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Reinforcement Learning

1. Reinforcement learning problem: prediction and control

2. Some natural assumptions

3. Basic algorithm for control
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Agent-Environment Interaction
Underlying MDP:
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From current state, agent takes action.
Environment (MDP) decides next state and reward.
Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .
History conveys information about the MDP to the agent.
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The Control Problem
For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a t-length history.

A learning algorithm L is a mapping from the set of all histories to the set of
all (probability distributions over) arms.

Actions are selected by the learning algorithm (agent);
next states and rewards are provided by the MDP (environment).

Control problem: Can we construct L such that

lim
H→∞

1
H

(
H−1∑
t=0

P{at ∼ L(ht) is an optimal action for st}

)
= 1?
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The Prediction Problem
We are given a policy π that the agent follows.
The aim is to estimate V π.

For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a t-length history
(note that at ∼ π(st )).

A learning algorithm L is a mapping from the set of all histories to the set of
all mappings of the form S → R.

In other words, at each step t the learning algorithm provides an estimate V̂ t .

Prediction problem: Can we construct L such that

lim
t→∞

V̂ t = V π?
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Reinforcement Learning

1. Reinforcement learning problem: prediction and control

2. Some natural assumptions

3. Basic algorithm for control
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Assumption 1: Irreducibility
Fix an MDP M = (S,A,T ,R, γ) and a policy π.
Draw a graph with states as vertices and every non-zero-probability transition
under π as a directed edge.
Is there a directed path from s to s′ for every s, s′ ∈ S?
If yes, M is irreducible under π.
If M is irreducible under all π ∈ Π, then M is irreducible.

s s
1 2

s
3

s s
1 2

s
3

Reducible Irreducible

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 16



8/16

Assumption 2: Aperiodicity
Fix an MDP M = (S,A,T ,R, γ) and a policy π.
For s ∈ S, t ≥ 1, let X (s, t) be the set of all states s′ s. t. there is a non-zero
probability of reaching s′ in exactly t steps by starting at s and following π.
For s ∈ S, let Y (s) be the set of all t ≥ 1 such that s ∈ X (s, t); let
p(s) = gcd(Y (s)).
M is aperiodic under π if for all s ∈ S: p(s) = 1.
If M is aperiodic under all π ∈ Π, then M is aperiodic.

s s
1 2

Y (s1) = {2,4,6, . . . }.

Periodic.

s s
1 2

Y (s1) = {1,2,3, . . . , }.
Y (s2) = {2,3,4, . . . , }.
Aperiodic.
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Ergodicity
An MDP that is irreducible and aperiodic is called an ergodic MDP.

In an ergodic MDP, every policy π induces a unique
steady state distribution µπ : S → (0,1), subject to

∑
s∈S µπ(s) = 1,

which is independent of the start state.

For s ∈ S, t ≥ 0, let p(s, t) be the probability of being in state s at step t , after
starting at some (arbitrarily) fixed state and following π. Then

µπ(s) = lim
t→∞

p(s, t).

We’ll use ergodicity in some of the later lectures.
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Reinforcement Learning

1. Reinforcement learning problem: prediction and control

2. Some natural assumptions

3. Basic algorithm for control
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A Model-based Approach

A model is an estimate of the MDP, which is usually updated based on
experience. We keep estimates T̂ and R̂, and try to get them to converge to
T and R, respectively.

At convergence, acting optimally for MDP (S,A, T̂ , R̂, γ) must be optimal for
the original MDP (S,A,T ,R, γ), too.

We must visit every state-action pair infinitely often.

Remember GLIE?
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Algorithm
Model-based RL

//Initialisation
For s, s′ ∈ S,a ∈ A :

T̂ [s][a][s′]← 0; R̂[s][a][s′]← 0.
For s, s′ ∈ S,a ∈ A :

totalTransitions[s][a][s′]← 0;
totalReward [s][a][s′]← 0.

For s ∈ S,a ∈ A :
totalVisits[s][a]← 0.

modelValid ← False.

Assume that the agent is born in state s0. //Continued on next slide.
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Algorithm
Assume that the agent is born in state s0. //Continued from previous slide.

//For ever
For t = 0,1,2, . . . :

If modelValid :
πopt ← MDPPlan(S,A, T̂ , R̂, γ).

at ←

{
πopt(st) w. p. 1− ϵt ,

UniformRandom(A) w. p. ϵt .

Else:
at ← UniformRandom(A).

Take action at ; obtain reward r t , next state st+1.
UpdateModel(st ,at , r t , st+1).
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Algorithm
UpdateModel(s,a, r,s′)

totalTransitions[s][a][s′]← totalTransitions[s][a][s′] + 1.
totalReward [s][a][s′]← totalReward [s][a][s′] + r .
totalVisits[s][a]← totalVisits[s][a] + 1.

For s′′ ∈ S :
T̂ [s][a][s′′]← totalTransitions[s][a][s′′]

totalVisits[s][a] .

R̂[s][a][s′]← totalReward [s][a][s′]
totalTransitions[s][a][s′] .

If ¬modelValid :
If ∀s′′ ∈ S,∀a′′ ∈ A : totalVisits[s′′][a′′] ≥ 1:

modelValid ← True.
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Discussion

Algorithm takes a sub-linear number of sub-optimal actions. Can still be
optimised in many ways (computational complexity, exploration, etc.).

For convergence to optimal behaviour, does the algorithm need irreducibility
and aperiodicity?

Why is this a “model-based” algorithm?
Uses Θ(|S|2|A|) memory. Will soon see a “model-free” method that needs
Θ(|S||A|) memory.
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Reinforcement Learning

1. Reinforcement Learning problem: prediction and control

2. Some natural assumptions

3. Basic algorithm for control

Next week: some approaches for prediction.
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