
1/13

CS 747, Autumn 2023: Lecture 16

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2023

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 1 / 13

2/13

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Control with TD learning

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 2 / 13

2/13

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Control with TD learning

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 2 / 13

3/13

Multi-step Returns
We consider prediction—estimating V π.

Suppose we generate this episode.
s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2 · 1 + γ3 · 2 + γ4 · 1− V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 13

3/13

Multi-step Returns
We consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2 · 1 + γ3 · 2 + γ4 · 1− V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 13

3/13

Multi-step Returns
We consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2 · 1 + γ3 · 2 + γ4 · 1− V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 13

3/13

Multi-step Returns
We consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2 · 1 + γ3 · 2 + γ4 · 1− V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 13

3/13

Multi-step Returns
We consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2 · 1 + γ3 · 2 + γ4 · 1− V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 13

3/13

Multi-step Returns
We consider prediction—estimating V π.
Suppose we generate this episode.

s2,2, s3,1, s3,1, s3,2, s2,1, s⊤.

With TD(0), our first update would be:

V new(s2)← V old(s2) + α{2 + γV old(s3)− V old(s2)}.

With First-visit Monte Carlo, our update would be

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2 · 1 + γ3 · 2 + γ4 · 1− V old(s2)}.

Can we make this update instead?

V new(s2)← V old(s2) + α{2 + γ · 1 + γ2V old(s3)− V old(s2)}.

Yes. It uses a 2-step return as target.
Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 3 / 13

4/13

n-step Returns
Trajectory: s0, r 0, s1, r 1,

For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t + γr t+1 + γ2r t+2 + · · ·+ γn−1r t+n−1 + γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is encountered at t + n′ for
1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st) + α{Gt :t+n − V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping? Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 13

4/13

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t + γr t+1 + γ2r t+2 + · · ·+ γn−1r t+n−1 + γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is encountered at t + n′ for
1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st) + α{Gt :t+n − V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping? Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 13

4/13

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t + γr t+1 + γ2r t+2 + · · ·+ γn−1r t+n−1 + γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is encountered at t + n′ for
1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st) + α{Gt :t+n − V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping? Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 13

4/13

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t + γr t+1 + γ2r t+2 + · · ·+ γn−1r t+n−1 + γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is encountered at t + n′ for
1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st) + α{Gt :t+n − V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping? Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 13

4/13

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t + γr t+1 + γ2r t+2 + · · ·+ γn−1r t+n−1 + γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is encountered at t + n′ for
1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st) + α{Gt :t+n − V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.

What is the effect of n on bootstrapping? Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 13

4/13

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t + γr t+1 + γ2r t+2 + · · ·+ γn−1r t+n−1 + γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is encountered at t + n′ for
1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st) + α{Gt :t+n − V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping?

Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 13

4/13

n-step Returns
Trajectory: s0, r 0, s1, r 1,
For t ≥ 0,n ≥ 1, the n-step return Gt :t+n is

Gt :t+n
def
= r t + γr t+1 + γ2r t+2 + · · ·+ γn−1r t+n−1 + γnV t+n−1(st+n).

Convention: on episodic tasks, if a terminal state is encountered at t + n′ for
1 ≤ n′ < n, take Gt :t+n = Gt :t+n′ .

n-step TD makes updates of the form

V t+n(st)← V t+n−1(st) + α{Gt :t+n − V t+n−1(st)}.

For each n ≥ 1, we have limt→∞ V t = V π.
What is the effect of n on bootstrapping? Small n means more bootstrapping.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 4 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3.

Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes.

Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1.

Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.

Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
.

Yes.
2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
.

Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
.

No.
Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
.

No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

5/13

Combining Returns
Consider updating the estimate of st at step t + 3 using

V t+3(st)← V t+2(st) + α{Target− V t+2(st)}.

Can we use this as our target?

Gt :t+3. Yes. Gt :t+1. Yes.
Gt :t+1 + Gt :t+2

2
. Yes.

2Gt :t+1 + 3Gt :t+2 + Gt :t+3

6
. Yes.

Gt :t+1 + Gt :t+2 + 3Gt :t+3

4
. No.

Gt :t+1 − 2Gt :t+2 + 4Gt :t+3

3
. No.

Can use any convex combination of the applicable G’s.
Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 5 / 13

6/13

The λ-return
A particular convex combination is the λ-return, λ ∈ [0,1]:

Gλ
t

def
=(1− λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt :T

where sT = s⊤ (otherwise T =∞).

Observe that G0
t = Gt :t+1, yielding full bootstrapping.

Observe that G1
t = Gt :∞, a Monte Carlo estimate.

In general, λ controls the amount of bootstrapping.

If λ > 0, transition (st , r t , st+1) contributes to the update of
every previously-visited state: that is, s0, s1, s2, . . . , st .
The amount of contribution falls of geometrically.
Updating with the λ-return as target can be implemented elegantly by
keeping track of the “eligibility” of each previous state to be updated.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 13

6/13

The λ-return
A particular convex combination is the λ-return, λ ∈ [0,1]:

Gλ
t

def
=(1− λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt :T

where sT = s⊤ (otherwise T =∞).
Observe that G0

t = Gt :t+1, yielding full bootstrapping.
Observe that G1

t = Gt :∞, a Monte Carlo estimate.
In general, λ controls the amount of bootstrapping.

If λ > 0, transition (st , r t , st+1) contributes to the update of
every previously-visited state: that is, s0, s1, s2, . . . , st .
The amount of contribution falls of geometrically.
Updating with the λ-return as target can be implemented elegantly by
keeping track of the “eligibility” of each previous state to be updated.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 13

6/13

The λ-return
A particular convex combination is the λ-return, λ ∈ [0,1]:

Gλ
t

def
=(1− λ)

T−t−1∑
n=1

λn−1Gt :t+n + λT−t−1Gt :T

where sT = s⊤ (otherwise T =∞).
Observe that G0

t = Gt :t+1, yielding full bootstrapping.
Observe that G1

t = Gt :∞, a Monte Carlo estimate.
In general, λ controls the amount of bootstrapping.

If λ > 0, transition (st , r t , st+1) contributes to the update of
every previously-visited state: that is, s0, s1, s2, . . . , st .
The amount of contribution falls of geometrically.
Updating with the λ-return as target can be implemented elegantly by
keeping track of the “eligibility” of each previous state to be updated.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 6 / 13

7/13

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Control with TD learning

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 7 / 13

8/13

TD(λ) algorithm
Maintains an eligibility trace z : S → R.
Implementation often called the backward view.

Initialise V : S → R arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV (s′)− V (s).
z(s)← z(s) + 1.
For all s:

V (s)← V (s) + αδz(s).
z(s)← γλz(s).

s ← s′.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 13

8/13

TD(λ) algorithm
Maintains an eligibility trace z : S → R.
Implementation often called the backward view.

Initialise V : S → R arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV (s′)− V (s).
z(s)← z(s) + 1.
For all s:

V (s)← V (s) + αδz(s).
z(s)← γλz(s).

s ← s′.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 8 / 13

9/13

Effect of λ

Small t

Large t

10 λ

0

V − Vtπ

t =

8
Lower λ: more bootstrapping, more bias (less variance).
Higher λ: more dependence on empirical rewards, more variance (less bias).
For finite t , error is usually lowest for intermediate λ value.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 9 / 13

10/13

Reinforcement Learning

1. Multi-step returns

2. TD(λ)

3. Control with TD learning

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 13

11/13

Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for t ≥ 0, initialised

arbitrarily.
We would like to get Q̂t to converge to Q⋆.

2. Follow policy πt at time step t ≥ 0, for example one that is ϵt -greedy with
respect to Q̂t .
Set ϵt to ensure infinite exploration of every state-action pair and also being
greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about the underlying
MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.

We consider three different update rules.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 13

11/13

Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for t ≥ 0, initialised

arbitrarily.
We would like to get Q̂t to converge to Q⋆.

2. Follow policy πt at time step t ≥ 0, for example one that is ϵt -greedy with
respect to Q̂t .
Set ϵt to ensure infinite exploration of every state-action pair and also being
greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about the underlying
MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.

We consider three different update rules.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 13

11/13

Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for t ≥ 0, initialised

arbitrarily.
We would like to get Q̂t to converge to Q⋆.

2. Follow policy πt at time step t ≥ 0, for example one that is ϵt -greedy with
respect to Q̂t .
Set ϵt to ensure infinite exploration of every state-action pair and also being
greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about the underlying
MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.

We consider three different update rules.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 13

11/13

Sketch
1. Maintain action value function estimate Q̂t : S × A→ R for t ≥ 0, initialised

arbitrarily.
We would like to get Q̂t to converge to Q⋆.

2. Follow policy πt at time step t ≥ 0, for example one that is ϵt -greedy with
respect to Q̂t .
Set ϵt to ensure infinite exploration of every state-action pair and also being
greedy in the limit.

3. Every transition (st ,at , r t , st+1) conveys information about the underlying
MDP. Update Q̂t based on the transition.
Can use TD learning (suitably adapted) to make the update.

We consider three different update rules.
Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 13

12/13

Three Control Algorithms
From state st , action taken is at ∼ πt(st).

Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q⋆ for all three algorithms if πt is ϵt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action pair infinitely often,
then limt→∞ Q̂t is Qπ for Sarsa and Expected Sarsa, but is Q⋆ for Q-learning!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 12 / 13

12/13

Three Control Algorithms
From state st , action taken is at ∼ πt(st).
Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q⋆ for all three algorithms if πt is ϵt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action pair infinitely often,
then limt→∞ Q̂t is Qπ for Sarsa and Expected Sarsa, but is Q⋆ for Q-learning!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 12 / 13

12/13

Three Control Algorithms
From state st , action taken is at ∼ πt(st).
Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q⋆ for all three algorithms if πt is ϵt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action pair infinitely often,
then limt→∞ Q̂t is Qπ for Sarsa and Expected Sarsa, but is Q⋆ for Q-learning!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 12 / 13

12/13

Three Control Algorithms
From state st , action taken is at ∼ πt(st).
Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.

limt→∞ Q̂t = Q⋆ for all three algorithms if πt is ϵt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action pair infinitely often,
then limt→∞ Q̂t is Qπ for Sarsa and Expected Sarsa, but is Q⋆ for Q-learning!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 12 / 13

12/13

Three Control Algorithms
From state st , action taken is at ∼ πt(st).
Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q⋆ for all three algorithms if πt is ϵt -greedy w.r.t. Q̂t .

If πt = π (time-invariant) and it still visits every state-action pair infinitely often,
then limt→∞ Q̂t is Qπ for Sarsa and Expected Sarsa, but is Q⋆ for Q-learning!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 12 / 13

12/13

Three Control Algorithms
From state st , action taken is at ∼ πt(st).
Update made to Q̂t after observing transition st ,at , r t , st+1:

Q̂t+1(st ,at)← Q̂t(st ,at) + αt+1{Target− Q̂t(st ,at)}.

Q-learning: Target = r t + γmax
a∈A

Q̂t(st+1,a).

Sarsa: Target = r t + γQ̂t(st+1,at+1).

Expected Sarsa: Target = r t + γ
∑
a∈A

πt(st+1,a)Q̂t(st+1,a).

Q-learning’s update is off-policy; the other two are on-policy.
limt→∞ Q̂t = Q⋆ for all three algorithms if πt is ϵt -greedy w.r.t. Q̂t .
If πt = π (time-invariant) and it still visits every state-action pair infinitely often,
then limt→∞ Q̂t is Qπ for Sarsa and Expected Sarsa, but is Q⋆ for Q-learning!

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 12 / 13

13/13

Temporal Difference Learning: Review
Temporal difference (TD) learning is at the heart of RL.
It is an instance of on-line learning (computationally cheap updates after
each interaction).

Bootstrapping exploits the underlying Markovian structure, which Monte
Carlo methods ignore.
The TD(λ) family of algorithms, λ ∈ [0,1], allows for controlling the extent of
bootstrapping: λ = 0 implements “full bootstrapping” and λ = 1 is “no
bootstrapping.”
TD learning applies to both prediction and control.
Q-learning, Sarsa, Expected Sarsa are all model-free (use Θ(|S||A|)-sized
memory); can still be optimal in the limit.
Sarsa(λ) commonly used in practice.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 13 / 13

13/13

Temporal Difference Learning: Review
Temporal difference (TD) learning is at the heart of RL.
It is an instance of on-line learning (computationally cheap updates after
each interaction).
Bootstrapping exploits the underlying Markovian structure, which Monte
Carlo methods ignore.
The TD(λ) family of algorithms, λ ∈ [0,1], allows for controlling the extent of
bootstrapping: λ = 0 implements “full bootstrapping” and λ = 1 is “no
bootstrapping.”

TD learning applies to both prediction and control.
Q-learning, Sarsa, Expected Sarsa are all model-free (use Θ(|S||A|)-sized
memory); can still be optimal in the limit.
Sarsa(λ) commonly used in practice.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 13 / 13

13/13

Temporal Difference Learning: Review
Temporal difference (TD) learning is at the heart of RL.
It is an instance of on-line learning (computationally cheap updates after
each interaction).
Bootstrapping exploits the underlying Markovian structure, which Monte
Carlo methods ignore.
The TD(λ) family of algorithms, λ ∈ [0,1], allows for controlling the extent of
bootstrapping: λ = 0 implements “full bootstrapping” and λ = 1 is “no
bootstrapping.”
TD learning applies to both prediction and control.
Q-learning, Sarsa, Expected Sarsa are all model-free (use Θ(|S||A|)-sized
memory); can still be optimal in the limit.
Sarsa(λ) commonly used in practice.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 13 / 13

