CS 747, Autumn 2023: Lecture 6

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Markov Decision Problems

1. Definitions

- Markov Decision Problem
- Policy
- Value Function

2. MDP planning

3. Policy evaluation

Markov Decision Problems

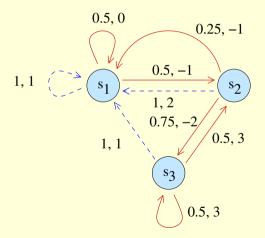
1. Definitions

- Markov Decision Problem
- Policy
- Value Function

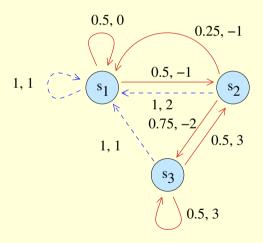
2. MDP planning

3. Policy evaluation

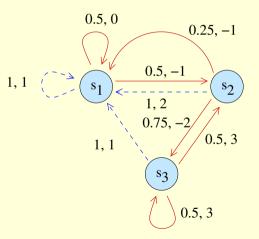
Markov Decision Problems (MDPs)



S: a set of states.



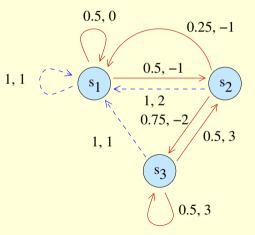
S: a set of states. Let us assume $S = \{s_1, s_2, \dots, s_n\}$, and hence |S| = n.



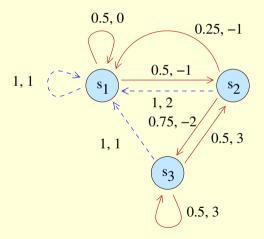
A: a set of actions.



A: a set of actions. Let us assume $A = \{a_1, a_2, \dots, a_k\}$, and hence |A| = k. Here $A = \{\text{RED}, \text{BLUE}\}$.

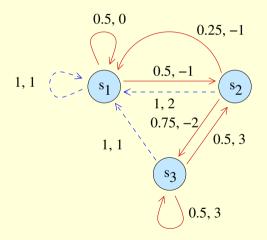


T: a transition function.

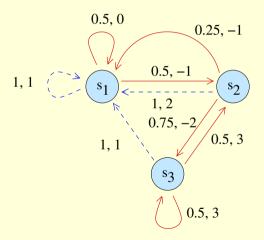


T: a transition function.

- For s, s' ∈ S, a ∈ A: T(s, a, s') is the probability of reaching s' by starting at s and taking action a.
- Thus, $T(s, a, \cdot)$ is a probability distribution over *S*.



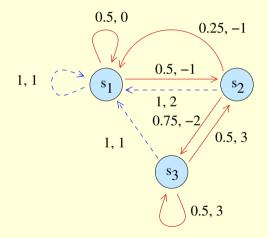
R: a reward function.



R: a reward function.

- For s, s' ∈ S, a ∈ A: R(s, a, s') is the (numeric) reward for reaching s' by starting at s and taking action a.
- Assume rewards are from

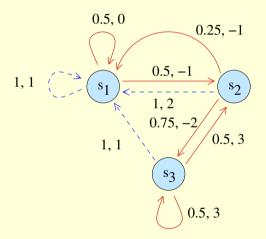
$$[-R_{\max}, R_{\max}]$$
 for some $R_{\max} \ge 0$.



Markov Decision Problems (MDPs)

Elements of MDP $M = (S, A, T, R, \gamma)$.

 γ : a discount factor—coming up.



t = 0 Agent is born in some state s^0 , takes action a^0 . Environment generates and provides the agent next state $s^1 \sim T(s^0, a^0, \cdot)$ and reward $r^0 = R(s^0, a^0, s^1)$.

Agent is born in some state s^0 , takes action a^0 . Environment generates and provides the agent next state $s^1 \sim T(s^0, a^0, \cdot)$ and reward $r^0 = R(s^0, a^0, s^1)$.

Agent is in state s^1 , takes action a^1 . Environment generates and provides the agent next state $s^2 \sim T(s^1, a^1, \cdot)$ and reward $r^1 = R(s^1, a^1, s^2)$.

t = 0

t = 1

Agent is born in some state s^0 , takes action a^0 . Environment generates and provides the agent next state $s^1 \sim T(s^0, a^0, \cdot)$ and reward $r^0 = R(s^0, a^0, s^1)$.

Agent is in state s^1 , takes action a^1 . Environment generates and provides the agent next state $s^2 \sim T(s^1, a^1, \cdot)$ and reward $r^1 = R(s^1, a^1, s^2)$.

t = 0

t = 1

.

Agent is born in some state s^0 , takes action a^0 . Environment generates and provides the agent next state $s^1 \sim T(s^0, a^0, \cdot)$ and reward $r^0 = R(s^0, a^0, s^1)$.

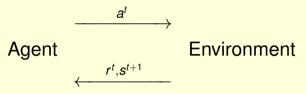
Agent is in state s^1 , takes action a^1 . Environment generates and provides the agent next state $s^2 \sim T(s^1, a^1, \cdot)$ and reward $r^1 = R(s^1, a^1, s^2)$.

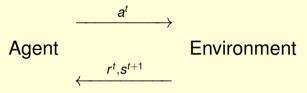
Resulting trajectory: $s^0, a^0, r^0, s^1, a^1, r^1, s^2, ...$

t = 0

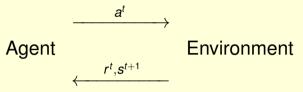
t = 1

2

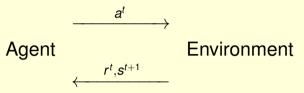




• How does the agent pick *a*^{*t*}?

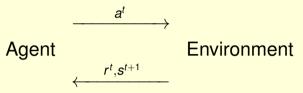


How does the agent pick a^t?
 In principle, it can decide by looking at the preceding history
 s⁰, a⁰, r⁰, s¹, a¹, r¹, s², ..., s^t,

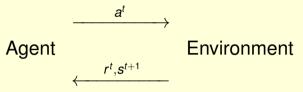


How does the agent pick a^t?
 In principle, it can decide by looking at the preceding history
 s⁰, a⁰, r⁰, s¹, a¹, r¹, s², ..., s^t.

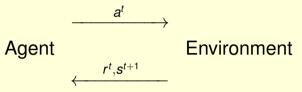
For now let us assume that a^t is picked based on s^t alone.



- How does the agent pick a^t? In principle, it can decide by looking at the preceding history s⁰, a⁰, r⁰, s¹, a¹, r¹, s², ..., s^t.
 For now let us assume that a^t is picked based on s^t alone.
- In other words, the agent follows a policy $\pi : S \rightarrow A$.

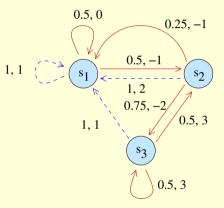


- How does the agent pick a^t? In principle, it can decide by looking at the preceding history s⁰, a⁰, r⁰, s¹, a¹, r¹, s², ..., s^t.
 For now let us assume that a^t is picked based on s^t alone.
- In other words, the agent follows a policy π : S → A.
 Observe that π is Markovian, deterministic, and stationary.

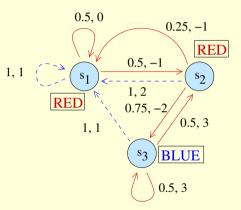


- How does the agent pick a^t? In principle, it can decide by looking at the preceding history s⁰, a⁰, r⁰, s¹, a¹, r¹, s², ..., s^t.
 For now let us assume that a^t is picked based on s^t alone.
- In other words, the agent follows a policy π : S → A.
 Observe that π is Markovian, deterministic, and stationary.
 We will justify this choice in due course!

Shivaram Kalyanakrishnan (2023)

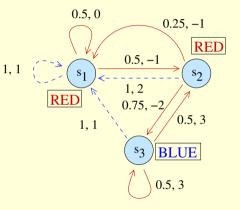


6/15



• Illustrated policy π such that

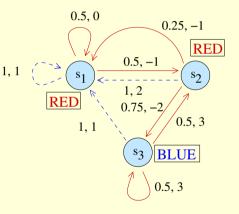
$$\pi(s_1) = \text{RED}; \pi(s_2) = \text{RED}; \pi(s_3) = \text{BLUE}.$$



• Illustrated policy π such that

$$\pi(\boldsymbol{s}_1) = \mathsf{RED}; \pi(\boldsymbol{s}_2) = \mathsf{RED}; \pi(\boldsymbol{s}_3) = \mathsf{BLUE}.$$

What happens by "following" π , starting at s_1 ?

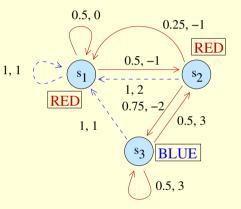


• Illustrated policy π such that

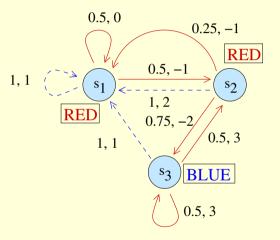
$$\pi(s_1) = \mathsf{RED}; \pi(s_2) = \mathsf{RED}; \pi(s_3) = \mathsf{BLUE}.$$

What happens by "following" π , starting at s_1 ?

- S_1 , RED, S_1 , RED, S_2 , RED, S_3 , BLUE, S_1 ,
- S_1 , RED, S_2 , RED, S_1 , RED, S_1 , RED, S_1 , ...

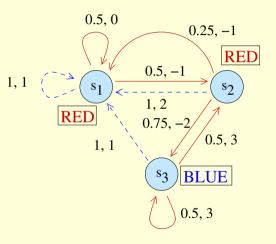


● Let □ denote the set of all policies.

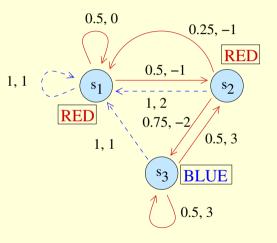


Let □ denote the set of all policies.

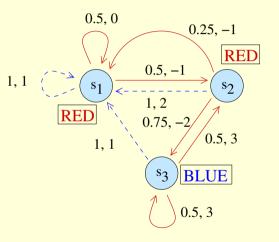
• What is $|\Pi|$?



- Let □ denote the set of all policies.
- What is $|\Pi|$? k^n .



- Let □ denote the set of all policies.
- What is $|\Pi|$? k^n .
- Which $\pi \in \Pi$ is a "good" policy?



State Values for Policy π • For $s \in S$, $V^{\pi}(s) \stackrel{\text{\tiny def}}{=} \mathbb{E}_{\pi} \begin{bmatrix} r^0 + r^1 + r^2 + r^3 + \dots | s^0 = s \end{bmatrix}$,

8/15

State Values for Policy π

• For $s \in S$, $V^{\pi}(s) \stackrel{\text{\tiny def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$, where $\gamma \in [0, 1)$ is a discount factor.

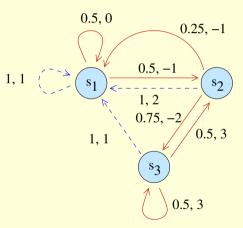
State Values for Policy π

• For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$, where $\gamma \in [0, 1)$ is a discount factor.

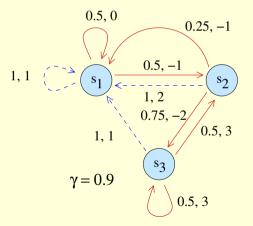
γ is an element of the MDP.
 Larger γ, farther the "lookahead".

State Values for Policy π • For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \gamma^{3} r^{3} + \dots | s^{0} = s \right]$, where $\gamma \in [0, 1)$ is a discount factor.

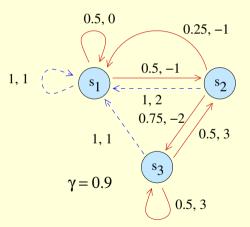
γ is an element of the MDP.
 Larger γ, farther the "lookahead".



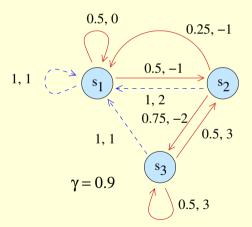
- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$, where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP.
 Larger γ, farther the "lookahead".



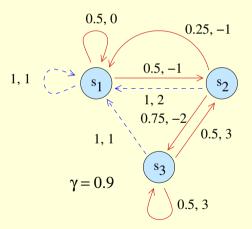
- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$, where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP.
 Larger γ, farther the "lookahead".
- V^π(s) is the value of state s under policy π.



- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$, where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP.
 Larger γ, farther the "lookahead".
- V^π(s) is the value of state s under policy π.
- V^{π} : $S \to \mathbb{R}$ is the value function of π .



- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$, where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP.
 Larger γ, farther the "lookahead".
- V^π(s) is the value of state s under policy π.
- V^π: S → ℝ is the value function of π.
 "Larger is better".



Markov Decision Problems

1. Definitions

- Markov Decision Problem
- Policy
- Value Function

2. MDP planning

3. Policy evaluation

• Here are value functions from our example MDP.

π	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$
RRR	4.45	6.55	10.82
RRB	-5.61	-5.75	-4.05
RBR	2.76	4.48	9.12
RBB	2.76	4.48	3.48
BRR	10.0	9.34	13.10
BRB	10.0	7.25	10.0
BBR	10.0	11.0	14.45
BBB	10.0	11.0	10.0

• Here are value functions from our example MDP.

π	-	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$
F	RRR	4.45	6.55	10.82
F	RB	-5.61	-5.75	-4.05
F	RBR	2.76	4.48	9.12
F	RBB	2.76	4.48	3.48
E	BRR	10.0	9.34	13.10
E	BRB	10.0	7.25	10.0
E	BBR	10.0	11.0	14.45
E	BBB	10.0	11.0	10.0

Which policy would you prefer?

• Here are value functions from our example MDP.

π	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$	
RRR	4.45	6.55	10.82	
RRB	-5.61	-5.75	-4.05	
RBR	2.76	4.48	9.12	
RBB	2.76	4.48	3.48	
BRR	10.0	9.34	13.10	
BRB	10.0	7.25	10.0	
BBR	10.0	11.0	14.45	\leftarrow Optimal policy
BBB	10.0	11.0	10.0	

Which policy would you prefer?

• Here are value functions from our example MDP.

π	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$	
RRR	4.45	6.55	10.82	-
RRB	-5.61	-5.75	-4.05	
RBR	2.76	4.48	9.12	
RBB	2.76	4.48	3.48	
BRR	10.0	9.34	13.10	
BRB	10.0	7.25	10.0	
BBR	10.0	11.0	14.45	← Optimal policy
BBB	10.0	11.0	10.0	

Which policy would you prefer?

Every MDP is guaranteed to have an optimal policy π^* s.t.

 $\forall \pi \in \Pi, \forall \boldsymbol{s} \in \boldsymbol{S} : \boldsymbol{V}^{\pi^{\star}}(\boldsymbol{s}) \geq \boldsymbol{V}^{\pi}(\boldsymbol{s}).$

MDP Planning problem: Given $M = (S, A, T, R, \gamma)$, find a policy π^* from the set of all policies Π such that $\forall s \in S, \forall \pi \in \Pi: V^{\pi^*}(s) \geq V^{\pi}(s)$.

MDP Planning problem: Given $M = (S, A, T, R, \gamma)$, find a policy π^* from the set of all policies Π such that $\forall s \in S, \forall \pi \in \Pi: V^{\pi^*}(s) \geq V^{\pi}(s)$.

 Every MDP is guaranteed to have a deterministic, Markovian, stationary optimal policy.

MDP Planning problem: Given $M = (S, A, T, R, \gamma)$, find a policy π^* from the set of all policies Π such that $\forall s \in S, \forall \pi \in \Pi: V^{\pi^*}(s) \geq V^{\pi}(s)$.

- Every MDP is guaranteed to have a deterministic, Markovian, stationary optimal policy.
- An MDP can have more than one optimal policy.

MDP Planning problem: Given $M = (S, A, T, R, \gamma)$, find a policy π^* from the set of all policies Π such that $\forall s \in S, \forall \pi \in \Pi: V^{\pi^*}(s) \geq V^{\pi}(s)$.

- Every MDP is guaranteed to have a deterministic, Markovian, stationary optimal policy.
- An MDP can have more than one optimal policy.
- However, the value function of every optimal policy is the same, unique "optimal value function" V*.

Markov Decision Problems

1. Definitions

- Markov Decision Problem
- Policy
- Value Function

2. MDP planning

3. Policy Evaluation

Structure of State Values For $\pi \in \Pi, s \in S : V^{\pi}(s) \stackrel{\text{\tiny def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2}r^{2} + \dots | s^{0} = s]$

Structure of State Values For $\pi \in \Pi$, $s \in S$: $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s]$ $= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s, s^{1} = s']$

Structure of State Values
For
$$\pi \in \Pi$$
, $s \in S$: $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s]$
 $= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s, s^{1} = s']$
 $= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} | s^{0} = s, s^{1} = s']$
 $+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{0} = s, s^{1} = s']$

Structure of State Values
For
$$\pi \in \Pi$$
, $s \in S : V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s]$
 $= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s, s^{1} = s']$
 $= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} | s^{0} = s, s^{1} = s']$
 $+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{0} = s, s^{1} = s']$
 $= \sum_{s' \in S} T(s, \pi(s), s') R(s, \pi(s), s')$
 $+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{1} = s']$

Shivaram Kalyanakrishnan (2023)

Structure of State Values
For
$$\pi \in \Pi$$
, $s \in S$: $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s]$
 $= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s, s^{1} = s']$
 $= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0}|s^{0} = s, s^{1} = s']$
 $+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{0} = s, s^{1} = s']$
 $= \sum_{s' \in S} T(s, \pi(s), s') R(s, \pi(s), s')$
 $+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{1} = s']$
 $= \sum_{s' \in S} T(s, \pi(s), s') \{R(s, \pi(s), s') + \gamma V^{\pi}(s')\}.$

For $\pi \in \Pi$, $s \in S$:

$$oldsymbol{V}^{\pi}(oldsymbol{s}) = \sum_{oldsymbol{s}'\in oldsymbol{S}}oldsymbol{T}(oldsymbol{s},\pi(oldsymbol{s}),oldsymbol{s}') \left\{oldsymbol{R}(oldsymbol{s},\pi(oldsymbol{s}),oldsymbol{s}')+\gammaoldsymbol{V}^{\pi}(oldsymbol{s}')
ight\}.$$

For $\pi \in \Pi$, $s \in S$:

$$oldsymbol{V}^{\pi}(oldsymbol{s}) = \sum_{oldsymbol{s}'\in oldsymbol{S}}oldsymbol{T}(oldsymbol{s},\pi(oldsymbol{s}),oldsymbol{s}') \left\{oldsymbol{R}(oldsymbol{s},\pi(oldsymbol{s}),oldsymbol{s}')+\gammaoldsymbol{V}^{\pi}(oldsymbol{s}')
ight\}.$$

• Recall that $S = \{s_1, s_2, ..., s_n\}$.

For $\pi \in \Pi$, $s \in S$:

$$\mathcal{V}^{\pi}(\boldsymbol{s}) = \sum_{\boldsymbol{s}' \in \mathcal{S}} \mathcal{T}(\boldsymbol{s}, \pi(\boldsymbol{s}), \boldsymbol{s}') \left\{ \mathcal{R}(\boldsymbol{s}, \pi(\boldsymbol{s}), \boldsymbol{s}') + \gamma \mathcal{V}^{\pi}(\boldsymbol{s}')
ight\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}$.
- *n* equations, *n* unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \ldots, V^{\pi}(s_n)$.

For $\pi \in \Pi$, $\boldsymbol{s} \in \boldsymbol{S}$:

$$oldsymbol{V}^{\pi}(oldsymbol{s}) = \sum_{oldsymbol{s}'\in oldsymbol{S}} oldsymbol{T}(oldsymbol{s}, \pi(oldsymbol{s}), oldsymbol{s}') \left\{ oldsymbol{R}(oldsymbol{s}, \pi(oldsymbol{s}), oldsymbol{s}') + \gamma oldsymbol{V}^{\pi}(oldsymbol{s}')
ight\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}$.
- *n* equations, *n* unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \ldots, V^{\pi}(s_n)$.
- Linear!

For $\pi \in \Pi$, $\boldsymbol{s} \in \boldsymbol{S}$:

$$oldsymbol{V}^{\pi}(oldsymbol{s}) = \sum_{oldsymbol{s}'\inoldsymbol{S}}oldsymbol{T}(oldsymbol{s},\pi(oldsymbol{s}),oldsymbol{s}') \left\{oldsymbol{R}(oldsymbol{s},\pi(oldsymbol{s}),oldsymbol{s}')+\gammaoldsymbol{V}^{\pi}(oldsymbol{s}')
ight\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}$.
- *n* equations, *n* unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \ldots, V^{\pi}(s_n)$.
- Linear!
- Guaranteed to have a unique solution if $\gamma < 1$.

For $\pi \in \Pi$, $\boldsymbol{s} \in \boldsymbol{S}$:

$$oldsymbol{V}^{\pi}(oldsymbol{s}) = \sum_{oldsymbol{s}'\inoldsymbol{S}}oldsymbol{T}(oldsymbol{s},\pi(oldsymbol{s}),oldsymbol{s}') \left\{oldsymbol{R}(oldsymbol{s},\pi(oldsymbol{s}),oldsymbol{s}')+\gammaoldsymbol{V}^{\pi}(oldsymbol{s}')
ight\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}$.
- *n* equations, *n* unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \ldots, V^{\pi}(s_n)$.
- Linear!
- Guaranteed to have a unique solution if $\gamma < 1$.
- Policy evaluation: step of computing V^{π} for a given policy π .

• We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .

- We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .
- Now you know how to compute the value function of any given policy π .

- We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .
- Now you know how to compute the value function of any given policy π .
- Can you put the two ideas together and construct an algorithm to find π^* ?

- We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .
- Now you know how to compute the value function of any given policy π .
- Can you put the two ideas together and construct an algorithm to find π^* ?
- Yes! Evaluate each policy and identify one that has a value function dominating all the others'.

- We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .
- Now you know how to compute the value function of any given policy π .
- Can you put the two ideas together and construct an algorithm to find π^* ?
- Yes! Evaluate each policy and identify one that has a value function dominating all the others'.
- This approach needs poly(n, k) · kⁿ arithmetic operations. We hope to be more efficient (wait for next week).