CS 747, Autumn 2023: Lecture 12

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

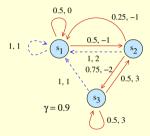
Reinforcement Learning

- 1. Reinforcement learning problem
- 2. Upcoming topics
- Applications

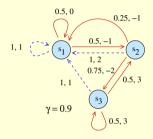
Reinforcement Learning

- 1. Reinforcement learning problem
- 2. Upcoming topics
- Applications

Underlying MDP:

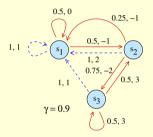


Underlying MDP:

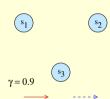


$$\gamma = 0.9$$
 \longrightarrow

Underlying MDP:

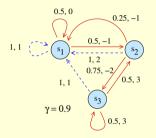


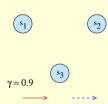
Agent's view:



• From current state, agent takes action.

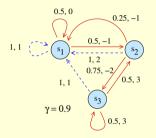
Underlying MDP:

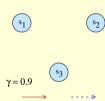




- From current state, agent takes action.
- Environment (MDP) decides next state and reward.

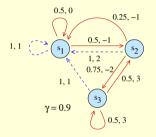
Underlying MDP:

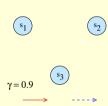




- From current state, agent takes action.
- Environment (MDP) decides next state and reward.
- Possible history: s_2 , RED, -2, s_3 , BLUE, 1, s_1 , RED, 0, s_1 ,

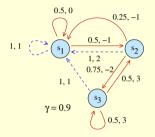
Underlying MDP:

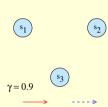




- From current state, agent takes action.
- Environment (MDP) decides next state and reward.
- Possible history: s_2 , RED, -2, s_3 , BLUE, 1, s_1 , RED, 0, s_1 ,
- History conveys information about the MDP to the agent.

Underlying MDP:





- From current state, agent takes action.
- Environment (MDP) decides next state and reward.
- Possible history: s_2 , RED, -2, s_3 , BLUE, 1, s_1 , RED, 0, s_1 ,
- History conveys information about the MDP to the agent.
 Can the agent eventually take optimal actions?

• In the planning setting, the entire MDP (S, A, T, R, γ) is available as an input. Obtaining π^* is a computational problem.

- In the planning setting, the entire MDP (S, A, T, R, γ) is available as an input. Obtaining π^* is a computational problem.
- In the learning setting, the agent only knows S, A, γ , and sometimes R. It has to make inferences about T (and sometimes R) by taking actions from different states.

- In the planning setting, the entire MDP (S, A, T, R, γ) is available as an input. Obtaining π^* is a computational problem.
- In the learning setting, the agent only knows S, A, γ , and sometimes R. It has to make inferences about T (and sometimes R) by taking actions from different states.
- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history.

- In the planning setting, the entire MDP (S, A, T, R, γ) is available as an input. Obtaining π^* is a computational problem.
- In the learning setting, the agent only knows S, A, γ , and sometimes R. It has to make inferences about T (and sometimes R) by taking actions from different states.
- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history.
- A learning algorithm L is a mapping from the set of all histories to the set of all (probability distributions over) actions.

- In the planning setting, the entire MDP (S, A, T, R, γ) is available as an input. Obtaining π^* is a computational problem.
- In the learning setting, the agent only knows S, A, γ , and sometimes R. It has to make inferences about T (and sometimes R) by taking actions from different states.
- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history.
- A learning algorithm *L* is a mapping from the set of all histories to the set of all (probability distributions over) actions.
- Learning problem: Can we construct L such that

$$\lim_{H\to\infty}\frac{1}{H}\left(\sum_{t=0}^{H-1}\mathbb{P}\{a^t\sim L(h^t)\text{ is an optimal action for }s^t\}\right)=1?$$

Reinforcement Learning

- 1. Reinforcement learning problem
- 2. Upcoming topics
- Applications

- Temporal difference learning: prediction and control
 - On-line estimation of value function/action value function.

- Temporal difference learning: prediction and control
 - On-line estimation of value function/action value function.
- Generalisation and function approximation
 - Compact representations to handle large state spaces.

- Temporal difference learning: prediction and control
 - On-line estimation of value function/action value function.
- Generalisation and function approximation
 - Compact representations to handle large state spaces.
- Policy gradient and policy search methods
 - Direct search over policy parameters.

- Temporal difference learning: prediction and control
 - On-line estimation of value function/action value function.
- Generalisation and function approximation
 - Compact representations to handle large state spaces.
- Policy gradient and policy search methods
 - Direct search over policy parameters.
- Model-based RL
 - Using (approximate) representations of T and R for learning.

- Temporal difference learning: prediction and control
 - On-line estimation of value function/action value function.
- Generalisation and function approximation
 - Compact representations to handle large state spaces.
- Policy gradient and policy search methods
 - Direct search over policy parameters.
- Model-based RL
 - Using (approximate) representations of T and R for learning.
- Batch RL
 - Storing and learning from a sequence of transitions (batch).

- Temporal difference learning: prediction and control
 - On-line estimation of value function/action value function.
- Generalisation and function approximation
 - Compact representations to handle large state spaces.
- Policy gradient and policy search methods
 - Direct search over policy parameters.
- Model-based RL
 - Using (approximate) representations of T and R for learning.
- Batch RL
 - Storing and learning from a sequence of transitions (batch).
- Monte Carlo tree search
 - Planning for action selection.

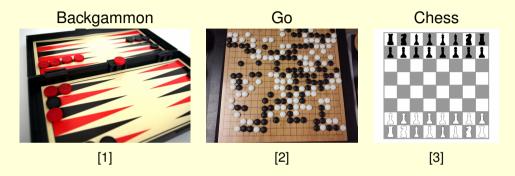
- Temporal difference learning: prediction and control
 - On-line estimation of value function/action value function.
- Generalisation and function approximation
 - Compact representations to handle large state spaces.
- Policy gradient and policy search methods
 - Direct search over policy parameters.
- Model-based RL
 - Using (approximate) representations of T and R for learning.
- Batch RL
 - Storing and learning from a sequence of transitions (batch).
- Monte Carlo tree search
 - Planning for action selection.
- Multiagent RL
 - Coping with other learning agents.

- Temporal difference learning: prediction and control
 - On-line estimation of value function/action value function.
- Generalisation and function approximation
 - Compact representations to handle large state spaces.
- Policy gradient and policy search methods
 - Direct search over policy parameters.
- Model-based RL
 - Using (approximate) representations of T and R for learning.
- Batch RL
 - Storing and learning from a sequence of transitions (batch).
- Monte Carlo tree search
 - Planning for action selection.
- Multiagent RL
 - Coping with other learning agents.
- Applications
 - ► ATARI games (Mnih *et al.* (2015)), Go (Silver *et al.* (2016)).

Reinforcement Learning

- 1. Reinforcement learning problem
- 2. Upcoming topics
- 3. Applications

Board Games



References: Tesauro (1992), Silver et al. (2018).

^{1.} https://www.publicdomainpictures.net/pictures/60000/velka/backgammon.jpg.

^{2.} https://www.publicdomainpictures.net/pictures/170000/velka/finished-go-game.jpg.

 $[\]textbf{3.} \ \texttt{https://www.publicdomainpictures.net/pictures/80000/velka/chess-board-and-pieces.jpg.} \\$

Robotics and Control

[1]

Reference: Ng et al. (2003).

1. https://www.publicdomainpictures.net/pictures/20000/velka/police-helicopter-8712919948643Mk.jpg.

Video Games

[1]

Reference: Mnih et al. (2015).

1. https://www.publicdomainpictures.net/pictures/30000/velka/arcade-gaming.jpg.

Computer Systems

Optimising a memory controller

[1]

• Reference: İpek et al. (2008).

1. https://www.publicdomainpictures.net/pictures/100000/velka/motherboard.jpg.

Healthcare

Adaptive treatment of epilepsy

[1]

• Reference: Guez et al. (2008).

1. https://www.publicdomainpictures.net/pictures/140000/velka/brain-signals.jpg.

Finance

• Reference: Moody and Saffell (2001).

Reinforcement Learning

- 1. Reinforcement learning problem
- 2. Upcoming topics
- Applications