CS 747, Autumn 2023: Lecture 8

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Markov Decision Problems

1. Banach's fixed-point theorem
2. Bellman optimality operator
3. Value iteration

Markov Decision Problems

1. Banach's fixed-point theorem
2. Bellman optimality operator
3. Value iteration

Complete, Normed Vector Spaces

- A vector space X has objects called vectors that can be added and scaled.

Complete, Normed Vector Spaces

- A vector space X has objects called vectors that can be added and scaled.
- A norm || $\|$ associates a length with each vector (and satisfies some conditions).

Complete, Normed Vector Spaces

- A vector space X has objects called vectors that can be added and scaled.
- A norm ||•|| associates a length with each vector (and satisfies some conditions).
- A complete, normed vector space $(X,\|\cdot\|)$ is one in which every Cauchy sequence has a limit in X.

Complete, Normed Vector Spaces

- A vector space X has objects called vectors that can be added and scaled.
- A norm ||•|| associates a length with each vector (and satisfies some conditions).
- A complete, normed vector space $(X,\|\cdot\|)$ is one in which every Cauchy sequence has a limit in X.

- A complete, normed vector space is called a Banach space.

Two Definitions

- Let $(X,\|\cdot\|)$ be a normed vector space, and let $0 \leq \ell<1$.

Two Definitions

- Let $(X,\|\cdot\|)$ be a normed vector space, and let $0 \leq \ell<1$.
- Contraction mapping. A mapping $Z: X \rightarrow X$ is called a contraction mapping with contraction factor ℓ if $\forall u \in X, \forall v \in X$,

$$
\|Z v-Z u\| \leq \ell\|v-u\| .
$$

Two Definitions

- Let $(X,\|\cdot\|)$ be a normed vector space, and let $0 \leq \ell<1$.
- Contraction mapping. A mapping $Z: X \rightarrow X$ is called a contraction mapping with contraction factor ℓ if $\forall u \in X, \forall v \in X$,

$$
\|Z v-Z u\| \leq \ell\|v-u\| .
$$

- Fixed-point. $x^{\star} \in X$ is called a fixed-point of Z if $Z x^{\star}=x^{\star}$.

Banach's Fixed-point Theorem

(Adapted from Szepesvári, 2009 (see Appendix A.1).)
Let $(X,\|\cdot\|)$ be a Banach space, and let $Z: X \rightarrow X$ be a contraction mapping with contraction factor $\ell \in[0,1)$. Then:

1. Z has a unique fixed point $x^{\star} \in X$.
2. For $x \in X, m \geq 0:\left\|Z^{m} x-x^{\star}\right\| \leq \ell^{m}\left\|x-x^{\star}\right\|$.

Banach's Fixed-point Theorem

(Adapted from Szepesvári, 2009 (see Appendix A.1).)
Let $(X,\|\cdot\|)$ be a Banach space, and let $Z: X \rightarrow X$ be a contraction mapping with contraction factor $\ell \in[0,1)$. Then:

1. Z has a unique fixed point $x^{\star} \in X$.
2. For $x \in X, m \geq 0:\left\|Z^{m} x-x^{\star}\right\| \leq \ell^{m}\left\|x-x^{\star}\right\|$.

Markov Decision Problems

1. Banach's fixed-point theorem
2. Bellman optimality operator
3. Value iteration

Bellman Optimality Operator

- Take $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. A function $F: S \rightarrow \mathbb{R}$ is equivalently a point in \mathbb{R}^{n}.

Bellman Optimality Operator

- Take $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. A function $F: S \rightarrow \mathbb{R}$ is equivalently a point in \mathbb{R}^{n}.
- The Bellman optimality operator $B^{\star}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\operatorname{MDP}(S, A, T, R, \gamma)$ is defined as follows. For $F \in \mathbb{R}^{n}, s \in S$:

$$
\left(B^{\star}(F)\right)(s) \stackrel{\text { det }}{=} \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\} .
$$

Bellman Optimality Operator

- Take $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. A function $F: S \rightarrow \mathbb{R}$ is equivalently a point in \mathbb{R}^{n}.
- The Bellman optimality operator $B^{\star}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\operatorname{MDP}(S, A, T, R, \gamma)$ is defined as follows. For $F \in \mathbb{R}^{n}$, $s \in S$:

$$
\left(B^{\star}(F)\right)(s) \stackrel{\text { def }}{=} \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\}
$$

- Recall that the max norm $\|\cdot\|_{\infty}$ of $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right) \in \mathbb{R}^{n}$ is

$$
\|F\|_{\infty}=\max \left\{\left|f_{1}\right|,\left|f_{2}\right|, \ldots,\left|f_{n}\right|\right\}
$$

Bellman Optimality Operator

- Take $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. A function $F: S \rightarrow \mathbb{R}$ is equivalently a point in \mathbb{R}^{n}.
- The Bellman optimality operator $B^{\star}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $\operatorname{MDP}(S, A, T, R, \gamma)$ is defined as follows. For $F \in \mathbb{R}^{n}, s \in S$:

$$
\left(B^{\star}(F)\right)(s) \stackrel{\text { def }}{=} \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\}
$$

- Recall that the max norm $\|\cdot\|_{\infty}$ of $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right) \in \mathbb{R}^{n}$ is

$$
\|F\|_{\infty}=\max \left\{\left|f_{1}\right|,\left|f_{2}\right|, \ldots,\left|f_{n}\right|\right\} .
$$

- It is an established result that $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ is a Banach space.

Bellman Optimality Operator

- Take $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. A function $F: S \rightarrow \mathbb{R}$ is equivalently a point in \mathbb{R}^{n}.
- The Bellman optimality operator $B^{\star}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for MDP (S, A, T, R, γ) is defined as follows. For $F \in \mathbb{R}^{n}, s \in S$:

$$
\left(B^{\star}(F)\right)(s) \stackrel{\text { def }}{=} \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\}
$$

- Recall that the max norm $\|\cdot\|_{\infty}$ of $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right) \in \mathbb{R}^{n}$ is

$$
\|F\|_{\infty}=\max \left\{\left|f_{1}\right|,\left|f_{2}\right|, \ldots,\left|f_{n}\right|\right\}
$$

- It is an established result that $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ is a Banach space.

Fact. B^{\star} is a contraction mapping in the $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ Banach space with contraction factor γ.

Proof that B^{\star} is a Contraction Mapping

We use: $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$.

Proof that B^{\star} is a Contraction Mapping

We use: $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$.

$$
\left\|B^{\star}(F)-B^{\star}(G)\right\|_{\infty}
$$

Proof that B^{\star} is a Contraction Mapping

We use: $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$.
$\left\|B^{\star}(F)-B^{\star}(G)\right\|_{\infty}=\max _{s \in S}\left|\left(B^{\star}(F)\right)(s)-\left(B^{\star}(G)\right)(s)\right|$

Proof that B^{\star} is a Contraction Mapping

We use: $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$.

$$
\begin{aligned}
\left\|B^{\star}(F)-B^{\star}(G)\right\|_{\infty}= & \max _{s \in S}\left|\left(B^{\star}(F)\right)(s)-\left(B^{\star}(G)\right)(s)\right| \\
= & \max _{s \in S} \mid \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\}- \\
& \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma G\left(s^{\prime}\right)\right\} \mid
\end{aligned}
$$

Proof that B^{\star} is a Contraction Mapping

We use: $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$.

$$
\begin{aligned}
\left\|B^{\star}(F)-B^{\star}(G)\right\|_{\infty}= & \max _{s \in S}\left|\left(B^{\star}(F)\right)(s)-\left(B^{\star}(G)\right)(s)\right| \\
= & \max _{s \in S} \mid \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\}- \\
& \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma G\left(s^{\prime}\right)\right\} \mid \\
\leq & \max _{(s, a) \in S \times A}\left|\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{F\left(s^{\prime}\right)-G\left(s^{\prime}\right)\right\}\right|
\end{aligned}
$$

Proof that B^{\star} is a Contraction Mapping

We use: $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$.

$$
\begin{aligned}
\left\|B^{\star}(F)-B^{\star}(G)\right\|_{\infty} & =\max _{s \in S}\left|\left(B^{\star}(F)\right)(s)-\left(B^{\star}(G)\right)(s)\right| \\
& =\max _{s \in S} \mid \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\}-
\end{aligned}
$$

$$
\max _{a \in \mathcal{A}} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma G\left(s^{\prime}\right)\right\} \mid
$$

$$
\leq \gamma \max _{(s, a) \in S \times A}\left|\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{F\left(s^{\prime}\right)-G\left(s^{\prime}\right)\right\}\right|
$$

$$
\leq \gamma \max _{(s, a) \in S \times A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left|F\left(s^{\prime}\right)-G\left(s^{\prime}\right)\right|
$$

Proof that B^{\star} is a Contraction Mapping

We use: $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$.

$$
\begin{aligned}
\left\|B^{\star}(F)-B^{\star}(G)\right\|_{\infty} & =\max _{s \in S}\left|\left(B^{\star}(F)\right)(s)-\left(B^{\star}(G)\right)(s)\right| \\
& =\max _{s \in S} \mid \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\}-
\end{aligned}
$$

$$
\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma G\left(s^{\prime}\right)\right\} \mid
$$

$$
\leq \gamma \max _{(s, a) \in S \times A}\left|\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{F\left(s^{\prime}\right)-G\left(s^{\prime}\right)\right\}\right|
$$

$$
\leq \gamma \max _{(s, a) \in S \times A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left|F\left(s^{\prime}\right)-G\left(s^{\prime}\right)\right|
$$

$$
\leq \gamma \max _{(s, a) \in S \times A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\|F-G\|_{\infty}
$$

Proof that B^{\star} is a Contraction Mapping

We use: $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$.

$$
\begin{aligned}
\left\|B^{\star}(F)-B^{\star}(G)\right\|_{\infty} & =\max _{s \in S}\left|\left(B^{\star}(F)\right)(s)-\left(B^{\star}(G)\right)(s)\right| \\
& =\max _{s \in S} \mid \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma F\left(s^{\prime}\right)\right\}-
\end{aligned}
$$

$$
\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma G\left(s^{\prime}\right)\right\} \mid
$$

$$
\leq \gamma \max _{(s, a) \in S \times A}\left|\sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{F\left(s^{\prime}\right)-G\left(s^{\prime}\right)\right\}\right|
$$

$$
\leq \gamma \max _{(s, a) \in S \times A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left|F\left(s^{\prime}\right)-G\left(s^{\prime}\right)\right|
$$

$$
\leq \gamma \max _{(s, a) \in S \times A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\|F-G\|_{\infty}=\gamma\|F-G\|_{\infty} .
$$

The Fixed-point of B^{\star}

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^{\star}.

The Fixed-point of B^{\star}

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^{\star}.
- Denote the fixed point $V^{\star}: S \rightarrow \mathbb{R}$ (alternatively, $V^{\star} \in \mathbb{R}^{n}$). Note that $B^{\star}\left(V^{\star}\right)=V^{\star}$. In other words, for $s \in S$:

$$
V^{\star}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma \boldsymbol{V}^{\star}\left(s^{\prime}\right)\right\} .
$$

The Fixed-point of B^{\star}

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^{\star}.
- Denote the fixed point $V^{\star}: S \rightarrow \mathbb{R}$ (alternatively, $V^{\star} \in \mathbb{R}^{n}$). Note that $B^{\star}\left(V^{\star}\right)=V^{\star}$. In other words, for $s \in S$:

$$
V^{\star}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma \boldsymbol{V}^{\star}\left(s^{\prime}\right)\right\} .
$$

- These are the Bellman optimality equations for MDP (S, $A, T, R, \gamma)$.

The Fixed-point of B^{\star}

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^{\star}.
- Denote the fixed point $V^{\star}: S \rightarrow \mathbb{R}$ (alternatively, $V^{\star} \in \mathbb{R}^{n}$). Note that $B^{\star}\left(V^{\star}\right)=V^{\star}$. In other words, for $s \in S$:

$$
V^{\star}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma V^{\star}\left(s^{\prime}\right)\right\} .
$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ). n equations, n unknowns, but non-linear!

The Fixed-point of B^{\star}

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^{\star}.
- Denote the fixed point $V^{\star}: S \rightarrow \mathbb{R}$ (alternatively, $V^{\star} \in \mathbb{R}^{n}$). Note that $B^{\star}\left(V^{\star}\right)=V^{\star}$. In other words, for $s \in S$:

$$
V^{\star}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma V^{\star}\left(s^{\prime}\right)\right\} .
$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ). n equations, n unknowns, but non-linear!
- Value iteration, linear programming, and policy iteration are three distinct families of algorithms to compute V^{\star}.

The Fixed-point of B^{\star}

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^{\star}.
- Denote the fixed point $V^{\star}: S \rightarrow \mathbb{R}$ (alternatively, $V^{\star} \in \mathbb{R}^{n}$). Note that $B^{\star}\left(V^{\star}\right)=V^{\star}$. In other words, for $s \in S$:

$$
V^{\star}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma V^{\star}\left(s^{\prime}\right)\right\} .
$$

- These are the Bellman optimality equations for MDP (S, A, T, R, γ). n equations, n unknowns, but non-linear!
- Value iteration, linear programming, and policy iteration are three distinct families of algorithms to compute V^{\star}. But why compute V^{\star} ?

The Fixed-point of B^{\star}

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^{\star}.
- Denote the fixed point $V^{\star}: S \rightarrow \mathbb{R}$ (alternatively, $V^{\star} \in \mathbb{R}^{n}$). Note that $B^{\star}\left(V^{\star}\right)=V^{\star}$. In other words, for $s \in S$:

$$
V^{\star}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma V^{\star}\left(s^{\prime}\right)\right\} .
$$

- These are the Bellman optimality equations for $\operatorname{MDP}(S, A, T, R, \gamma)$. n equations, n unknowns, but non-linear!
- Value iteration, linear programming, and policy iteration are three distinct families of algorithms to compute V^{\star}. But why compute V^{\star} ?
- Fact. V^{\star} is the value function of every policy $\pi^{\star}: S \rightarrow A$ such that for $s \in S$:

$$
\pi^{\star}(s)=\operatorname{argmax}_{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right\} .
$$

The Fixed-point of B^{\star}

- Banach's Fixed-point Theorem implies there is a unique fixed point for B^{\star}.
- Denote the fixed point $V^{\star}: S \rightarrow \mathbb{R}$ (alternatively, $V^{\star} \in \mathbb{R}^{n}$). Note that $B^{\star}\left(V^{\star}\right)=V^{\star}$. In other words, for $s \in S$:

$$
V^{\star}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma \boldsymbol{V}^{\star}\left(s^{\prime}\right)\right\} .
$$

- These are the Bellman optimality equations for $\operatorname{MDP}(S, A, T, R, \gamma)$. n equations, n unknowns, but non-linear!
- Value iteration, linear programming, and policy iteration are three distinct families of algorithms to compute V^{\star}. But why compute V^{\star} ?
- Fact. V^{\star} is the value function of every policy $\pi^{\star}: S \rightarrow A$ such that for $s \in S$:

$$
\pi^{\star}(s)=\operatorname{argmax}_{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left\{R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right\} .
$$

- We shall prove next week that every such policy π^{\star} is an optimal policy. Hence V^{\star} is the optimal value function.

Markov Decision Problems

1. Banach's fixed-point theorem
2. Bellman optimality operator
3. Value iteration

Value Iteration

- Iterative approach to compute V^{\star}.

Value Iteration

- Iterative approach to compute V^{\star}.
- $V_{0} \xrightarrow{B^{*}} V_{1} \xrightarrow{B^{*}} V_{2} \xrightarrow{B^{*}} \ldots$.

Value Iteration

- Iterative approach to compute V^{\star}.
- $V_{0} \xrightarrow{B^{*}} V_{1} \xrightarrow{B^{*}} V_{2} \xrightarrow{B^{\star}} \ldots$
$V_{0} \leftarrow$ Arbitrary, element-wise bounded, n-length vector.
$t \leftarrow 0$.
Repeat:
For $s \in S$:

$$
V_{t+1}(s) \leftarrow \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left(R\left(s, a, s^{\prime}\right)+\gamma V_{t}\left(s^{\prime}\right)\right) .
$$

$$
t \leftarrow t+1 .
$$

Until $V_{t} \approx V_{t-1}$ (up to machine precision).

Value Iteration

- Iterative approach to compute V^{\star}.
- $V_{0} \xrightarrow{B^{*}} V_{1} \xrightarrow{B^{*}} V_{2} \xrightarrow{B^{*}} \ldots$.
$V_{0} \leftarrow$ Arbitrary, element-wise bounded, n-length vector.
$t \leftarrow 0$.
Repeat:
For $s \in S$:

$$
V_{t+1}(s) \leftarrow \max _{a \in A} \sum_{s^{\prime} \in S} T\left(s, a, s^{\prime}\right)\left(R\left(s, a, s^{\prime}\right)+\gamma V_{t}\left(s^{\prime}\right)\right) .
$$

$$
t \leftarrow t+1 .
$$

Until $V_{t} \approx V_{t-1}$ (up to machine precision).

- Popular; easy to implement; quick to converge in practice.

Markov Decision Problems

1. Banach's fixed-point theorem
2. Bellman optimality operator
3. Value iteration

Markov Decision Problems

1. Banach's fixed-point theorem
2. Bellman optimality operator
3. Value iteration

Next class: MDP planning through linear programming.

