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Multi-step Returns
We consider prediction—estimating V π.

Suppose we generate this episode.
s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2 · 1 + γ3 · 2 + γ4 · 1− V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.
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n-step Returns
Trajectory: s0, r 0, s1, r 1, . . . .

For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t + γr t+1 + γ2r t+2 + · · ·+ γn−1r t+n−1 + γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is encountered at t + n′ for
1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st) + α{Gt :t+n − V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping? Small n means more bootstrapping.
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Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.
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The λ-return
A particular convex combination is the λ-return, λ ∈ [0,1]:

Gλ
t

def
=(1− λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt :T

where sT = s⊤ (otherwise T =∞).

Observe that G0
t = Gt :t+1, yielding full bootstrapping.

Observe that G1
t = Gt :∞, a Monte Carlo estimate.

In general, λ controls the amount of bootstrapping.

If λ > 0, transition (st , r t , st+1) contributes to the update of
every previously-visited state: that is, s0, s1, s2, . . . , st .
The amount of contribution falls of geometrically.
Updating with the λ-return as target can be implemented elegantly by
keeping track of the “eligibility” of each previous state to be updated.
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TD(λ) algorithm
Maintains an eligibility trace z : S → R.
Implementation often called the backward view.

Initialise V : S → R arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV (s′)− V (s).
z(s)← z(s) + 1.
For all s:

V (s)← V (s) + αδz(s).
z(s)← γλz(s).

s ← s′.
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Effect of λ

Small t

Large t

10 λ

0

V  −  Vtπ

t =

8
Lower λ: more bootstrapping, more bias (less variance).
Higher λ: more dependence on empirical rewards, more variance (less bias).
For finite t , error is usually lowest for intermediate λ value.
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Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Control with TD learning
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Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for t ≥ 0, initialised

arbitrarily.
We would like to get Q̂t to converge to Q⋆.

2. Follow policy πt at time step t ≥ 0, for example one that is ϵt -greedy with
respect to Q̂t .
Set ϵt to ensure infinite exploration of every state-action pair and also being
greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about the underlying
MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.

We consider three different update rules.
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Three Control Algorithms
From state st , action taken is at ∼ πt(st).

Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q⋆ for all three algorithms if πt is ϵt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action pair infinitely often,
then limt→∞ Q̂t is Qπ for Sarsa and Expected Sarsa, but is Q⋆ for Q-learning!
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Temporal Difference Learning: Review
Temporal difference (TD) learning is at the heart of RL.
It is an instance of on-line learning (computationally cheap updates after
each interaction).

Bootstrapping exploits the underlying Markovian structure, which Monte
Carlo methods ignore.
The TD(λ) family of algorithms, λ ∈ [0,1], allows for controlling the extent of
bootstrapping: λ = 0 implements “full bootstrapping” and λ = 1 is “no
bootstrapping.”
TD learning applies to both prediction and control.
Q-learning, Sarsa, Expected Sarsa are all model-free (use Θ(|S||A|)-sized
memory); can still be optimal in the limit.
Sarsa(λ) commonly used in practice.
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