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Markov Decision Problems

1. Review of linear programming

2. MDP planning through linear programming
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Linear Programming
To solve for real-valued variables x1, x2, . . . , xm such that

▶ a given linear function of the variables is maximised, while
▶ given linear constraints (“≤”) on the variables are satisfied.

Maximise x1 + 2x2 //Objective function
subject to: //Constraints

x1 + x2 ≤ 9, (C1)
4x1 − 13x2 ≤ −75, (C2)

x1 ≤ 5. (C3)

Well-studied problem with wide-ranging applications in mathematics,
engineering.
Today’s solvers (commercial, as well as open source) can handle LPs with
millions of variables.
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Conceptual Steps towards Solving a Linear Program
Step 1: Identify the feasible set, which contains all the points satisfying the
constraints. Might be empty, but otherwise will be convex.

Step 2: Identify points within the feasible set that maximise the objective.
Usually a single point.

Maximise x1 + 2x2

subject to:

x1 + x2 ≤ 9, (C1)
−4x1 + 13x2 ≤ 75, (C2)

x1 ≤ 5. (C3)
(0, 0)
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Actually Solving a Linear Program

Common approaches: Simplex, interior-point methods.

LP with d variables, m constraints, B-bit representation of floats.
- Can be solved in poly(d ,m,B) operations.

- Can be solved in poly(d ,m) · eO(
√

d log(m)) expected “real RAM” operations.

Modern LP solvers can solve LPs with thousands/millions of
variables/constraints in reasonable time (hours/days).

Most engineers’ focus is on formulating, rather than solving, LP.
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Bellman Optimality Equations as an LP
Bellman optimality equations: for s ∈ S,

V ∗(s) = maxa∈A
∑

s′∈S T (s,a, s′) {R(s,a, s′) + γV ∗(s′)}.

Let us create n variables V (s1),V (s2), . . . ,V (sn), and attempt to create an LP
whose unique solution is V ⋆.
Although the Bellman optimality equations are non-linear, we can easily
create linear constraints. For s ∈ S,a ∈ A:

V (s) ≥
∑

s′∈S T (s,a, s′){R(s,a, s′) + γV (s′)}.
These are nk linear constraints.
Observe that V ⋆ is in the feasible set.

Can we construct an objective function for which V ⋆ is the sole optimiser?
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Vector Comparison
For X : S → R and Y : S → R (equivalently X ,Y ∈ Rn), we define

X ⪰ Y ⇐⇒ ∀s ∈ S : X (s) ≥ Y (s),
X ≻ Y ⇐⇒ X ⪰ Y and ∃s ∈ S : X (s) > Y (s).

For policies π1, π2 ∈ Π, we define

π1 ⪰ π2 ⇐⇒ V π1 ⪰ V π2 ,

π1 ≻ π2 ⇐⇒ V π1 ≻ V π2 .

Note that we can have incomparable policies π1, π2 ∈ Π: that is, neither
π1 ⪰ π2 nor π2 ⪰ π1.

Also note that if π1 ⪰ π2 and π2 ⪰ π1, then V π1 = V π2.
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B⋆ Preserves ⪰
Fact. For X : S → R and Y : S → R,

X ⪰ Y =⇒ B⋆(X ) ⪰ B⋆(Y ).

As proof it suffices to show that if X ⪰ Y , then for s ∈ S,

(B⋆(X ))(s)− (B⋆(Y ))(s) ≥ 0.

We use: maxa f (a)−maxa g(a) ≥ mina(f (a)− g(a)).

(B⋆(X ))(s)− (B⋆(Y ))(s) = max
a∈A

∑
s′∈S

T (s,a, s′){R(s,a, s′) + γX (s′)}−

max
a∈A

∑
s′∈S

T (s,a, s′){R(s,a, s′) + γY (s′)}

≥ γmin
a∈A

∑
s′∈S

T (s,a, s′){X (s′)− Y (s′)} ≥ 0.
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Examining the Feasible Set of our LP
Each V : S → R in our feasible set satisfies V ⪰ B⋆(V ).

Since B⋆ preserves ⪰, we get

V ⪰ B⋆(V )

=⇒ B⋆(V ) ⪰ (B⋆)2(V )

=⇒ (B⋆)2(V ) ⪰ (B⋆)3(V )

...

By implication and by Banach’s Fixed-point Theorem,
V ⪰ liml→∞(B⋆)l(V ) = V ⋆.

For all V ̸= V ⋆ in the feasible set, V ≻ V ⋆. By implication:∑
s∈S V (s) >

∑
s∈S V ⋆(s).
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Linear Programming Formulation

Maximise

(
−
∑
s∈S

V (s)

)
subject to

V (s) ≥
∑
s′∈S

T (s,a, s′){R(s,a, s′) + γV (s′)},∀s ∈ S,a ∈ A.

This LP has n variables, nk constraints.

V ⋆ is the unique solution.

There is also a dual LP formulation with nk variables and n constraints. The
dual’s solution immediately yields π⋆. See Littman et al. (1995) if interested.
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Linear Programming Formulation
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(
−
∑
s∈S

V (s)

)
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∑
s′∈S

T (s,a, s′){R(s,a, s′) + γV (s′)},∀s ∈ S,a ∈ A.

This LP has n variables, nk constraints. V ⋆ is the unique solution.

There is also a dual LP formulation with nk variables and n constraints. The
dual’s solution immediately yields π⋆. See Littman et al. (1995) if interested.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 12



12/12

Markov Decision Problems

1. Review of linear programming

2. MDP planning through linear programming

Next class: policy iteration.
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