CS 747, Autumn 2023: Lecture 15

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Reinforcement Learning

1. Least-squares and maximum likelihood estimators
2. $\mathrm{TD}(0)$ algorithm
3. Convergence of batch $\operatorname{TD}(0)$

Reinforcement Learning

1. Least-squares and maximum likelihood estimators
2. $\mathrm{TD}(0)$ algorithm
3. Convergence of batch $\operatorname{TD}(0)$

Estimate p

- You have two coins. You are told that the probability of a head (1-reward) for Coin 1 is $p \in[0,0.5]$, and that for Coin 2 is $2 p$.

Coin 1

$\mathbb{P}\{$ heads $\}=p$

Coin 2

$\mathbb{P}\{$ heads $\}=2 p$

Estimate p

- You have two coins. You are told that the probability of a head (1-reward) for Coin 1 is $p \in[0,0.5]$, and that for Coin 2 is $2 p$.
- Hence the corresponding probabilities of a tail (0 -reward) are $1-p$ and $1-2 p$, respectively.

Coin 1

$\mathbb{P}\{$ heads $\}=p$

Coin 2

$\mathbb{P}\{$ heads $\}=2 p$

Estimate p

- You have two coins. You are told that the probability of a head (1-reward) for Coin 1 is $p \in[0,0.5]$, and that for Coin 2 is $2 p$.
- Hence the corresponding probabilities of a tail (0 -reward) are $1-p$ and $1-2 p$, respectively.
- You toss each coin once and see these outcomes.

Coin 1

$\mathbb{P}\{$ heads $\}=p$ Outcome $=1$

Coin 2

$\mathbb{P}\{$ heads $\}=2 p$
Outcome $=0$

Estimate p

- You have two coins. You are told that the probability of a head (1-reward) for Coin 1 is $p \in[0,0.5]$, and that for Coin 2 is $2 p$.
- Hence the corresponding probabilities of a tail (0 -reward) are $1-p$ and $1-2 p$, respectively.
- You toss each coin once and see these outcomes.

Coin 1

$\mathbb{P}\{$ heads $\}=p$ Outcome $=1$

Coin 2

$\mathbb{P}\{$ heads $\}=2 p$
Outcome $=0$

What is your estimate of p (call it \hat{p})?

Two Common Estimates

- Least-squares estimate.

For $q \in[0,0.5]$,

$$
\begin{gathered}
S E(q)=(q-1)^{2}+(2 q-0)^{2} \\
\hat{p}_{L S} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmin}} S E(q)=0.2
\end{gathered}
$$

Two Common Estimates

- Least-squares estimate.

For $q \in[0,0.5]$,

$$
\begin{gathered}
S E(q)=(q-1)^{2}+(2 q-0)^{2} . \\
\hat{p}_{L S} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmin}} S E(q)=0.2 .
\end{gathered}
$$

- Maximum likelihood estimate.

For $q \in[0,0.5]$,

$$
\begin{aligned}
& L(q)=q(1-2 q) . \\
& \hat{p}_{M L} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmax}} L(q)=0.25 .
\end{aligned}
$$

Two Common Estimates

- Least-squares estimate.

For $q \in[0,0.5]$,

$$
\begin{gathered}
S E(q)=(q-1)^{2}+(2 q-0)^{2} . \\
\hat{p}_{L S} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmin}} S E(q)=0.2 .
\end{gathered}
$$

- Maximum likelihood estimate.

For $q \in[0,0.5]$,

$$
\begin{aligned}
& L(q)=q(1-2 q) . \\
& \hat{p}_{M L} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmax}} L(q)=0.25 .
\end{aligned}
$$

- Which estimate is "correct"?

Two Common Estimates

- Least-squares estimate.

For $q \in[0,0.5]$,

$$
\begin{gathered}
S E(q)=(q-1)^{2}+(2 q-0)^{2} . \\
\hat{p}_{L S} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmin}} S E(q)=0.2 .
\end{gathered}
$$

- Maximum likelihood estimate.

For $q \in[0,0.5]$,

$$
\begin{aligned}
& L(q)=q(1-2 q) . \\
& \hat{p}_{M L} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmax}} L(q)=0.25 .
\end{aligned}
$$

- Which estimate is "correct"? Neither!

Two Common Estimates

- Least-squares estimate.

For $q \in[0,0.5]$,

$$
\begin{gathered}
S E(q)=(q-1)^{2}+(2 q-0)^{2} . \\
\hat{p}_{L S} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmin}} S E(q)=0.2 .
\end{gathered}
$$

- Maximum likelihood estimate.

For $q \in[0,0.5]$,

$$
\begin{aligned}
& L(q)=q(1-2 q) . \\
& \hat{p}_{M L} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmax}} L(q)=0.25 .
\end{aligned}
$$

- Which estimate is "correct"? Neither!
- Which estimate is more useful?

Two Common Estimates

- Least-squares estimate.

For $q \in[0,0.5]$,

$$
\begin{gathered}
S E(q)=(q-1)^{2}+(2 q-0)^{2} . \\
\hat{p}_{L S} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmin}} S E(q)=0.2 .
\end{gathered}
$$

- Maximum likelihood estimate.

For $q \in[0,0.5]$,

$$
\begin{aligned}
& L(q)=q(1-2 q) . \\
& \hat{p}_{M L} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmax}} L(q)=0.25 .
\end{aligned}
$$

- Which estimate is "correct"? Neither!
- Which estimate is more useful? Depends on the use!

Two Common Estimates

- Least-squares estimate.

For $q \in[0,0.5]$,

$$
\begin{gathered}
S E(q)=(q-1)^{2}+(2 q-0)^{2} . \\
\hat{p}_{L S} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmin}} S E(q)=0.2 .
\end{gathered}
$$

- Maximum likelihood estimate.

For $q \in[0,0.5]$,

$$
\begin{aligned}
& L(q)=q(1-2 q) . \\
& \hat{p}_{M L} \stackrel{\text { def }}{=} \underset{q \in[0,0.5]}{\operatorname{argmax}} L(q)=0.25 .
\end{aligned}
$$

- Which estimate is "correct"? Neither!
- Which estimate is more useful? Depends on the use!
- Note that there are other estimates, too.

Reinforcement Learning

1. Least-squares and maximum likelihood estimators
2. $T D(0)$ algorithm
3. Convergence of batch TD(0)

Bootstrapping

- Suppose \hat{V}^{t} is our current estimate of state-values.

Bootstrapping

- Suppose \hat{V}^{t} is our current estimate of state-values.
- Say we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}
$$

Bootstrapping

- Suppose \hat{V}^{t} is our current estimate of state-values.
- Say we generate this episode.
$s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$.
- At what point of time can we update our estimate $\hat{V}^{t}\left(s_{2}\right)$?

Bootstrapping

- Suppose \hat{V}^{t} is our current estimate of state-values.
- Say we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top} .
$$

- At what point of time can we update our estimate $\hat{V}^{t}\left(s_{2}\right)$?
- With MC methods, we would wait for \boldsymbol{s}_{T}, and then update $\hat{V}^{t+1}\left(s_{2}\right) \leftarrow \hat{V}^{t}\left(s_{2}\right)\left(1-\alpha_{t+1}\right)+\alpha_{t+1} M$, where $M=2+\gamma \cdot 1+\gamma^{2} \cdot 1+\gamma^{3} \cdot 2+\gamma^{4} \cdot 1$.

Bootstrapping

- Suppose \hat{V}^{t} is our current estimate of state-values.
- Say we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top} .
$$

- At what point of time can we update our estimate $\hat{V}^{t}\left(s_{2}\right)$?
- With MC methods, we would wait for \boldsymbol{s}_{T}, and then update $\hat{V}^{t+1}\left(s_{2}\right) \leftarrow \hat{V}^{t}\left(s_{2}\right)\left(1-\alpha_{t+1}\right)+\alpha_{t+1} M$, where $M=2+\gamma \cdot 1+\gamma^{2} \cdot 1+\gamma^{3} \cdot 2+\gamma^{4} \cdot 1$.
- Instead, how about this update as soon as we see s_{3} ? $\hat{V}^{t+1}\left(s_{2}\right) \leftarrow \hat{V}^{t}\left(s_{2}\right)\left(1-\alpha_{t+1}\right)+\alpha_{t+1} B$, where $B=2+\gamma \hat{V}^{t}\left(s_{3}\right)$.

Bootstrapping

- Suppose \hat{V}^{t} is our current estimate of state-values.
- Say we generate this episode.

$$
s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top} .
$$

- At what point of time can we update our estimate $\hat{V}^{t}\left(s_{2}\right)$?
- With MC methods, we would wait for \boldsymbol{s}_{T}, and then update $\hat{V}^{t+1}\left(s_{2}\right) \leftarrow \hat{V}^{t}\left(s_{2}\right)\left(1-\alpha_{t+1}\right)+\alpha_{t+1} M$, where $M=2+\gamma \cdot 1+\gamma^{2} \cdot 1+\gamma^{3} \cdot 2+\gamma^{4} \cdot 1$. Monte Carlo estimate.
- Instead, how about this update as soon as we see s_{3} ? $\hat{V}^{t+1}\left(s_{2}\right) \leftarrow \hat{V}^{t}\left(s_{2}\right)\left(1-\alpha_{t+1}\right)+\alpha_{t+1} B$, where $B=2+\gamma \hat{V}^{\dagger}\left(s_{3}\right)$. Bootstrapped estimate.

Temporal Difference Learning: TD(0)

Assume policy to be evaluated is π. Initialise \hat{V}^{0} arbitrarily.
Assume that the agent is born in state s^{0}.
For $t=0,1,2, \ldots$:
Take action $a^{t} \sim \pi\left(s^{t}\right)$.
Obtain reward r^{t}, next state s^{t+1}. $\hat{V}^{t+1}\left(s^{t}\right) \leftarrow \hat{V}^{t}\left(s^{t}\right)+\alpha_{t+1}\left\{r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)\right\}$. For $s \in S \backslash\left\{s^{t}\right\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^{t}(s)$. //Often left implicit.

Temporal Difference Learning: TD(0)

Assume policy to be evaluated is π. Initialise \hat{V}^{0} arbitrarily.
Assume that the agent is born in state s^{0}.

$$
\text { For } t=0,1,2, \ldots \text { : }
$$

Take action $a^{t} \sim \pi\left(s^{t}\right)$.
Obtain reward r^{t}, next state s^{t+1}. $\hat{V}^{t+1}\left(s^{t}\right) \leftarrow \hat{V}^{t}\left(s^{t}\right)+\alpha_{t+1}\left\{r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)\right\}$. For $s \in S \backslash\left\{s^{t}\right\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^{t}(s)$. //Often left implicit.

- $\hat{V}^{t}\left(s^{t}\right)$: current estimate; $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)$: new estimate.

Temporal Difference Learning: TD(0)

Assume policy to be evaluated is π. Initialise \hat{V}^{0} arbitrarily.
Assume that the agent is born in state s^{0}.

$$
\text { For } t=0,1,2, \ldots \text { : }
$$

Take action $a^{t} \sim \pi\left(s^{t}\right)$.
Obtain reward r^{t}, next state s^{t+1}. $\hat{V}^{t+1}\left(s^{t}\right) \leftarrow \hat{V}^{t}\left(s^{t}\right)+\alpha_{t+1}\left\{r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)\right\}$. For $s \in S \backslash\left\{s^{t}\right\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^{t}(s)$. //Often left implicit.

- $\hat{V}^{t}\left(s^{t}\right)$: current estimate; $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)$: new estimate.
- $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)$: temporal difference prediction error.

Temporal Difference Learning: TD(0)

Assume policy to be evaluated is π. Initialise \hat{V}^{0} arbitrarily.
Assume that the agent is born in state s^{0}.

$$
\begin{aligned}
& \text { For } t=0,1,2, \ldots \text { : } \\
& \quad \text { Take action } a^{t} \sim \pi\left(s^{t}\right) .
\end{aligned}
$$

Obtain reward r^{t}, next state s^{t+1}. $\hat{V}^{t+1}\left(s^{t}\right) \leftarrow \hat{V}^{t}\left(s^{t}\right)+\alpha_{t+1}\left\{r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)\right\}$. For $s \in S \backslash\left\{s^{t}\right\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^{t}(s)$. //Often left implicit.

- $\hat{V}^{t}\left(s^{t}\right)$: current estimate; $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)$: new estimate.
- $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)$: temporal difference prediction error.
- α_{t+1} : learning rate.

Temporal Difference Learning: TD(0)

Assume policy to be evaluated is π. Initialise \hat{V}^{0} arbitrarily.
Assume that the agent is born in state s^{0}.

$$
\begin{aligned}
& \text { For } t=0,1,2, \ldots: \\
& \quad \text { Take action } a^{t} \sim \pi\left(s^{t}\right) .
\end{aligned}
$$

Obtain reward r^{t}, next state s^{t+1}. $\hat{V}^{t+1}\left(s^{t}\right) \leftarrow \hat{V}^{t}\left(s^{t}\right)+\alpha_{t+1}\left\{r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)\right\}$. For $s \in S \backslash\left\{s^{t}\right\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^{t}(s)$. //Often left implicit.

- $\hat{V}^{t}\left(s^{t}\right)$: current estimate; $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)$: new estimate.
- $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)$: temporal difference prediction error.
- α_{t+1} : learning rate.
- Under standard conditions, $\lim _{t \rightarrow \infty} \hat{V}^{t}=V^{\pi}$.

Temporal Difference Learning: TD(0)

Assume policy to be evaluated is π. Initialise \hat{V}^{0} arbitrarily.
Assume that the agent is born in state s^{0}.

$$
\begin{aligned}
& \text { For } t=0,1,2, \ldots: \\
& \quad \text { Take action } a^{t} \sim \pi\left(s^{t}\right) .
\end{aligned}
$$

Obtain reward r^{t}, next state s^{t+1}. $\hat{V}^{t+1}\left(s^{t}\right) \leftarrow \hat{V}^{t}\left(s^{t}\right)+\alpha_{t+1}\left\{r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)\right\}$. For $s \in S \backslash\left\{s^{t}\right\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^{t}(s)$. //Often left implicit.

- $\hat{V}^{t}\left(s^{t}\right)$: current estimate; $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)$: new estimate.
- $r^{t}+\gamma \hat{V}^{t}\left(s^{t+1}\right)-\hat{V}^{t}\left(s^{t}\right)$: temporal difference prediction error.
- α_{t+1} : learning rate.
- Under standard conditions, $\lim _{t \rightarrow \infty} \hat{V}^{t}=V^{\pi}$. How to run on episodic tasks?

Reinforcement Learning

1. Least-squares and maximum likelihood estimators
2. $T D(0)$ algorithm
3. Convergence of batch $\operatorname{TD}(0)$

First-visit MC Estimate

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{\top}$. Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{\top}$.

- Recall that for $s \in S$,

$$
\hat{V}_{\text {First-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, 1)}{\sum_{i=1}^{N} 1(s, i, 1)}
$$

First-visit MC Estimate

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{\top}$. Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{\top}$.

- Recall that for $s \in S$,

$$
\hat{V}_{\text {First-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, 1)}{\sum_{i=1}^{N} 1(s, i, 1)}
$$

- For $s \in S, V: S \rightarrow \mathbb{R}$, define

$$
\text { Error }_{\text {First }}(V, s) \stackrel{\operatorname{def}}{=} \sum_{i=1}^{N} \mathbf{1}(s, i, 1)(V(s)-G(s, i, 1))^{2}
$$

First-visit MC Estimate

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{\top}$. Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{\top}$.

- Recall that for $s \in S$,

$$
\hat{V}_{\text {First-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} G(s, i, 1)}{\sum_{i=1}^{N} 1(s, i, 1)}
$$

- For $s \in S, V: S \rightarrow \mathbb{R}$, define

$$
\text { Error }_{\text {First }}(V, s) \stackrel{\operatorname{def}}{=} \sum_{i=1}^{N} \mathbf{1}(s, i, 1)(V(s)-G(s, i, 1))^{2}
$$

- Observe that for $s \in S, \hat{V}_{\text {First-visit }}^{N}(s)=\operatorname{argmin}_{V} \operatorname{Error}_{\text {First }}(V, s)$.

Every-visit MC Estimate

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{T}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$. Episode 4: $s_{3}, 1, s_{T}$.
Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{T}$.

- Recall that for $s \in S$,

$$
\hat{V}_{\text {Every-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} \sum_{j=1}^{\infty} G(s, i, j)}{\sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j)}
$$

Every-visit MC Estimate

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{T}$.
Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$.
Episode 4: $s_{3}, 1, s_{T}$.
Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{T}$.

- Recall that for $s \in S$,

$$
\hat{V}_{\text {Every-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} \sum_{j=1}^{\infty} G(s, i, j)}{\sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j)}
$$

- For $s \in S, V: S \rightarrow \mathbb{R}$, define

$$
\operatorname{Error}_{\text {Every }}(V, s) \stackrel{\text { def }}{=} \sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j)(V(s)-G(s, i, j))^{2} .
$$

Every-visit MC Estimate

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{T}$.
Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{T}$.
Episode 4: $s_{3}, 1, s_{T}$.
Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{T}$.

- Recall that for $s \in S$,

$$
\hat{V}_{\text {Every-visit }}^{N}(s)=\frac{\sum_{i=1}^{N} \sum_{j=1}^{\infty} G(s, i, j)}{\sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j)}
$$

- For $s \in S, V: S \rightarrow \mathbb{R}$, define

$$
\operatorname{Error}_{\text {Every }}(V, s) \stackrel{\text { def }}{=} \sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j)(V(s)-G(s, i, j))^{2} .
$$

- Observe for $s \in S, \hat{V}_{\text {Every-visit }}^{N}(s)=\operatorname{argmin}_{V} E r r o r_{\text {Every }}(V, s)$.

Batch TD(0) Estimate

```
Episode 1: }\mp@subsup{s}{1}{},5,\mp@subsup{s}{1}{},2,\mp@subsup{s}{2}{},3,\mp@subsup{s}{2}{},1,\mp@subsup{s}{\top}{}\mathrm{ .
Episode 2: }\mp@subsup{s}{2}{},2,\mp@subsup{s}{3}{},1,\mp@subsup{s}{3}{},1,\mp@subsup{s}{3}{},2,\mp@subsup{s}{2}{},1,\mp@subsup{s}{T}{}\mathrm{ .
Episode 3: }\mp@subsup{s}{1}{},2,\mp@subsup{s}{2}{},2,\mp@subsup{s}{1}{},5,\mp@subsup{s}{1}{},1,\mp@subsup{s}{\top}{}\mathrm{ .
Episode 4: }\mp@subsup{s}{3}{},1,\mp@subsup{s}{T}{}\mathrm{ .
Episode 5: s2, 3, s, 2, s, 1, sT.
```

- After any finite N episodes, the estimate of $T D(0)$ will depend on the initial estimate V^{0}.
- To "forget" V^{0}, run the N collected episodes over and over again, and make TD(0) updates.

Batch TD(0) Estimate

Episode 1
Episode 2
Episode 3
Episode 4
Episode 5
Episode 6 (= Episode 1)
Episode 7 (= Episode 2)
Episode 8 (= Episode 3)
Episode 9 (= Episode 4)
Episode 10 (= Episode 5)
Episode 11 (= Episode 1)
Episode 12 (= Episode 2)
\vdots

Batch TD(0) Estimate

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$.
> Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$.
> Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$.
> Episode 4: $s_{3}, 1, s_{\top}$.
> Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{\top}$.

- Let $M_{M L E}$ be the $\operatorname{MDP}(S, A, \hat{T}, \hat{R}, \gamma)$ with the highest likelihood of generating this data (true T, R unknown).

Batch TD(0) Estimate

> Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{\top}$.
> Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{\top}$.
> Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$.
> Episode 4: $s_{3}, 1, s_{\top}$.
> Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{\top}$.

- Let $M_{M L E}$ be the $\operatorname{MDP}(S, A, \hat{T}, \hat{R}, \gamma)$ with the highest likelihood of generating this data (true T, R unknown).
- $\hat{V}_{\text {Batch-TD(0) }}^{N}$ is the same as V^{π} on $M_{M L E}$!

Comparison

- Data.

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$. Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{T}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{T}$.
Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{T}$.

- Estimates.

	s_{1}	s_{2}	s_{3}
$\hat{V}_{\text {First-visit }}^{N}$	7.33	6.25	3
$\hat{V}_{\text {Every-visit }}^{N}$	5.83	4.29	3.25
$\hat{V}_{\text {Bath-TD }(0)}^{N}$	7.5	7	6

Comparison

- Data.

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{T}$.
Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$.
Episode 4: $s_{3}, 1, s_{\mathrm{T}}$.
Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{\top}$.

- Estimates.

	s_{1}	s_{2}	s_{3}
$\hat{V}_{\text {First-visit }}^{N}$	7.33	6.25	3
$\hat{V}_{\text {Every-visit }}^{N}$	5.83	4.29	3.25
$\hat{V}_{\text {Batch-TD(0) }}^{N}$	7.5	7	6

- Note that $\lim _{N \rightarrow \infty} \hat{V}_{\text {First-visit }}^{N}=\lim _{N \rightarrow \infty} \hat{V}_{\text {Every-visit }}^{N}=\lim _{N \rightarrow \infty} \hat{V}_{\text {Batch-TD(0) }}^{N}=V^{\pi}$.

Comparison

- Data.

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{T}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{\mathrm{T}}$.
Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{\top}$.

- Estimates.

	s_{1}	s_{2}	s_{3}
$\hat{V}_{\text {First-visit }}^{N}$	7.33	6.25	3
$\hat{V}_{\text {Every-visit }}^{N}$	5.83	4.29	3.25
$\hat{V}_{\text {Bath-TD(0) }}^{N}$	7.5	7	6

- Note that $\lim _{N \rightarrow \infty} \hat{V}_{\text {First-visit }}^{N}=\lim _{N \rightarrow \infty} \hat{V}_{\text {Every-visit }}^{N}=\lim _{N \rightarrow \infty} \hat{V}_{\text {Batch-TD(0) }}^{N}=V^{\pi}$.
- Which estimate is "correct"? Is it recommended to bootstrap or not?

Comparison

- Data.

Episode 1: $s_{1}, 5, s_{1}, 2, s_{2}, 3, s_{2}, 1, s_{T}$.
Episode 2: $s_{2}, 2, s_{3}, 1, s_{3}, 1, s_{3}, 2, s_{2}, 1, s_{T}$. Episode 3: $s_{1}, 2, s_{2}, 2, s_{1}, 5, s_{1}, 1, s_{\top}$. Episode 4: $s_{3}, 1, s_{T}$.
Episode 5: $s_{2}, 3, s_{2}, 2, s_{1}, 1, s_{\top}$.

- Estimates.

	s_{1}	s_{2}	s_{3}
$\hat{V}_{\text {First-visit }}^{N}$	7.33	6.25	3
$\hat{V}_{\text {Every-visit }}^{N}$	5.83	4.29	3.25
$\hat{V}_{\text {Batho-TD(0) }}^{N}$	7.5	7	6

- Note that $\lim _{N \rightarrow \infty} \hat{V}_{\text {First-visit }}^{N}=\lim _{N \rightarrow \infty} \hat{V}_{\text {Every-visit }}^{N}=\lim _{N \rightarrow \infty} \hat{V}_{\text {Batch-TD(0) }}^{N}=V^{\pi}$.
- Which estimate is "correct"? Is it recommended to bootstrap or not?
- Usually a "middle path" works best. Coming up next week!

