CS 747, Autumn 2023: Lecture 11

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Markov Decision Problems

1. Policy iteration: variants and complexity bounds
2. Analysis of bounds

- Basic tools
- Howard's PI with $k=2$
- BSPI with $k=2$
- Open problems

3. Review of MDP planning

Markov Decision Problems

1. Policy iteration: variants and complexity bounds
2. Analysis of bounds

- Basic tools
- Howard's PI with $k=2$
- BSPI with $k=2$
- Open problems

3. Review of MDP planning

Policy Iteration Algorithm

```
\pi}\mathrm{ Arbitrary policy.
While }\pi\mathrm{ has improvable states:
    \pi
    \pi}\leftarrow\mp@subsup{\pi}{}{\prime}
Return }\pi\mathrm{ .
```


Policy Iteration Algorithm

```
\pi\leftarrow\mathrm{ Arbitrary policy.}
While }\pi\mathrm{ has improvable states:
    \pi
    \pi}\leftarrow\mp@subsup{\pi}{}{\prime}
Return }\pi\mathrm{ .
```


Policy Iteration Algorithm

```
\pi\leftarrow\mathrm{ Arbitrary policy.}
While }\pi\mathrm{ has improvable states:
    \pi
    \pi\leftarrow\mp@subsup{\pi}{}{\prime}.
Return }\pi\mathrm{ .
```


Policy Iteration Algorithm

```
\pi\leftarrow\mathrm{ Arbitrary policy.}
While }\pi\mathrm{ has improvable states:
    \pi
    \pi}\leftarrow\mp@subsup{\pi}{}{\prime}
Return }\pi\mathrm{ .
```


Policy Iteration Algorithm

```
\pi\leftarrow\mathrm{ Arbitrary policy.}
While }\pi\mathrm{ has improvable states:
    \pi
    \pi\leftarrow\mp@subsup{\pi}{}{\prime}.
Return }\pi\mathrm{ .
```


Policy Iteration Algorithm

```
\pi}\leftarrow\mathrm{ Arbitrary policy.
While }\pi\mathrm{ has improvable states:
    \pi
    \pi\leftarrow\mp@subsup{\pi}{}{\prime}.
Return }\pi\mathrm{ .
```


Policy Iteration Algorithm

```
\pi\leftarrow\mathrm{ Arbitrary policy.}
While }\pi\mathrm{ has improvable states:
    \pi
    \pi}\leftarrow\mp@subsup{\pi}{}{\prime}
Return }\pi\mathrm{ .
```


Policy Iteration Algorithm

```
\pi}\leftarrow\mathrm{ Arbitrary policy.
While }\pi\mathrm{ has improvable states:
    \pi
    \pi}\leftarrow\mp@subsup{\pi}{}{\prime}
Return }\pi\mathrm{ .
```

Path taken (and hence the number of iterations) in general depends on the switching strategy.

Howard's Policy Iteration

- Reference: Howard (1960).
- Greedy; switch all improvable states.

Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.

Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.

Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.

Simple Policy Iteration

- Reference: Melekopoglou and Condon (1994).
- Assume a fixed indexing of states.
- Switch the improvable state with the highest index.

Upper and Lower Bounds

$U(n, k)$ is an upper bound applicable to a set of PI variants \mathcal{L} if

- for each n-state, k-action MDP $M=(S, A, T, R, \gamma)$,
- for each policy $\pi: S \rightarrow A$,
- for each algorithm $L \in \mathcal{L}$, the expected number of policy evaluations performed by L on M if initialised at π is at most $U(n, k)$.

Upper and Lower Bounds

$U(n, k)$ is an upper bound applicable to a set of Pl variants \mathcal{L} if

- for each n-state, k-action

MDP $M=(S, A, T, R, \gamma)$,

- for each policy $\pi: S \rightarrow A$,
- for each algorithm $L \in \mathcal{L}$, the expected number of policy evaluations performed by L on M if initialised at π is at most $U(n, k)$.
$X(n, k)$ is a lower bound applicable to a set of PI variants \mathcal{L} if
- there exists an n-state, k-action MDP $M=(S, A, T, R, \gamma)$,
- there exists a policy $\pi: S \rightarrow A$,
- there exists an algorithm $L \in \mathcal{L}$, such that the expected number of policy evaluations performed by L on M if initialised at π is at least $X(n, k)$.

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant

Howard's (Greedy) PI [H60, MS99]
Mansour and Singh's Random PI [MS99]
Mansour and Singh's Random PI [HPZ14]

Type
$k=2$
$O\left(\frac{2^{n}}{n}\right)$
Randomised

Randomised

General k
$O\left(\frac{k^{n}}{n}\right)$
$\approx O\left(\frac{k}{2}\right)^{n}$

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant

Howard's (Greedy) PI [H60, MS99]

Type
$k=2$
Deterministic
$O\left(\frac{2^{n}}{n}\right)$
$O\left(\frac{k^{n}}{n}\right)$
Mansour and Singh's Random PI [MS99]
Mansour and Singh's Random PI [HPZ14]

Type	$k=2$	General k
Deterministic	$O\left(\frac{2^{n}}{n}\right)$	$O\left(\frac{k^{n}}{n}\right)$
Randomised	1.7172^{n}	$\approx O\left(\frac{k}{2}\right)^{n}$
Randomised	$\operatorname{poly}(n) \cdot 1.5^{n}$	-

Lower bounds on number of iterations $\Omega(n) \quad$ Howard's PI on n-state, 2-action MDPs [HZ10].

Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant

Howard's (Greedy) PI [H60, MS99]
Mansour and Singh's Random PI [MS99]
Mansour and Singh's Random PI [HPZ14]

Type
$k=2$
Deterministic

Randomised

Randomised $\operatorname{poly}(n) \cdot 1.5^{n}$

$$
O\left(\frac{2^{n}}{n}\right)
$$

1.7172^{n}

General k

$$
O\left(\frac{k^{n}}{n}\right)
$$

$$
\approx O\left(\frac{k}{2}\right)^{n}
$$

Lower bounds on number of iterations $\Omega(n) \quad$ Howard's PI on n-state, 2-action MDPs [HZ10]. $\Omega\left(2^{n}\right)$ Simple PI on n-state, 2 -action MDPs [MC94].

PI: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

PI: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^{n} for $k=2$.

PI: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^{n} for $k=2$.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound $k^{0.7207 n}$. Taraviya and Kalyanakrishnan (2019) improve to $k^{0.7019 n}$.

PI: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^{n} for $k=2$.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound $k^{0.7207 n}$. Taraviya and Kalyanakrishnan (2019) improve to $k^{0.7019 n}$.
- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of $(2+\ln (k-1))^{n}$ for a randomised PI variant.

PI: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^{n} for $k=2$.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound $k^{0.7207 n}$. Taraviya and Kalyanakrishnan (2019) improve to $k^{0.7019 n}$.
- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of $(2+\ln (k-1))^{n}$ for a randomised PI variant.
- Taraviya and Kalyanakrishnan (2019) show an upper bound of $(O(\sqrt{k \log (k)}))^{n}$ for a randomised variant of Howard's PI.

PI: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^{n} for $k=2$.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound $k^{0.7207 n}$. Taraviya and Kalyanakrishnan (2019) improve to $k^{0.7019 n}$.
- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of $(2+\ln (k-1))^{n}$ for a randomised PI variant.
- Taraviya and Kalyanakrishnan (2019) show an upper bound of $(O(\sqrt{k \log (k)}))^{n}$ for a randomised variant of Howard's PI.
- Ashutosh, Consul, Dedhia, Khirwadkar, Shah, and Kalyanakrishnan (2020) show a lower bound of \sqrt{k}^{n} iterations for a deterministic variant of PI.

Markov Decision Problems

1. Policy iteration: variants and complexity bounds
2. Analysis of bounds

- Basic tools
- Howard's PI with $k=2$
- BSPI with $k=2$
- Open problems

3. Review of MDP planning

1. Policy Improvement and Policy "Deprovement"

1. Policy Improvement and Policy "Deprovement"

2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi^{\prime} \in \Pi$ cannot have the same set of improvable states.

2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi^{\prime} \in \Pi$ cannot have the same set of improvable states.
$\begin{array}{llllllllllllllll}1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$

2. Improvement sets in 2-action MDPs

2. Improvement sets in 2-action MDPs

$$
\begin{aligned}
& \text { Non-optimal policies } \pi, \pi^{\prime} \in \Pi \text { cannot } \\
& \text { have the same set of improvable states. } \\
& \begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array} \\
& \begin{array}{llllllllllllllll}
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1
\end{array} \\
& \begin{array}{llllllll}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}
\end{aligned}
$$

2. Improvement sets in 2-action MDPs

$$
\begin{aligned}
& \text { Non-optimal policies } \pi, \pi^{\prime} \in \Pi \text { cannot } \\
& \text { have the same set of improvable states. } \\
& \begin{array}{llllllllllllllll}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
\succ & & & & & & & & & \succ & & & \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1
\end{array} \\
& \succeq \\
& \begin{array}{llllllll}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}
\end{aligned}
$$

2. Improvement sets in 2-action MDPs

$$
\begin{aligned}
& \text { Non-optimal policies } \pi, \pi^{\prime} \in \Pi \text { cannot } \\
& \text { have the same set of improvable states. } \\
& \begin{array}{llllllllllllllll}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array} \\
& \begin{array}{llllllllllllllll}
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1
\end{array} \\
& \succeq \quad \succeq \\
& \begin{array}{llllllllllllllll}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}
\end{aligned}
$$

2. Improvement sets in 2-action MDPs

$$
\begin{aligned}
& \text { Non-optimal policies } \pi, \pi^{\prime} \in \Pi \text { cannot } \\
& \text { have the same set of improvable states. } \\
& \begin{array}{llllllllllllllll}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array} \\
& \begin{array}{llllllllllllllll}
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1
\end{array} \\
& \succeq \quad \succeq \\
& \begin{array}{llllllllllllllll}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array} \\
& \text { Contradiction! }
\end{aligned}
$$

Markov Decision Problems

1. Policy iteration: variants and complexity bounds
2. Analysis of bounds

- Basic tools
- Howard's PI with $k=2$
- BSPI with $k=2$
- Open problems

3. Review of MDP planning

Howard's Policy Iteration (2-action MDPs)
Switch actions in every improvable state.

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.
$\begin{array}{lllllllllllll}\pi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

$$
\left.\begin{array}{lllllllllllll}
\pi^{\prime} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
& & & & & & & & & & & & \\
& & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

Possible?

$\begin{array}{lllllllllllll}\pi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

$$
\begin{array}{lllllllllllll}
\pi^{\prime} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\pi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π^{\prime}	0	0	0	0	0	0	0	1	1	1	1	1
π_{1}	0	0	0	0	0	0	0	1	1	1	1	0

$$
\begin{array}{llllllllllllll}
\pi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

| π^{\prime} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| π_{1} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| π_{2} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π^{\prime}	0	0	0	0	0	0	0	1	1	1	1	1
π_{1}	0	0	0	0	0	0	0	1	1	1	1	0
π_{2}	0	0	0	0	0	0	0	1	1	1	0	0
π_{3}	0	0	0	0	0	0	0	1	1	0	0	0
π	0	0	0	0	0	0	0	0	0	0	0	0

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π^{\prime}	0	0	0	0	0	0	0	1	1	1	1	1
π_{1}	0	0	0	0	0	0	0	1	1	1	1	0
π_{2}	0	0	0	0	0	0	0	1	1	1	0	0
π_{3}	0	0	0	0	0	0	0	1	1	0	0	0
π_{4}	0	0	0	0	0	0	0	1	0	0	0	0
π	0	0	0	0	0	0	0	0	0	0	0	0

Howard's Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

π^{\prime}	0	0	0	0	0	0	0	1	1	1	1	1
π_{1}	0	0	0	0	0	0	0	1	1	1	1	0
π_{2}	0	0	0	0	0	0	0	1	1	1	0	0
π_{3}	0	0	0	0	0	0	0	1	1	0	0	0
π_{4}	0	0	0	0	0	0	0	1	0	0	0	0
π	0	0	0	0	0	0	0	0	0	0	0	0

> If π has m improvable states and $\pi \xrightarrow{\text { Howard's Pl }} \pi^{\prime}$, then there exist m policies $\pi^{\prime \prime}$ such that $\pi^{\prime} \succeq \pi^{\prime \prime} \succ \pi$.

Howard's Policy Iteration (2-action MDPs)

- Take $m^{\star}=\frac{n}{3}$.

Howard's Policy Iteration (2-action MDPs)

- Take $m^{\star}=\frac{n}{3}$.
- Number of policies with m^{\star} or more improvable states visited

Howard's Policy Iteration (2-action MDPs)

- Take $m^{\star}=\frac{n}{3}$.
- Number of policies with m^{\star} or more improvable states visited

$$
\leq \frac{2^{n}}{m^{\star}}=\frac{2^{n}}{n / 3} .
$$

Howard's Policy Iteration (2-action MDPs)

- Take $m^{\star}=\frac{n}{3}$.
- Number of policies with m^{\star} or more improvable states visited

$$
\leq \frac{2^{n}}{m^{\star}}=\frac{2^{n}}{n / 3} .
$$

- Number of policies with fewer than m^{\star} improvable states visited

Howard's Policy Iteration (2-action MDPs)

- Take $m^{\star}=\frac{n}{3}$.
- Number of policies with m^{\star} or more improvable states visited

$$
\leq \frac{2^{n}}{m^{\star}}=\frac{2^{n}}{n / 3} .
$$

- Number of policies with fewer than m^{\star} improvable states visited

$$
\leq\binom{ n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{m^{\star}-1}
$$

Howard's Policy Iteration (2-action MDPs)

- Take $m^{\star}=\frac{n}{3}$.
- Number of policies with m^{\star} or more improvable states visited

$$
\leq \frac{2^{n}}{m^{\star}}=\frac{2^{n}}{n / 3}
$$

- Number of policies with fewer than m^{\star} improvable states visited

$$
\leq\binom{ n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{m^{\star}-1} \leq 3 \frac{2^{n}}{n} .
$$

Howard's Policy Iteration (2-action MDPs)

- Take $m^{\star}=\frac{n}{3}$.
- Number of policies with m^{\star} or more improvable states visited

$$
\leq \frac{2^{n}}{m^{\star}}=\frac{2^{n}}{n / 3}
$$

- Number of policies with fewer than m^{\star} improvable states visited

$$
\leq\binom{ n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{m^{\star}-1} \leq 3 \frac{2^{n}}{n}
$$

Number of iterations taken by Howard's PI: $O\left(\frac{2^{n}}{n}\right)$ [MS99, HGDJ14].

Markov Decision Problems

1. Policy iteration: variants and complexity bounds
2. Analysis of bounds

- Basic tools
- Howard's PI with $k=2$
- BSPI with $k=2$
- Open problems

3. Review of MDP planning

Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard's Policy Iteration takes at most \qquad iterations on a 2-state MDP!

Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard's Policy Iteration takes at most _3_iterations on a 2-state MDP!

Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard's Policy Iteration takes at most _3_iterations on a 2-state MDP!

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

π_{3}	0	1		0	1	1	1	0	1	0
π_{2}	0	1	1	0	0	0	1	0	1	0
π_{1}	0	11		0	0	0	1	0	0	0
	s_{1}	s_{2}	s_{3}	s_{4}	S_{5}	s_{6}	s_{7}	S_{8}	S9	s_{10}

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

π_{4}		1		0		1		1	1	0
π_{3}	0	1	1	0	1	11	1	0	1	0
π_{2}	0	1	1	0	0	0	1	0	1	0
π_{1}	0 s_{1}	$\stackrel{1}{1}$		0 S_{4}		${ }_{5}^{0}$		0 88	$\stackrel{0}{0}$	0 s_{10}

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

π_{4}	0	1	1	0	1	1		1	1	0
π_{3}	0	1	1	0	1	11	1	0	1	0
π_{2}	0	1	1	0	0	0	1	0	1	0
π_{1}	s_{1}			0 S_{4}				S_{8}		0 s_{10}

- Left-most batch can change only when all other columns are non-improvable.

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

π_{4}	0	1	1	0	1	1		1	1	0
π_{3}	0	1	1	0	1	1	1	0	1	0
π_{2}	0	1	1	0	0	0	1	0	1	0
π_{1}	0	11		0	0	0	1	0	0	0
	s_{1}	s_{2}	s_{3}	S_{4}	S_{5}	s_{6}		S_{8}	S_{9}	s_{10}

- Left-most batch can change only when all other columns are non-improvable.
- Left-most batch can change at most 3 times (following previous result).

Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

π_{4}	01	10	11	11	1	0
π_{3}	$0 \quad 1$	10		$1 \quad 0$	1	0
π_{2}	0 1	10	$0 \quad 0$	10	1	0
π_{1}	$\begin{array}{cc} \mathbf{0} & 1 \\ s_{1} & s_{2} \end{array}$	$\begin{array}{cc}1 & 0 \\ s_{3} & s_{4}\end{array}$	$\begin{array}{ll}0 & 0 \\ s_{5} & s_{6}\end{array}$	$\begin{array}{ll}1 & 0 \\ s_{7} & s_{8}\end{array}$	0 0 9	0 s_{10}

- Left-most batch can change only when all other columns are non-improvable.
- Left-most batch can change at most 3 times (following previous result).
- $T(n) \leq 3 \times T(n-2) \leq \sqrt{3}^{n}$.

Batch-Switching Policy Iteration (BSPI)

Howard's Policy Iteration takes at most 5 iterations on a 3 -state MDP!

Batch-Switching Policy Iteration (BSPI)

Howard's Policy Iteration takes at most 5 iterations on a 3-state MDP!

Batch-Switching Policy Iteration (BSPI)

Howard's Policy Iteration takes at most 5 iterations on a 3 -state MDP!

The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a] (and correspond to the Order Regularity Problem [H12, GHDJ15]).

Batch-Switching Policy Iteration (BSPI)

Howard's Policy Iteration takes at most 5 iterations on a 3 -state MDP!

The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a] (and correspond to the Order Regularity Problem [H12, GHDJ15]).
BSPI with 3-sized batches gives $T(n) \leq 5 \times T(n-3) \leq 1.71^{n}$.

Upper Bounds

Batch size Depth of TBT Bound on number of iterations

1	2	2^{n}
2	3	1.7321^{n}
3	5	1.7100^{n}
4	8	1.6818^{n}
5	13	1.6703^{n}
6	21	1.6611^{n}
7	33	1.6479^{n}

Upper Bounds

Batch size Depth of TBT Bound on number of iterations

1	2	2^{n}
2	3	1.7321^{n}
3	5	1.7100^{n}
4	8	1.6818^{n}
5	13	1.6703^{n}
6	21	1.6611^{n}
7	33	1.6479^{n}

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Upper Bounds

Batch size Depth of TBT Bound on number of iterations

1	2	2^{n}
2	3	1.7321^{n}
3	5	1.7100^{n}
4	8	1.6818^{n}
5	13	1.6703^{n}
6	21	1.6611^{n}
7	33	1.6479^{n}

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15]. Will the bound continue to be non-increasing in the batch size?

Upper Bounds

Batch size Depth of TBT Bound on number of iterations

1	2	2^{n}
2	3	1.7321^{n}
3	5	1.7100^{n}
4	8	1.6818^{n}
5	13	1.6703^{n}
6	21	1.6611^{n}
7	33	1.6479^{n}

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15]. Will the bound continue to be non-increasing in the batch size?
If so, 1.6479^{n} would be an upper bound for Howard's Policy Iteration!

BSPI: Effect of Batch Size b

Averaged over n-state, 2 -action MDPs with randomly generated transition and reward functions. Each point is an average over 100 randomly-generated MDP instances and initial policies [KMG16a].

Markov Decision Problems

1. Policy iteration: variants and complexity bounds
2. Analysis of bounds

- Basic tools
- Howard's PI with $k=2$
- BSPI with $k=2$
- Open problems

3. Review of MDP planning

Open Problems

- Is the complexity of Howard's PI on 2-action MDPs upper-bounded by the Fibonacci sequence ($\approx 1.6181^{n}$)?
- Is Howard's PI the most efficient among deterministic PI algorithms (worst case over all MDPs)?
- Is there a super-linear lower bound on the number of iterations taken by Howard's PI on 2-action MDPs?
- Is Howard's PI strongly polynomial on deterministic MDPs?
- Is there a variant of PI that can visit all k^{n} policies in some n-state, k-action MDP-implying an $\Omega\left(k^{n}\right)$ lower bound?
- Is there a strongly polynomial algorithm for MDP planning?

Markov Decision Problems

1. Policy iteration: variants and complexity bounds
2. Analysis of bounds

- Basic tools
- Howard's PI with $k=2$
- BSPI with $k=2$
- Open problems

3. Review of MDP planning

Summary of MDP Planning

- MDPs are an abstraction of sequential decision making.
- Many applications; many different formulations.
- Essential solution concept: optimal policy (known to exist).
- Three main families of planning algorithms: value iteration, linear programming, policy iteration.
- Have strengths and weaknesses in theory and in practice. Can combine.
- We showed correctness of all three methods.
- Used Banach's fixed-point theorem, Bellman (optimality) operator.
- What if T, R were not given, but have to be learned from interaction? Can we still learn to act optimally?
- Yes: that's the reinforcement learning problem. Next class!

