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Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD(λ)
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Half Field Offense

Decision-making restricted to offense player with ball.
Based on state, choose among DRIBBLE, PASS, SHOOT.
How many states are there? An infinite number!
What to do?
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Features
State s is defined by positions and velocities of players, ball.

Velocities might not be important for decision making.
Position coordinates might not generalise well.
Define features x : S → R. Idea is that states with similar features will have
similar consequences of actions, values.

x1(s): Distance to teammate.

x2(s): Distance to nearest
opponent.

x3(s): Largest open angle to goal.

x4(s): Distance of teammate to
goal.
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Compact Representation of Q̂
Illustration of Q̂ approximated using a neural network.
Input: (features of) state. One output for each action.
Similar states will have similar Q-values.
Can we learn weights w so that Q̂(s,a) ≈ Q⋆(s,a)?
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Might not be able to represent Q⋆!
Unlike supervised learning, convergence not obvious!
Even if convergent, might induce sub-optimal behaviour!
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Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD(λ)
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Prediction with a Linear Architecture
Suppose we are to evaluate π on MDP (S,A,T ,R, γ).
Say we choose to approximate V π by V̂ : for s ∈ S,

V̂ (w , s) = w · x(s), where

x : S → Rd is a d-dimensional feature vector, and
w ∈ Rd is the weight/coefficient vector.

Usually d ≪ |S|.
Illustration with |S| = 3,d = 2. Take w = (w1,w2).

s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2
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The Best Approximation
s V π(s) x1(s) x2(s) V̂ (w , s)
s1 7 2 −1 2w1 − w2

s2 2 4 0 4w1

s3 −4 2 3 2w1 + 3w2

Observe that for all w ∈ R2, V̂ (w , s2) =
3V̂ (w ,s1)+V̂ (w ,s3)

2 .

In general, V̂ cannot be made equal to V π.

Which w provides the best approximation?
A common choice is

w⋆ = argmin
w∈Rd

MSVE(w),

MSVE(w)
def
=

1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w , s)}2,

where µπ : S → [0,1] is the stationary distribution of π.
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Geometric View
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(µπ-scaling not explicitly shown.)

How to find w⋆?
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Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD(λ)
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Gradient Descent
Iteratively take steps in the w space in the direction minimising MSVE(w).
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Feasible here? Sort of.
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Gradient Descent
Initialise w0 ∈ Rd arbitrarily. For t ≥ 0 update as

w t+1 ← w t − αt+1∇w

(
1
2

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}2

)
= w t + αt+1

∑
s∈S

µπ(s){V π(s)− V̂ (w t , s)}∇w V̂ (w t , s).

But we don’t know µπ(s), V π(s) for all s ∈ S. We’re learning, remember?
Luckily, stochastic gradient descent allows us to update as

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st)

since st ∼ µπ anyway (as t →∞).
But still, we don’t know V π(st)! What to do?
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Gradient Descent
Although we cannot perform update

w t+1 ← w t + αt+1{V π(st)− V̂ (w t , st)}∇w V̂ (w t , st),

we can do

w t+1 ← w t + αt+1{Gt :∞ − V̂ (w t , st)}∇w V̂ (w t , st),

since E[Gt :∞] = V π(st).

In practice, we also do

w t+1 ← w t + αt+1{Gλ
t − V̂ (w t , st)}∇w V̂ (w t , st),

for λ < 1, even if E[Gλ
t ] ̸= V π(st) in general. For example, Linear TD(0)

performs the update

w t+1 ← w t + αt+1{r t + γw t · x(st+1)− w t · x(st)}x(st).

For λ < 1, the process is not true gradient descent. But it still converges with
linear function approximation.
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Linear TD(λ) algorithm
Maintains an eligibility trace z ∈ Rd .
Recall that V̂ (w , s) = w · x(s), hence ∇w V̂ (w , s) = x(s).

Initialise w ∈ Rd arbitrarily.
Repeat for each episode:

Set z → 0.//Eligibility trace vector.
Assume the agent is born in state s.
Repeat for each step of episode:

Take action a; obtain reward r , next state s′.
δ ← r + γV̂ (w , s′)− V̂ (w , s).
z ← γλz +∇w V̂ (w , s).
w ← w + αδz.
s ← s′.

See Sutton and Barto (2018) for variations (accumulating, replacing, and
dutch traces).
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Convergence of Linear TD(λ)
MSVE(w∞

λ ) ≤ 1− γλ

1− γ
MSVE(w⋆).
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Control with Linear Function Approximation

Linear function approximation is implemented in the control by approximating
Q(s,a) ≈ w · x(s,a).

Linear Sarsa(λ) is a very popular algorithm.
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RL on Half Field Offense
Uses Linear Sarsa(0) with tile coding.
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Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study. Shivaram

Kalyanakrishnan, Yaxin Liu, and Peter Stone. RoboCup 2006: Robot Soccer World Cup X, pp. 72–85, Springer, 2007.
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Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD(λ)
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