CS 747, Autumn 2023: Lecture 18

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. The case for policy search

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. The case for policy search

How Good is Linear Function Approximation?

How Good is Linear Function Approximation?

How Good is Linear Function Approximation?

$$
\begin{aligned}
b_{1} & = \begin{cases}1 & \text { if } 0 \leq x<1 \\
0 & \text { otherwise }\end{cases} \\
b_{2} & = \begin{cases}1 & \text { if } 1 \leq x<2 \\
0 & \text { otherwise }\end{cases} \\
b_{3} & = \begin{cases}1 & \text { if } 2 \leq x<3 \\
0 & \text { otherwise }\end{cases} \\
\hat{V}_{2}(x) & =w_{1} b_{1}+w_{2} b_{2}+w_{3} b_{3}
\end{aligned}
$$

How Good is Linear Function Approximation?

How Good is Linear Function Approximation?

- Is \hat{V}^{3} the obvious choice?

How Good is Linear Function Approximation?

- Is \hat{V}^{3} the obvious choice?
- \hat{V}^{3} has the highest resolution, but does not generalise well.

How Good is Linear Function Approximation?

- Is \hat{V}^{3} the obvious choice?
- \hat{V}^{3} has the highest resolution, but does not generalise well.
- How to achieve high resolution along with generalisation?

Tile coding

- A tiling partitions x into equal-width regions called tiles.

Tile coding

- A tiling partitions x into equal-width regions called tiles.
- Multiple tilings (say m) are created, each with an offset ($1 / m$ tile width) from the previous.

Tile coding

- A tiling partitions x into equal-width regions called tiles.
- Multiple tilings (say m) are created, each with an offset ($1 / m$ tile width) from the previous.
- Each tile has an associated weight.

Tile coding

- A tiling partitions x into equal-width regions called tiles.
- Multiple tilings (say m) are created, each with an offset ($1 / m$ tile width) from the previous.
- Each tile has an associated weight.
- The function value of a point is the sum of the weights of the tiles intersecting it (one per tiling).

Tile coding

- A tiling partitions x into equal-width regions called tiles.
- Multiple tilings (say m) are created, each with an offset ($1 / m$ tile width) from the previous.
- Each tile has an associated weight.
- The function value of a point is the sum of the weights of the tiles intersecting it (one per tiling).

Tile coding

- Each tile is a binary feature.
- Tile width and the number of tilings determine generalisation, resolution.
- Observe that two points more than (tile width / number of tilings) apart can be given arbitrary function values.

Representing \hat{Q}

- Given a feature value x as input, the corresponding set of tilings $F: \mathbb{R} \rightarrow \mathbb{R}$ returns the sum of the weights of the tiles activated by x.

Representing \hat{Q}

- Given a feature value x as input, the corresponding set of tilings $F: \mathbb{R} \rightarrow \mathbb{R}$ returns the sum of the weights of the tiles activated by x.
- The usual practice is to have a separate set of tilings $F_{a j}: \mathbb{R} \rightarrow \mathbb{R}$ for each action a and state feature $j \in\{1,2, \ldots, d\}$. Hence

$$
\hat{Q}(s, a)=\sum_{j=1}^{d} F_{a j}\left(x_{j}(s)\right) .
$$

Representing \hat{Q}

- Given a feature value x as input, the corresponding set of tilings $F: \mathbb{R} \rightarrow \mathbb{R}$ returns the sum of the weights of the tiles activated by x.
- The usual practice is to have a separate set of tilings $F_{a j}: \mathbb{R} \rightarrow \mathbb{R}$ for each action a and state feature $j \in\{1,2, \ldots, d\}$. Hence

$$
\hat{Q}(s, a)=\sum_{j=1}^{d} F_{a j}\left(x_{j}(s)\right) .
$$

- Usually, tile widths and the number of tilings are configured specifically for each feature. For example, in soccer, could use $2 m$ as tile width for "distance" features, and 10° as tile width for "angle" features.

2-d Tile coding

- For representing more complex functions, can also have tilings on conjunctions of features (see below for 2 features).

- Introduces more parameters-which could help or hurt.

Tile Coding: Summary

- Linear function approximation does not restrict us to a representation that is linear in the given/raw features.
- Tile coding a standard approach to discretise input features and tune both resolution and generalisation.
- Many empirical successes, especially in conjunction with Linear Sarsa(λ).
- Common to store weights in a hash table (collisions don't seem to hurt much), whose size is set based on practical constraints.
- 1-d tilings most common; rarely see conjunction of 3 or more features.

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. The case for policy search

A Counterexample (Tsitsiklis and Van Roy, 1996)

- Prediction problem (policy π).
- Episodic, start state is s_{1}.
- Observe that $V^{\pi}\left(s_{1}\right)=V^{\pi}\left(s_{2}\right)=0$.
- Linear function approximation with single parameter w : $x\left(s_{1}\right)=1, x\left(s_{2}\right)=2$; hence $\hat{V}\left(s_{1}\right)=w, \hat{V}\left(s_{2}\right)=2 w$.

A Counterexample (Tsitsiklis and Van Roy, 1996)

- Prediction problem (policy π).
- Episodic, start state is s_{1}.
- Observe that $V^{\pi}\left(s_{1}\right)=V^{\pi}\left(s_{2}\right)=0$.
- Linear function approximation with single parameter w: $x\left(s_{1}\right)=1, x\left(s_{2}\right)=2$; hence $\hat{V}\left(s_{1}\right)=w, \hat{V}\left(s_{2}\right)=2 w$.
- What's the optimal setting of w ?

A Counterexample (Tsitsiklis and Van Roy, 1996)

- Prediction problem (policy π).
- Episodic, start state is s_{1}.
- Observe that $V^{\pi}\left(s_{1}\right)=V^{\pi}\left(s_{2}\right)=0$.
- Linear function approximation with single parameter w: $x\left(s_{1}\right)=1, x\left(s_{2}\right)=2$; hence $\hat{V}\left(s_{1}\right)=w, \hat{V}\left(s_{2}\right)=2 w$.
- What's the optimal setting of w ?
- $w=0$ gives the exact answer!

A Counterexample (Tsitsiklis and Van Roy, 1996)

- Prediction problem (policy π).
- Episodic, start state is s_{1}.
- Observe that $V^{\pi}\left(s_{1}\right)=V^{\pi}\left(s_{2}\right)=0$.
- Linear function approximation with single parameter w : $x\left(s_{1}\right)=1, x\left(s_{2}\right)=2$; hence $\hat{V}\left(s_{1}\right)=w, \hat{V}\left(s_{2}\right)=2 w$.
- What's the optimal setting of w ?
- $w=0$ gives the exact answer!
- We design an iteration $w_{0} \rightarrow w_{1} \rightarrow w_{2} \rightarrow \ldots$, and see if it converges to 0 .

A Counterexample (Tsitsiklis and Van Roy, 1996)

- From state s, let s^{\prime}, r be the (random) next state, reward.

A Counterexample (Tsitsiklis and Van Roy, 1996)

- From state s, let s^{\prime}, r be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V}, the bootstrapping idea suggests $\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(s^{\prime}\right)\right]$ as a "better estimate" of $V^{\pi}(s)$.

A Counterexample (Tsitsiklis and Van Roy, 1996)

- From state s, let s^{\prime}, r be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V}, the bootstrapping idea suggests $\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(s^{\prime}\right)\right]$ as a "better estimate" of $V^{\pi}(s)$.
- Starting with $w=w_{0}$, we update w so it best-fits the bootstrapped estimate in terms of squared error on the states.

A Counterexample (Tsitsiklis and Van Roy, 1996)

- From state s, let s^{\prime}, r be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V}, the bootstrapping idea suggests $\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(s^{\prime}\right)\right]$ as a "better estimate" of $V^{\pi}(s)$.
- Starting with $w=w_{0}$, we update w so it best-fits the bootstrapped estimate in terms of squared error on the states. For $k \geq 0$:

$$
w_{k+1} \leftarrow \underset{w \in \mathbb{R}}{\operatorname{argmin}} \sum_{s}\left(\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(w_{k}, x\left(s^{\prime}\right)\right)\right]-\hat{V}(w, x(s))\right)^{2} .
$$

A Counterexample (Tsitsiklis and Van Roy, 1996)

- From state s, let s^{\prime}, r be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V}, the bootstrapping idea suggests $\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(s^{\prime}\right)\right]$ as a "better estimate" of $V^{\pi}(s)$.
- Starting with $w=w_{0}$, we update w so it best-fits the bootstrapped estimate in terms of squared error on the states. For $k \geq 0$:

$$
w_{k+1} \leftarrow \underset{w \in \mathbb{R}}{\operatorname{argmin}} \sum_{s}\left(\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(w_{k}, x\left(s^{\prime}\right)\right)\right]-\hat{V}(w, x(s))\right)^{2} .
$$

- Is $\lim _{k \rightarrow \infty} w_{k}=0$?

A Counterexample (Tsitsiklis and Van Roy, 1996)

- From state s, let s^{\prime}, r be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V}, the bootstrapping idea suggests $\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(s^{\prime}\right)\right]$ as a "better estimate" of $V^{\pi}(s)$.
- Starting with $w=w_{0}$, we update w so it best-fits the bootstrapped estimate in terms of squared error on the states. For $k \geq 0$:

$$
w_{k+1} \leftarrow \underset{w \in \mathbb{R}}{\operatorname{argmin}} \sum_{s}\left(\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(w_{k}, x\left(s^{\prime}\right)\right)\right]-\hat{V}(w, x(s))\right)^{2} .
$$

- Is $\lim _{k \rightarrow \infty} w_{k}=0$? Let's see.

A Counterexample (Tsitsiklis and Van Roy, 1996)

$$
\begin{aligned}
w_{k+1} & =\underset{w \in \mathbb{R}}{\operatorname{argmin}} \sum_{s}\left(\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(w_{k}, x\left(s^{\prime}\right)\right)\right]-\hat{V}(w, x(s))\right)^{2} \\
& =\underset{w \in \mathbb{R}}{\operatorname{argmin}}\left(\left(2 \gamma w_{k}-w\right)^{2}+\left(2 \gamma(1-\epsilon) w_{k}-2 w\right)^{2}\right)=\gamma \frac{6-4 \epsilon}{5} w_{k} .
\end{aligned}
$$

A Counterexample (Tsitsiklis and Van Roy, 1996)

$$
\begin{aligned}
w_{k+1} & =\underset{w \in \mathbb{R}}{\operatorname{argmin}} \sum_{s}\left(\mathbb{E}_{\pi}\left[r+\gamma \hat{V}\left(w_{k}, x\left(s^{\prime}\right)\right)\right]-\hat{V}(w, x(s))\right)^{2} \\
& =\underset{w \in \mathbb{R}}{\operatorname{argmin}}\left(\left(2 \gamma w_{k}-w\right)^{2}+\left(2 \gamma(1-\epsilon) w_{k}-2 w\right)^{2}\right)=\gamma \frac{6-4 \epsilon}{5} w_{k} .
\end{aligned}
$$

- For $w_{0}=1, \epsilon=0.1, \gamma=0.99, \lim _{k \rightarrow \infty} w_{k}=\infty$; divergence!

A Counterexample (Tsitsiklis and Van Roy, 1996)

- For $w_{0}=1, \epsilon=0.1, \gamma=0.99, \lim _{k \rightarrow \infty} w_{k}=\infty$; divergence!
- The failure owes to the combination of three factors: off-policy updating, generalisation, bootstrapping.

A Counterexample (Tsitsiklis and Van Roy, 1996)

- For $w_{0}=1, \epsilon=0.1, \gamma=0.99, \lim _{k \rightarrow \infty} w_{k}=\infty$; divergence!
- The failure owes to the combination of three factors: off-policy updating, generalisation, bootstrapping.
- But these are almost always used together in practice!

Summary of Theoretical Results^

Method	Tabular	Linear FA	Non-linear FA
TD(0)	C, O	C	NK
$\mathrm{TD}(\lambda), \lambda \in(0,1)$	C, O	C	NK
TD(1)	C, O	C, "Best"	C, Local optimum
Sarsa(0)	C, 0	Chattering	NK
Sarsa (λ), $\lambda \in(0,1)$	NK	Chattering	NK
Sarsa(1)	NK	NK	NK
Q-learning(0)	C, 0	NK	NK

(C: Convergent; O: Optimal; NK: Not known.)
\star : to the best of your instructor's knowledge.

Reinforcement Learning

1. Tile coding
2. Issues in control with function approximation
3. The case for policy search

So Near, Yet So Far

- ($\left.m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}\right)$ a "good" approximation of Q^{\star}.

So Near, Yet So Far

- ($\left.m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}\right)$ a "good" approximation of Q^{\star}. But induces non-optimal actions for $x \in(A, B)$.

So Near, Yet So Far

- ($\left.m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}\right)$ a "good" approximation of Q^{\star}. But induces non-optimal actions for $x \in(A, B)$.
- ($\left.\bar{m}^{\text {RED }}, \bar{c}^{\text {RED }}, \bar{m}^{\text {BLUE }}, \bar{c}^{\text {BLUE }}\right)$ a "bad" approximation of Q^{\star}. But induces optimal actions for all x !

So Near, Yet So Far

- ($\left.m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}\right)$ a "good" approximation of Q^{\star}. But induces non-optimal actions for $x \in(A, B)$.
- ($\left.\bar{m}^{\text {RED }}, \bar{c}^{\text {RED }}, \bar{m}^{\text {BLUE }}, \bar{c}^{\text {BLUE }}\right)$ a "bad" approximation of Q^{\star}.

But induces optimal actions for all x !

- Perhaps we found ($m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}$) by Q-learning.

So Near, Yet So Far

- ($\left.m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}\right)$ a "good" approximation of Q^{\star}. But induces non-optimal actions for $x \in(A, B)$.
- ($\left.\bar{m}^{\text {RED }}, \bar{c}^{\text {RED }}, \bar{m}^{\text {BLUE }}, \bar{c}^{\text {BLUE }}\right)$ a "bad" approximation of Q^{\star}.

But induces optimal actions for all x !

- Perhaps we found ($m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}$) by Q-learning.
- How to find ($\left.\bar{m}^{\text {RED }}, \bar{c}^{\text {RED }}, \bar{m}^{\text {BLUE }}, \bar{c}^{\text {BLUE }}\right)$?

So Near, Yet So Far

- ($\left.m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}\right)$ a "good" approximation of Q^{\star}. But induces non-optimal actions for $x \in(A, B)$.
- ($\left.\bar{m}^{\text {RED }}, \bar{c}^{\text {RED }}, \bar{m}^{\text {BLUE }}, \bar{c}^{\text {BLUE }}\right)$ a "bad" approximation of Q^{\star}.

But induces optimal actions for all x !

- Perhaps we found ($m^{\text {RED }}, c^{\text {RED }}, m^{\text {BLUE }}, c^{\text {BLUE }}$) by Q-learning.
- How to find ($\left.\bar{m}^{\text {RED }}, \bar{c}^{\text {RED }}, \bar{m}^{\text {BLUE }}, \bar{c}^{\text {BLUE }}\right)$? Next week: policy search.

