}{=} \hat{p}_{a}^{t}+\sqrt{\frac{2 \ln (t)}{u_{a}^{t}}} ;$ pull $_{\operatorname{argmax}}^{a \in A}$ ucb $_{a}^{t}$.

UCB (Auer et al., 2002)

- Pull each arm once.
- For $t \in\{n, n+1, \ldots\}$, for $a \in A$, ucb $_{a}^{t} \stackrel{\text { def }}{=} \hat{p}_{a}^{t}+\sqrt{\frac{2 \ln (t)}{u_{a}^{t}}} ;$ pull $_{\operatorname{argmax}}^{a \in A}$ ucb $_{a}^{t}$.

- Recall that $R_{T}=T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]$.

UCB (Auer et al., 2002)

- Pull each arm once.
- For $t \in\{n, n+1, \ldots\}$, for $a \in A, \operatorname{ucb}_{a}^{t} \stackrel{\text { def }}{=} \hat{p}_{a}^{t}+\sqrt{\frac{2 \ln (t)}{u_{a}^{t}}}$; pull $\operatorname{argmax}_{a \in A}$ ucb $_{a}^{t}$.

- Recall that $R_{T}=T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]$.
- We shall show that UCB achieves $R_{T}=O\left(\sum_{a: p_{a} \neq p^{\star}} \frac{1}{p^{\star}-p_{a}} \log (T)\right)$.

Notation

- $\Delta_{a} \stackrel{\text { det }}{=} p^{\star}-p_{a}$ (instance-specific constant); \star an optimal arm.

Notation

- $\Delta_{a} \stackrel{\text { det }}{=} p^{\star}-p_{a}$ (instance-specific constant); \star an optimal arm.
- Let Z_{a}^{t} be the event that arm a is pulled at time t.

Notation

- $\Delta_{a} \stackrel{\text { det }}{=} p^{\star}-p_{a}$ (instance-specific constant); \star an optimal arm.
- Let Z_{a}^{t} be the event that arm a is pulled at time t.
- Let z_{a}^{t} be a random variable that takes value 1 if arm a is pulled at time t, and 0 otherwise.

Notation

- $\Delta_{a} \stackrel{\text { det }}{=} p^{\star}-p_{a}$ (instance-specific constant); \star an optimal arm.
- Let Z_{a}^{t} be the event that arm a is pulled at time t.
- Let z_{a}^{t} be a random variable that takes value 1 if arm a is pulled at time t, and 0 otherwise.
Observe that $\mathbb{E}\left[z_{a}^{t}\right]=\mathbb{P}\left\{Z_{a}^{t}\right\}(1)+\left(1-\mathbb{P}\left\{Z_{a}^{t}\right\}\right)(0)=\mathbb{P}\left\{Z_{a}^{t}\right\}$.

Notation

- $\Delta_{a} \stackrel{\text { det }}{=} p^{\star}-p_{a}$ (instance-specific constant); \star an optimal arm.
- Let Z_{a}^{t} be the event that arm a is pulled at time t.
- Let z_{a}^{t} be a random variable that takes value 1 if arm a is pulled at time t, and 0 otherwise.
Observe that $\mathbb{E}\left[z_{a}^{t}\right]=\mathbb{P}\left\{Z_{a}^{t}\right\}(1)+\left(1-\mathbb{P}\left\{Z_{a}^{t}\right\}\right)(0)=\mathbb{P}\left\{Z_{a}^{t}\right\}$.
- As in the algorithm, u_{a}^{t} is a random variable that denotes the number of pulls arm a has received up to time t :

$$
u_{a}^{t}=\sum_{i=0}^{t-1} z_{a}^{i} .
$$

Notation

- $\Delta_{a} \xlongequal{\text { def }} p^{\star}-p_{a}$ (instance-specific constant); \star an optimal arm.
- Let Z_{a}^{t} be the event that arm a is pulled at time t.
- Let z_{a}^{t} be a random variable that takes value 1 if arm a is pulled at time t, and 0 otherwise.
Observe that $\mathbb{E}\left[z_{a}^{t}\right]=\mathbb{P}\left\{Z_{a}^{t}\right\}(1)+\left(1-\mathbb{P}\left\{Z_{a}^{t}\right\}\right)(0)=\mathbb{P}\left\{Z_{a}^{t}\right\}$.
- As in the algorithm, u_{a}^{t} is a random variable that denotes the number of pulls arm a has received up to time t :

$$
u_{a}^{t}=\sum_{i=0}^{t-1} z_{a}^{i} .
$$

- We define an instance-specific constant $\bar{u}_{a}^{T} \xlongequal{\text { def }}\left[\frac{8}{\left(\Delta_{a}\right)^{2}} \ln (T)\right]$ that will serve in our proof as a "sufficient" number of pulls of arm a for horizon T.

Proof Sketch

- To upper-bound R_{T}, upper-bound the number of pulls of each sub-optimal arm a.
- Give each such arm a \bar{u}_{a}^{T} pulls for free.
- Beyond \bar{u}_{a}^{T} pulls, arm a's UCB will have width at most $\Delta_{a} / 2$.
- If a continues to be pulled beyond \bar{u}_{a}^{T} pulls, either its empirical mean has deviated by more than $\Delta_{a} / 2$ from its true mean, or \star 's UCB has fallen below its true mean.
- Both events above have a low probability-in aggregate at most a constant even if summed over an infinite horizon.

Proof Sketch

- To upper-bound R_{T}, upper-bound the number of pulls of each sub-optimal arm a.
- Give each such arm a \bar{u}_{a}^{T} pulls for free.
- Beyond \bar{u}_{a}^{T} pulls, arm a's UCB will have width at most $\Delta_{a} / 2$.
- If a continues to be pulled beyond \bar{u}_{a}^{T} pulls, either its empirical mean has deviated by more than $\Delta_{a} / 2$ from its true mean, or \times 's UCB has fallen below its true mean.
- Both events above have a low probability-in aggregate at most a constant even if summed over an infinite horizon.
- KL-UCB uses the KL inequality, and slightly more sophisticated analysis.

Step 1: Show that $R_{T}=\sum_{a: p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a}$.

Step 1: Show that $R_{T}=\sum_{a: p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a}$.

$$
R_{T}=T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]
$$

Step 1: Show that $R_{T}=\sum_{a: p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a}$.

$$
R_{T}=T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]=T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\left\{Z_{a}^{t}\right\} \mathbb{E}\left[r^{t} \mid Z_{a}^{t}\right]
$$

Step 1: Show that $R_{T}=\sum_{a: p_{a} \not p^{*}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a}$.

$$
\begin{aligned}
R_{T} & =T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]=T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\left\{Z_{a}^{t}\right\} \mathbb{E}\left[r^{t} \mid Z_{a}^{t}\right] \\
& =T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}\left[z_{a}^{t}\right] p_{a}
\end{aligned}
$$

Step 1: Show that $R_{T}=\sum_{a: p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a}$.

$$
\begin{aligned}
R_{T} & =T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]=T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\left\{Z_{a}^{t}\right\} \mathbb{E}\left[r^{t} \mid Z_{a}^{t}\right] \\
& =T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}\left[z_{a}^{t}\right] p_{a}=\left(\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right]\right) p^{\star}-\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right] p_{a}
\end{aligned}
$$

Step 1: Show that $R_{T}=\sum_{a: p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a}$.

$$
\begin{aligned}
R_{T} & =T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]=T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\left\{Z_{a}^{t}\right\} \mathbb{E}\left[r^{t} \mid Z_{a}^{t}\right] \\
& =T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}\left[z_{a}^{t}\right] p_{a}=\left(\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right]\right) p^{\star}-\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right] p_{a} \\
& =\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right]\left(p^{\star}-p_{a}\right)
\end{aligned}
$$

Step 1: Show that $R_{T}=\sum_{a: p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a}$.

$$
\begin{aligned}
R_{T} & =T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]=T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\left\{Z_{a}^{t}\right\} \mathbb{E}\left[r^{t} \mid Z_{a}^{t}\right] \\
& =T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}\left[z_{a}^{t}\right] p_{a}=\left(\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right]\right) p^{\star}-\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right] p_{a} \\
& =\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right]\left(p^{\star}-p_{a}\right)=\sum_{a \cdot p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a} .
\end{aligned}
$$

Step 1: Show that $R_{T}=\sum_{a: p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a}$.

$$
\begin{aligned}
R_{T} & =T p^{\star}-\sum_{t=0}^{T-1} \mathbb{E}\left[r^{t}\right]=T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{P}\left\{Z_{a}^{t}\right\} \mathbb{E}\left[r^{t} \mid Z_{a}^{t}\right] \\
& =T p^{\star}-\sum_{t=0}^{T-1} \sum_{a \in A} \mathbb{E}\left[z_{a}^{t}\right] p_{a}=\left(\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right]\right) p^{\star}-\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right] p_{a} \\
& =\sum_{a \in A} \mathbb{E}\left[u_{a}^{T}\right]\left(p^{\star}-p_{a}\right)=\sum_{a \cdot p_{a} \neq p^{\star}} \mathbb{E}\left[u_{a}^{T}\right] \Delta_{a} .
\end{aligned}
$$

To show the regret bound, we shall show for each sub-optimal arm a that

$$
\mathbb{E}\left[u_{\mathrm{a}}^{T}\right]=O\left(\frac{1}{\left(\Delta_{\mathrm{a}}\right)^{2}} \log (T)\right) .
$$

Step 2: Two Regimes for Sub-optimal Pulls

Step 2: Two Regimes for Sub-optimal Pulls

To prove $\mathbb{E}\left[u_{a}^{T}\right]=O\left(\frac{1}{\Delta_{a}^{2}} \log (T)\right)$, we show $\mathbb{E}\left[u_{a}^{T}\right] \leq \bar{u}_{a}^{T}+C$ for constant C.

Step 2: Two Regimes for Sub-optimal Pulls

To prove $\mathbb{E}\left[u_{a}^{T}\right]=O\left(\frac{1}{\Delta_{a}^{2}} \log (T)\right)$, we show $\mathbb{E}\left[u_{a}^{T}\right] \leq \bar{u}_{a}^{T}+C$ for constant C.

$$
\mathbb{E}\left[u_{a}^{T}\right]=\sum_{t=0}^{T-1} \mathbb{E}\left[z_{a}^{t}\right]
$$

Step 2: Two Regimes for Sub-optimal Pulls

To prove $\mathbb{E}\left[u_{a}^{T}\right]=O\left(\frac{1}{\Delta_{a}^{2}} \log (T)\right)$, we show $\mathbb{E}\left[u_{a}^{T}\right] \leq \bar{u}_{a}^{T}+C$ for constant C.

$$
\mathbb{E}\left[u_{a}^{T}\right]=\sum_{t=0}^{T-1} \mathbb{E}\left[z_{a}^{t}\right]=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t}\right\}
$$

Step 2: Two Regimes for Sub-optimal Pulls

To prove $\mathbb{E}\left[u_{a}^{T}\right]=O\left(\frac{1}{\Delta_{a}^{2}} \log (T)\right)$, we show $\mathbb{E}\left[u_{a}^{T}\right] \leq \bar{u}_{a}^{T}+C$ for constant C.

$$
\begin{aligned}
\mathbb{E}\left[u_{a}^{T}\right] & =\sum_{t=0}^{T-1} \mathbb{E}\left[z_{a}^{t}\right]=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t}\right\} \\
& =\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\}+\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\}
\end{aligned}
$$

Step 2: Two Regimes for Sub-optimal Pulls

To prove $\mathbb{E}\left[u_{a}^{T}\right]=O\left(\frac{1}{\Delta_{a}^{2}} \log (T)\right)$, we show $\mathbb{E}\left[u_{a}^{T}\right] \leq \bar{u}_{a}^{T}+C$ for constant C.

$$
\begin{aligned}
\mathbb{E}\left[u_{a}^{T}\right] & =\sum_{t=0}^{T-1} \mathbb{E}\left[z_{a}^{t}\right]=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t}\right\} \\
& =\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\}+\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\} \\
& =A+B
\end{aligned}
$$

Step 2: Two Regimes for Sub-optimal Pulls

To prove $\mathbb{E}\left[u_{a}^{T}\right]=O\left(\frac{1}{\Delta_{a}^{2}} \log (T)\right)$, we show $\mathbb{E}\left[u_{a}^{T}\right] \leq \bar{u}_{a}^{T}+C$ for constant C.

$$
\begin{aligned}
\mathbb{E}\left[u_{a}^{T}\right] & =\sum_{t=0}^{T-1} \mathbb{E}\left[z_{a}^{t}\right]=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t}\right\} \\
& =\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\}+\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\} \\
& =A+B
\end{aligned}
$$

We show A is upper-bounded by \bar{u}_{a}^{T} and B is upper-bounded by a constant.

Step 3: Bounding A

Step 3: Bounding A

$$
A=\sum_{t=0}^{T-1} \mathbb{P}\left\{\boldsymbol{Z}_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\}
$$

Step 3: Bounding A

$$
\begin{aligned}
A & =\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=0}^{T-1} \sum_{m=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\}
\end{aligned}
$$

Step 3: Bounding A

$$
\left.\begin{array}{rl}
A & =\sum_{t=0}^{T-1} \mathbb{P}\left\{\boldsymbol{Z}_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=0}^{T-1} \sum_{m=0}^{T}-1 \\
P
\end{array} Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\}=\sum_{m=0}^{\bar{u}_{a}^{T}-1} \sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\}, ~ l
$$

Step 3: Bounding A

$$
\begin{aligned}
& A=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_{a}^{T}-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\}=\sum_{m=0}^{\bar{u}_{a}^{T}-1} \sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\} \\
& =\sum_{m=0}^{\bar{u}_{a}^{T}-1} \mathbb{P}\left\{Z_{a}^{0},\left(u_{a}^{0}=m\right) \text { or } Z_{a}^{1},\left(u_{a}^{1}=m\right) \text { or } \ldots \text { or } Z_{a}^{T-1},\left(u_{a}^{T-1}=m\right)\right\}
\end{aligned}
$$

Step 3: Bounding A

$$
\begin{aligned}
& A=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_{a}^{T}-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\}=\sum_{m=0}^{\bar{u}_{a}^{T}-1} \sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\} \\
& =\sum_{m=0}^{\bar{u}_{a}^{T}-1} \mathbb{P}\left\{Z_{a}^{0},\left(u_{a}^{0}=m\right) \text { or } Z_{a}^{1},\left(u_{a}^{1}=m\right) \text { or } \ldots \text { or } Z_{a}^{T-1},\left(u_{a}^{T-1}=m\right)\right\} \\
& \leq \sum_{m=0}^{\bar{u}_{a}^{T}-1} 1
\end{aligned}
$$

Step 3: Bounding A

$$
\begin{aligned}
& A=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=0}^{T-1} \sum_{m=0}^{T} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\}=\sum_{m=0}^{\bar{u}_{a}^{T}-1} \sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\} \\
& =\sum_{m=0}^{\bar{u}_{a}^{T}-1} \mathbb{P}\left\{Z_{a}^{0},\left(u_{a}^{0}=m\right) \text { or } Z_{a}^{1},\left(u_{a}^{1}=m\right) \text { or } \ldots \text { or } Z_{a}^{T-1},\left(u_{a}^{T-1}=m\right)\right\} \\
& \leq \sum_{m=0}^{u_{a}^{T}-1} 1=\bar{u}_{a}^{T} .
\end{aligned}
$$

Step 3: Bounding A

$$
\begin{aligned}
& A=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}<\bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=0}^{T-1} \sum_{m=0}^{\bar{u}_{a}^{T}-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\}=\sum_{m=0}^{\bar{u}_{a}^{T}-1} \sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t}=m\right)\right\} \\
& =\sum_{m=0}^{\bar{u}_{a}^{T}-1} \mathbb{P}\left\{Z_{a}^{0},\left(u_{a}^{0}=m\right) \text { or } Z_{a}^{1},\left(u_{a}^{1}=m\right) \text { or } \ldots \text { or } Z_{a}^{T-1},\left(u_{a}^{T-1}=m\right)\right\} \\
& \leq \sum_{m=0}^{\bar{u}_{a}^{T}-1} 1=\bar{u}_{a}^{T} .
\end{aligned}
$$

We have used the fact that for $0 \leq i<j \leq t-1,\left(Z_{a}^{i},\left(u_{a}^{i}=m\right)\right)$ and $\left(Z_{a}^{j},\left(u_{a}^{j}=m\right)\right)$ are mutually exclusive.

Step 4.1: Bounding B

Step 4.1: Bounding B

$$
B=\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\}
$$

Step 4.1: Bounding B

$$
\begin{aligned}
B & =\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=n}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\}
\end{aligned}
$$

Step 4.1: Bounding B

$$
\begin{aligned}
B & =\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=n}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\} \\
& \leq \sum_{t=n}^{T-1} \mathbb{P}\left\{\left(\hat{p}_{a}^{t}+\sqrt{\frac{2}{u_{a}^{t}} \ln (t)} \geq \hat{p}_{\star}^{t}+\sqrt{\frac{2}{u_{\star}^{t}} \ln (t)}\right) \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\}
\end{aligned}
$$

Step 4.1: Bounding B

$$
\begin{aligned}
B & =\sum_{t=0}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\} \\
& =\sum_{t=n}^{T-1} \mathbb{P}\left\{Z_{a}^{t} \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\} \\
& \leq \sum_{t=n}^{T-1} \mathbb{P}\left\{\left(\hat{p}_{a}^{t}+\sqrt{\frac{2}{u_{a}^{t}} \ln (t)} \geq \hat{p}_{\star}^{t}+\sqrt{\frac{2}{u_{\star}^{t}} \ln (t)}\right) \text { and }\left(u_{a}^{t} \geq \bar{u}_{a}^{T}\right)\right\} \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t} \mathbb{P}\left\{\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)}\right\} \text { where }
\end{aligned}
$$

$\hat{p}_{a}(x)$ is the empirical mean of the first x pulls of arm a, and $\hat{p}_{\star}(y)$ is the empirical mean of the first y pulls of arm \star.

Step 4.2: Bounding B

- Fix $x \in\left\{\bar{u}_{a}^{T}, \bar{u}_{a}^{T}+1, \ldots, t\right\}$ and $y \in\{1,2, \ldots, t\}$.

Step 4.2: Bounding B

- Fix $x \in\left\{\bar{u}_{a}^{T}, \bar{u}_{a}^{T}+1, \ldots, t\right\}$ and $y \in\{1,2, \ldots, t\}$.

1. We have:

$$
\begin{aligned}
& \hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)} \\
& \quad \Longrightarrow\left(\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq p_{\star}\right) \text { or }\left(\hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)}<p_{\star}\right) .
\end{aligned}
$$

Step 4.2: Bounding B

- Fix $x \in\left\{\bar{u}_{a}^{T}, \bar{u}_{a}^{T}+1, \ldots, t\right\}$ and $y \in\{1,2, \ldots, t\}$.

1. We have:

$$
\begin{aligned}
& \hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)} \\
& \quad \Longrightarrow\left(\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq p_{\star}\right) \text { or }\left(\hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)}<p_{\star}\right) .
\end{aligned}
$$

Fact: If $\alpha>\beta$, then $\alpha \geq \gamma$ or $\beta<\gamma$. Holds for arbitrary α, β, γ !

Step 4.2: Bounding B

- Fix $x \in\left\{\bar{u}_{a}^{T}, \bar{u}_{a}^{T}+1, \ldots, t\right\}$ and $y \in\{1,2, \ldots, t\}$.

1. We have:

$$
\begin{aligned}
& \hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)} \\
& \quad \Longrightarrow\left(\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq p_{\star}\right) \text { or }\left(\hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)}<p_{\star}\right) .
\end{aligned}
$$

Fact: If $\alpha>\beta$, then $\alpha \geq \gamma$ or $\beta<\gamma$. Holds for arbitrary α, β, γ !
2. Since $x \geq \bar{u}_{a}^{T}$, we have $\sqrt{\frac{2}{x} \ln (t)} \leq \sqrt{\frac{2}{\bar{u}_{a}^{T}} \ln (t)} \leq \frac{\Delta_{a}}{2}$, and so

$$
\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq p_{\star} \Longrightarrow \hat{p}_{a}(x) \geq p_{a}+\frac{\Delta_{a}}{2}
$$

Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking Hoeffding's Inequality:

$$
B \leq \sum_{t=n}^{T-1} \sum_{x=u_{a}^{T}}^{t} \sum_{y=1}^{t} \mathbb{P}\left\{\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)}\right\}
$$

Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking Hoeffding's Inequality:

$$
\begin{aligned}
& B \leq \sum_{t=n}^{T-1} \sum_{x=u_{a}^{\tau}}^{t} \sum_{y=1}^{t} \mathbb{P}\left\{\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{*}(y)+\sqrt{\frac{2}{y} \ln (t)}\right\} \\
& \leq \sum_{t=n}^{T-1} \sum_{x=u_{a}^{\tau}}^{t} \sum_{y=1}^{t}\left(\mathbb{P}\left\{\hat{p}_{a}(x) \geq p_{a}+\frac{\Delta_{a}}{2}\right\}+\mathbb{P}\left\{\hat{p}_{*}(y)<p_{*}-\sqrt{\frac{2}{y} \ln (t)}\right\}\right)
\end{aligned}
$$

Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking Hoeffding's Inequality:

$$
\begin{aligned}
& B \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t} \mathbb{P}\left\{\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)}\right\} \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t}\left(\mathbb{P}\left\{\hat{p}_{a}(x) \geq p_{a}+\frac{\Delta_{a}}{2}\right\}+\mathbb{P}\left\{\hat{p}_{\star}(y)<p_{\star}-\sqrt{\frac{2}{y} \ln (t)}\right\}\right) \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t}\left(e^{-2 x\left(\frac{\Delta_{a}}{2}\right)^{2}}+e^{-2 y\left(\sqrt{\frac{2}{y} \ln (t)}\right)^{2}}\right)
\end{aligned}
$$

Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking Hoeffding's Inequality:

$$
\begin{aligned}
& B \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t} \mathbb{P}\left\{\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)}\right\} \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t}\left(\mathbb{P}\left\{\hat{p}_{a}(x) \geq p_{a}+\frac{\Delta_{a}}{2}\right\}+\mathbb{P}\left\{\hat{p}_{\star}(y)<p_{\star}-\sqrt{\frac{2}{y} \ln (t)}\right\}\right) \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t}\left(e^{-2 x\left(\frac{\Delta_{a}}{2}\right)^{2}}+e^{-2 y\left(\sqrt{\frac{2}{y} \ln (t)}\right)^{2}}\right) \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t}\left(e^{-4 \ln (t)}+e^{-4 \ln (t)}\right) \leq \sum_{t=n}^{T-1} t^{2}\left(\frac{2}{t^{4}}\right) \leq \sum_{t=1}^{\infty} \frac{2}{t^{2}}=\frac{\pi^{2}}{3} .
\end{aligned}
$$

Step 4.3: Bounding B

Continuing from Step 4.1, using the two results from Step 4.2, and invoking Hoeffding's Inequality:

$$
\begin{aligned}
& B \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t} \mathbb{P}\left\{\hat{p}_{a}(x)+\sqrt{\frac{2}{x} \ln (t)} \geq \hat{p}_{\star}(y)+\sqrt{\frac{2}{y} \ln (t)}\right\} \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t}\left(\mathbb{P}\left\{\hat{p}_{a}(x) \geq p_{a}+\frac{\Delta_{a}}{2}\right\}+\mathbb{P}\left\{\hat{p}_{\star}(y)<p_{\star}-\sqrt{\frac{2}{y} \ln (t)}\right\}\right) \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t}\left(e^{-2 x\left(\frac{\Delta_{a}}{2}\right)^{2}}+e^{-2 y\left(\sqrt{\frac{2}{y} \ln (t)}\right)^{2}}\right) \\
& \leq \sum_{t=n}^{T-1} \sum_{x=\bar{u}_{a}^{T}}^{t} \sum_{y=1}^{t}\left(e^{-4 \ln (t)}+e^{-4 \ln (t)}\right) \leq \sum_{t=n}^{T-1} t^{2}\left(\frac{2}{t^{4}}\right) \leq \sum_{t=1}^{\infty} \frac{2}{t^{2}}=\frac{\pi^{2}}{3} .
\end{aligned}
$$

We are done!

Multi-armed Bandits

1. Analysis of UCB
2. Other bandit problems

Other Bandit Problems

- In this course, we have covered
- stochastic multi-armed bandits,
- minimisation of expected cumulative regret.

There are many other variations/formulations.

Other Bandit Problems

- In this course, we have covered
- stochastic multi-armed bandits,
- minimisation of expected cumulative regret.

There are many other variations/formulations.

- Incorporating risk/variance in the objective.
- Arm 1 gives rewards 0 and 100, each w.p. 1/2.
- Arm 2 gives rewards 48 and 50, each w.p. 1/2.
- Which arm would you prefer?

Other Bandit Problems

- In this course, we have covered
- stochastic multi-armed bandits,
- minimisation of expected cumulative regret.

There are many other variations/formulations.

- Incorporating risk/variance in the objective.
- Arm 1 gives rewards 0 and 100, each w.p. 1/2.
- Arm 2 gives rewards 48 and 50, each w.p. 1/2.
- Which arm would you prefer?
- What if the arms' (true) means vary over time?
- Nonstationary setting, seen for example, in on-line ads.
- Approach depends on nature of drift/change in rewards.
- In practice, one might only trust most recent data from arms.
- In practice, the set of arms can itself change over time!

Other Bandit Problems

- Pure exploration.
- Separate "testing" and "live" phases.
- In testing phase, rewards don't matter.
- PAC formulation: W.p. at least $1-\delta$, must return an ϵ-optimal arm, while incurring a small number of pulls.
- Simple regret formulation: Given a budget of T pulls, must output an arm a such that p_{a} is large, or equivalently, simple regret $=p^{\star}-p_{a}$ is small).

Other Bandit Problems

- Pure exploration.
- Separate "testing" and "live" phases.
- In testing phase, rewards don't matter.
- PAC formulation: W.p. at least $1-\delta$, must return an ϵ-optimal arm, while incurring a small number of pulls.
- Simple regret formulation: Given a budget of T pulls, must output an arm a such that p_{a} is large, or equivalently, simple regret $=p^{\star}-p_{a}$ is small).
- Limited number of feedback stages.
- Suppose you are given budget T, but your algorithm can look at history only $s<T$ times?
- UCB, Thompson Sampling, etc. are fully sequential $(s=T)$.
- How to manage with fewer "stages" s ?

Other Bandit Problems

- What if the number of arms is large (thousands, millions)?
- If arms can be described using features, mean reward is often treated as a (linear) function of these features.
- Quantile-regret: look for "good", rather than "optimal" arms.

Other Bandit Problems

- What if the number of arms is large (thousands, millions)?
- If arms can be described using features, mean reward is often treated as a (linear) function of these features.
- Quantile-regret: look for "good", rather than "optimal" arms.
- What if we are interacting with many bandits simultaneously?
- Contextual bandits: If the bandits themselves can be described using features (a "context"), data from one can be used to generate estimates about others.

Other Bandit Problems

- What if the number of arms is large (thousands, millions)?
- If arms can be described using features, mean reward is often treated as a (linear) function of these features.
- Quantile-regret: look for "good", rather than "optimal" arms.
- What if we are interacting with many bandits simultaneously?
- Contextual bandits: If the bandits themselves can be described using features (a "context"), data from one can be used to generate estimates about others.
- What if the rewards do not come from a fixed random process?
- Adversarial bandits make no assumption on the rewards.
- Possible to show sub-linear regret when compared against playing a single arm for the entire run.
- Necessary to use a randomised algorithm.

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Understanding Thompson Sampling
- Other bandit problems

Multi-armed Bandits

- The exploration-exploitation dilemma
- Definitions: Bandit, Algorithm
- ϵ-greedy algorithms
- Evaluating algorithms: Regret
- Achieving sub-linear regret
- A lower bound on regret
- UCB, KL-UCB algorithms
- Thompson Sampling algorithm
- Concentration bounds
- Understanding Thompson Sampling
- Other bandit problems
- Next class: Markov Decision Problems

