CS 747, Autumn 2023: Lecture 15

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Reinforcement Learning

- 1. Least-squares and maximum likelihood estimators
- 2. TD(0) algorithm
- 3. Convergence of batch TD(0)

Reinforcement Learning

- 1. Least-squares and maximum likelihood estimators
- 2. TD(0) algorithm
- 3. Convergence of batch TD(0)

 You have two coins. You are told that the probability of a head (1-reward) for Coin 1 is p ∈ [0, 0.5], and that for Coin 2 is 2p.

- You have two coins. You are told that the probability of a head (1-reward) for Coin 1 is p ∈ [0, 0.5], and that for Coin 2 is 2p.
- Hence the corresponding probabilities of a tail (0-reward) are 1 p and
 - 1 2p, respectively.

 $\mathbb{P}\{\text{heads}\} = p$

 $\mathbb{P}\{\text{heads}\} = 2p$

- You have two coins. You are told that the probability of a head (1-reward) for Coin 1 is p ∈ [0, 0.5], and that for Coin 2 is 2p.
- Hence the corresponding probabilities of a tail (0-reward) are 1 p and
 - 1 2p, respectively.
- You toss each coin once and see these outcomes.

Coin 1

Coin 2

 $\mathbb{P}\{\text{heads}\} = p$ Outcome = 1

 $\mathbb{P}\{\text{heads}\} = \frac{2p}{0}$ Outcome = 0

- You have two coins. You are told that the probability of a head (1-reward) for Coin 1 is p ∈ [0, 0.5], and that for Coin 2 is 2p.
- Hence the corresponding probabilities of a tail (0-reward) are 1 p and
 - 1 2p, respectively.
- You toss each coin once and see these outcomes.

Coin 1

Coin 2

 $\mathbb{P}\{\text{heads}\} = p \qquad \mathbb{P}\{\text{heads}\} = 2p \\ \text{Outcome} = 1 \qquad \text{Outcome} = 0$

What is your estimate of p (call it \hat{p})?

Shivaram Kalyanakrishnan (2023)

CS 747, Autumn 2023

• Least-squares estimate.

For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{ ext{def}}{=} \operatorname*{argmin}_{q \in [0, 0.5]} SE(q) = 0.2.$

• Least-squares estimate.

For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{ ext{def}}{=} rgmin_{q \in [0, 0.5]} SE(q) = 0.2.$

$$egin{aligned} \mathcal{L}(q) &= q(1-2q). \ \hat{p}_{ML} &\stackrel{ ext{def}}{=} rgmax_{q \in [0, 0.5]} \mathcal{L}(q) &= 0.25. \end{aligned}$$

- Least-squares estimate.
 - For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{ ext{def}}{=} \operatorname*{argmin}_{q \in [0, 0.5]} SE(q) = 0.2.$

• Maximum likelihood estimate. For $q \in [0, 0.5]$,

$$egin{aligned} \mathcal{L}(q) &= q(1-2q).\ \hat{p}_{ML} \stackrel{ ext{def}}{=} rgmax_{q \in [0,0.5]} \mathcal{L}(q) &= 0.25. \end{aligned}$$

Which estimate is "correct"?

- Least-squares estimate.
 - For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{ ext{def}}{=} \operatorname*{argmin}_{q \in [0, 0.5]} SE(q) = 0.2.$

• Maximum likelihood estimate. For $q \in [0, 0.5]$,

$$egin{aligned} \mathcal{L}(q) &= q(1-2q). \ \hat{p}_{ML} \stackrel{ ext{def}}{=} rgmax_{q \in [0,0.5]} \mathcal{L}(q) &= 0.25. \end{aligned}$$

• Which estimate is "correct"? Neither!

- Least-squares estimate.
 - For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{ ext{def}}{=} \operatorname*{argmin}_{q \in [0, 0.5]} SE(q) = 0.2.$

$$egin{aligned} \mathcal{L}(q) &= q(1-2q). \ \hat{p}_{ML} \stackrel{ ext{def}}{=} rgmax_{q \in [0,0.5]} \mathcal{L}(q) &= 0.25. \end{aligned}$$

- Which estimate is "correct"? Neither!
- Which estimate is more useful?

- Least-squares estimate.
 - For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{ ext{def}}{=} \operatorname*{argmin}_{q \in [0, 0.5]} SE(q) = 0.2.$

$$egin{aligned} \mathcal{L}(q) &= q(1-2q). \ \hat{p}_{ML} \stackrel{ ext{def}}{=} rgmax_{q \in [0,0.5]} \mathcal{L}(q) &= 0.25. \end{aligned}$$

- Which estimate is "correct"? Neither!
- Which estimate is more useful? Depends on the use!

- Least-squares estimate.
 - For $q \in [0, 0.5]$,

$$SE(q) = (q-1)^2 + (2q-0)^2.$$
 $\hat{p}_{LS} \stackrel{ ext{def}}{=} \operatorname*{argmin}_{q \in [0, 0.5]} SE(q) = 0.2.$

$$egin{aligned} \mathcal{L}(q) &= q(1-2q). \ \hat{p}_{ML} \stackrel{ ext{def}}{=} rgmax_{q \in [0,0.5]} \mathcal{L}(q) &= 0.25. \end{aligned}$$

- Which estimate is "correct"? Neither!
- Which estimate is more useful? Depends on the use!
- Note that there are other estimates, too.

Reinforcement Learning

- 1. Least-squares and maximum likelihood estimators
- 2. TD(0) algorithm
- 3. Convergence of batch TD(0)

• Suppose \hat{V}^t is our current estimate of state-values.

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

• At what point of time can we update our estimate $\hat{V}^t(s_2)$?

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- At what point of time can we update our estimate $\hat{V}^t(s_2)$?
- With MC methods, we would wait for s_{\top} , and then update $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 \alpha_{t+1}) + \alpha_{t+1}M$, where $M = 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1$.

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- At what point of time can we update our estimate $\hat{V}^t(s_2)$?
- With MC methods, we would wait for s_{\top} , and then update $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 \alpha_{t+1}) + \alpha_{t+1}M$, where $M = 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1$.
- Instead, how about this update as soon as we see s_3 ? $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 - \alpha_{t+1}) + \alpha_{t+1}B$, where $B = 2 + \gamma \hat{V}^t(s_3)$.

- Suppose \hat{V}^t is our current estimate of state-values.
- Say we generate this episode.

$$s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.$$

- At what point of time can we update our estimate $\hat{V}^t(s_2)$?
- With MC methods, we would wait for s_{\top} , and then update $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 \alpha_{t+1}) + \alpha_{t+1}M$, where $M = 2 + \gamma \cdot 1 + \gamma^2 \cdot 1 + \gamma^3 \cdot 2 + \gamma^4 \cdot 1$. Monte Carlo estimate.
- Instead, how about this update as soon as we see s_3 ? $\hat{V}^{t+1}(s_2) \leftarrow \hat{V}^t(s_2)(1 - \alpha_{t+1}) + \alpha_{t+1}B$, where $B = 2 + \gamma \hat{V}^t(s_3)$. Bootstrapped estimate.

```
Assume policy to be evaluated is \pi.
Initialise \hat{V}^0 arbitrarily.
Assume that the agent is born in state s^0.
```

```
For t = 0, 1, 2, ...:

Take action a^t \sim \pi(s^t).

Obtain reward r^t, next state s^{t+1}.

\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}.

For s \in S \setminus \{s^t\}: \hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s). //Often left implicit.
```

```
Assume policy to be evaluated is \pi.
Initialise \hat{V}^0 arbitrarily.
Assume that the agent is born in state s^0.
```

For t = 0, 1, 2, ...: Take action $a^t \sim \pi(s^t)$. Obtain reward r^t , next state s^{t+1} . $\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}$. For $s \in S \setminus \{s^t\}$: $\hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s)$. //Often left implicit.

• $\hat{V}^{t}(s^{t})$: current estimate; $r^{t} + \gamma \hat{V}^{t}(s^{t+1})$: new estimate.

```
Assume policy to be evaluated is \pi.
Initialise \hat{V}^0 arbitrarily.
Assume that the agent is born in state s^0.
```

For t = 0, 1, 2, ...: Take action $a^t \sim \pi(s^t)$. Obtain reward r^t , next state s^{t+1} . $\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}$. For $s \in S \setminus \{s^t\}$: $\hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s)$. //Often left implicit.

```
Assume policy to be evaluated is \pi.
Initialise \hat{V}^0 arbitrarily.
Assume that the agent is born in state s^0.
```

For t = 0, 1, 2, ...: Take action $a^t \sim \pi(s^t)$. Obtain reward r^t , next state s^{t+1} . $\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}$. For $s \in S \setminus \{s^t\}$: $\hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s)$. //Often left implicit.

```
Assume policy to be evaluated is \pi.
Initialise \hat{V}^0 arbitrarily.
Assume that the agent is born in state s^0.
```

For t = 0, 1, 2, ...: Take action $a^t \sim \pi(s^t)$. Obtain reward r^t , next state s^{t+1} . $\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}$. For $s \in S \setminus \{s^t\}$: $\hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s)$. //Often left implicit.

- $\hat{V}^{t}(s^{t})$: current estimate; $r^{t} + \gamma \hat{V}^{t}(s^{t+1})$: new estimate.
- $\mathbf{r}^{t} + \gamma \hat{\mathbf{V}}^{t}(\mathbf{s}^{t+1}) \hat{\mathbf{V}}^{t}(\mathbf{s}^{t})$: temporal difference prediction error.
- α_{t+1} : learning rate.
- Under standard conditions, $\lim_{t\to\infty} \hat{V}^t = V^{\pi}$.

```
Assume policy to be evaluated is \pi.
Initialise \hat{V}^0 arbitrarily.
Assume that the agent is born in state s^0.
```

For t = 0, 1, 2, ...: Take action $a^t \sim \pi(s^t)$. Obtain reward r^t , next state s^{t+1} . $\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_{t+1}\{r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\}$. For $s \in S \setminus \{s^t\}$: $\hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s)$. //Often left implicit.

- $\hat{V}^{t}(s^{t})$: current estimate; $r^{t} + \gamma \hat{V}^{t}(s^{t+1})$: new estimate.
- $\mathbf{r}^{t} + \gamma \hat{\mathbf{V}}^{t}(\mathbf{s}^{t+1}) \hat{\mathbf{V}}^{t}(\mathbf{s}^{t})$: temporal difference prediction error.
- α_{t+1} : learning rate.
- Under standard conditions, $\lim_{t\to\infty} \hat{V}^t = V^{\pi}$. How to run on episodic tasks?

Reinforcement Learning

- 1. Least-squares and maximum likelihood estimators
- 2. TD(0) algorithm
- 3. Convergence of batch TD(0)

First-visit MC Estimate

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} . Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} . Episode 3: s_1 , 2, s_2 , 2, s_1 , 5, s_1 , 1, s_{\top} . Episode 4: s_3 , 1, s_{\top} . Episode 5: s_2 , 3, s_2 , 2, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{\mathcal{V}}_{\mathsf{First-visit}}^{\mathcal{N}}(oldsymbol{s}) = rac{\sum_{i=1}^{\mathcal{N}} G(oldsymbol{s},i,1)}{\sum_{i=1}^{\mathcal{N}} \mathbf{1}(oldsymbol{s},i,1)}.$$

First-visit MC Estimate

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} . Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} . Episode 3: s_1 , 2, s_2 , 2, s_1 , 5, s_1 , 1, s_{\top} . Episode 4: s_3 , 1, s_{\top} . Episode 5: s_2 , 3, s_2 , 2, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{\mathcal{V}}_{ extsf{First-visit}}^{m{N}}(m{s}) = rac{\sum_{i=1}^{m{N}}m{G}(m{s},i,1)}{\sum_{i=1}^{m{N}}m{1}(m{s},i,1)}.$$

• For $s \in S, V : S \rightarrow \mathbb{R}$, define

$$Error_{First}(V, s) \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{N} \mathbf{1}(s, i, 1) (V(s) - G(s, i, 1))^2$$

First-visit MC Estimate

Episode 1:
$$s_1$$
, 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} .
Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .
Episode 3: s_1 , 2, s_2 , 2, s_1 , 5, s_1 , 1, s_{\top} .
Episode 4: s_3 , 1, s_{\top} .
Episode 5: s_2 , 3, s_2 , 2, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{\mathcal{V}}_{ extsf{First-visit}}^{m{N}}(m{s}) = rac{\sum_{i=1}^{m{N}}m{G}(m{s},i,1)}{\sum_{i=1}^{m{N}}m{1}(m{s},i,1)}.$$

• For $\boldsymbol{s} \in \boldsymbol{S}, \ \boldsymbol{V}: \boldsymbol{S}
ightarrow \mathbb{R},$ define

$$\text{Error}_{\text{First}}(V, s) \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{N} \mathbf{1}(s, i, 1) \left(V(s) - G(s, i, 1)\right)^{2}.$$

• Observe that for $s \in S$, $\hat{V}_{\text{First-visit}}^{N}(s) = \operatorname{argmin}_{V} \text{Error}_{\text{First}}(V, s).$

Every-visit MC Estimate

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} . Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} . Episode 3: s_1 , 2, s_2 , 2, s_1 , 5, s_1 , 1, s_{\top} . Episode 4: s_3 , 1, s_{\top} . Episode 5: s_2 , 3, s_2 , 2, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{V}_{\mathsf{Every-visit}}^{N}(\boldsymbol{s}) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{\infty} \boldsymbol{G}(\boldsymbol{s}, i, j)}{\sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(\boldsymbol{s}, i, j)}$$

Every-visit MC Estimate

Episode 1:
$$s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$$
.
Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}$.
Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.
Episode 4: $s_3, 1, s_{\top}$.
Episode 5: $s_2, 3, s_2, 2, s_1, 1, s_{\top}$.

• Recall that for $s \in S$,

$$\hat{V}_{\mathsf{Every-visit}}^{\mathsf{N}}(\boldsymbol{s}) = rac{\sum_{i=1}^{\mathsf{N}}\sum_{j=1}^{\infty} \boldsymbol{G}(\boldsymbol{s},i,j)}{\sum_{i=1}^{\mathsf{N}}\sum_{j=1}^{\infty} \mathbf{1}(\boldsymbol{s},i,j)}.$$

• For $s \in S, V : S \rightarrow \mathbb{R}$, define

$$\textit{Error}_{\mathsf{Every}}(V,s) \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s,i,j) \left(V(s) - G(s,i,j)\right)^2.$$

Shivaram Kalyanakrishnan (2023)

Every-visit MC Estimate

Episode 1:
$$s_1$$
, 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} .
Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .
Episode 3: s_1 , 2, s_2 , 2, s_1 , 5, s_1 , 1, s_{\top} .
Episode 4: s_3 , 1, s_{\top} .
Episode 5: s_2 , 3, s_2 , 2, s_1 , 1, s_{\top} .

• Recall that for $s \in S$,

$$\hat{V}^{\mathcal{N}}_{\mathsf{Every-visit}}(oldsymbol{s}) = rac{\sum_{i=1}^N \sum_{j=1}^\infty oldsymbol{G}(oldsymbol{s},i,j)}{\sum_{i=1}^N \sum_{j=1}^\infty oldsymbol{1}(oldsymbol{s},i,j)}.$$

• For $s \in S, V : S \rightarrow \mathbb{R}$, define

$$Error_{\text{Every}}(V, s) \stackrel{\text{\tiny def}}{=} \sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j) \left(V(s) - G(s, i, j)\right)^{2}$$

Observe for $s \in S$, $\hat{V}_{\text{Every-visit}}^{N}(s) = \operatorname{argmin}_{V} Error_{\text{Every}}(V, s)$.

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} . Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} . Episode 3: s_1 , 2, s_2 , 2, s_1 , 5, s_1 , 1, s_{\top} . Episode 4: s_3 , 1, s_{\top} . Episode 5: s_2 , 3, s_2 , 2, s_1 , 1, s_{\top} .

- After any finite N episodes, the estimate of TD(0) will depend on the initial estimate V⁰.
- To "forget" *V*⁰, run the *N* collected episodes over and over again, and make TD(0) updates.

Episode 1

- Episode 2
- Episode 3
- Episode 4
- Episode 5
- Episode 6 (= Episode 1)
- Episode 7 (= Episode 2)
- Episode 8 (= Episode 3)
- Episode 9 (= Episode 4) Episode 10 (= Episode 5)
- Episode 11 (= Episode 1) Episode 12 (= Episode 2)

- Anneal the learning rate as usual $(\alpha_t = \frac{1}{t})$.
- $\lim_{t\to\infty} V^t$ will not depend on \hat{V}^0 .
- It only depends on *N* episodes of real data.
- Refer to $\lim_{t\to\infty} \hat{V}^t$ as $\hat{V}^N_{\text{Batch-TD}(0)}$.
- Can we conclude something relevant about $\hat{V}_{\text{Batch-TD}(0)}^{N}$?

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} . Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} . Episode 3: s_1 , 2, s_2 , 2, s_1 , 5, s_1 , 1, s_{\top} . Episode 4: s_3 , 1, s_{\top} . Episode 5: s_2 , 3, s_2 , 2, s_1 , 1, s_{\top} .

Let *M_{MLE}* be the MDP (*S*, *A*, *T̂*, *R̂*, *γ*) with the highest likelihood of generating this data (true *T*, *R* unknown).

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} . Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} . Episode 3: s_1 , 2, s_2 , 2, s_1 , 5, s_1 , 1, s_{\top} . Episode 4: s_3 , 1, s_{\top} . Episode 5: s_2 , 3, s_2 , 2, s_1 , 1, s_{\top} .

Let *M_{MLE}* be the MDP (*S*, *A*, *T̂*, *R̂*, *γ*) with the highest likelihood of generating this data (true *T*, *R* unknown).

• $\hat{V}_{\text{Batch-TD}(0)}^{N}$ is the same as V^{π} on M_{MLE} !

• Data.

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$. Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}$. Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$. Episode 4: $s_3, 1, s_{\top}$. Episode 5: $s_2, 3, s_2, 2, s_1, 1, s_{\top}$.

Estimates.

	S 1	S 2	S 3
$\hat{V}^{N}_{\text{First-visit}}$	7.33	6.25	3
$\hat{V}^{N}_{\text{Every-visit}}$	5.83	4.29	3.25
$\hat{V}^{N}_{\text{Batch-TD}(0)}$	7.5	7	6

• Data.

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$. Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}$. Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$. Episode 4: $s_3, 1, s_{\top}$. Episode 5: $s_2, 3, s_2, 2, s_1, 1, s_{\top}$.

Estimates.

• Note that
$$\begin{array}{c|c|c|c|c|c|c|c|c|c|}\hline & S_1 & S_2 & S_3 \\\hline \hat{V}_{\text{First-visit}}^N & 7.33 & 6.25 & 3 \\\hline \hat{V}_{\text{Every-visit}}^N & 5.83 & 4.29 & 3.25 \\\hline \hat{V}_{\text{Batch-TD}(0)}^N & 7.5 & 7 & 6 \\\hline \end{array}$$

Comparison • Data.

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$. Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}$. Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$. Episode 4: $s_3, 1, s_{\top}$. Episode 5: $s_2, 3, s_2, 2, s_1, 1, s_{\top}$.

Estimates.

• Note that $\lim_{N\to\infty} \hat{V}_{\text{First-visit}}^N = \lim_{N\to\infty} \hat{V}_{\text{Every-visit}}^N = \lim_{N\to\infty} \hat{V}_{\text{Every-visit}}^N = \lim_{N\to\infty} \hat{V}_{\text{Every-visit}}^N = \lim_{N\to\infty} \hat{V}_{\text{Batch-TD}(0)}^N = V^{\pi}.$

Comparison • Data.

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$. Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}$. Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$. Episode 4: $s_3, 1, s_{\top}$. Episode 5: $s_2, 3, s_2, 2, s_1, 1, s_{\top}$.

Estimates.