CS 747, Autumn 2023: Lecture 18

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Reinforcement Learning

- 1. Tile coding
- 2. Issues in control with function approximation
- 3. The case for policy search

Reinforcement Learning

- 2. Issues in control with function approximation
- 3. The case for policy search

$$\hat{V}_1(x) = w_1 x + w_2.$$

Shivaram Kalyanakrishnan (2023)

CS 747, Autumn 2023

 $b_1 = \begin{cases} 1 & \text{if } 0 \le x < 1, \\ 0 & \text{otherwise.} \end{cases}$ $b_2 = \begin{cases} 1 & \text{if } 1 \leq x < 2, \\ 0 & \text{otherwise.} \end{cases}$ $b_3 = egin{cases} 1 & ext{if } 2 \leq x < 3, \ 0 & ext{otherwise}. \end{cases}$ $\hat{V}_2(x) = w_1 b_1 + w_2 b_2 + w_3 b_3.$

$\hat{V}_3(x)$: 18 piece-wise constants.

• Is \hat{V}^3 the obvious choice?

- Is \hat{V}^3 the obvious choice?
- \hat{V}^3 has the highest resolution, but does not generalise well.

- Is \hat{V}^3 the obvious choice?
- \hat{V}^3 has the highest resolution, but does not generalise well.
- How to achieve high resolution along with generalisation?

• A tiling partitions x into equal-width regions called tiles.

- A tiling partitions x into equal-width regions called tiles.
- Multiple tilings (say m) are created, each with an offset (1/m tile width) from the previous.

- A tiling partitions x into equal-width regions called tiles.
- Multiple tilings (say m) are created, each with an offset (1/m tile width) from the previous.
- Each tile has an associated weight.

- A tiling partitions x into equal-width regions called tiles.
- Multiple tilings (say m) are created, each with an offset (1/m tile width) from the previous.
- Each tile has an associated weight.
- The function value of a point is the sum of the weights of the tiles intersecting it (one per tiling).

- A tiling partitions x into equal-width regions called tiles.
- Multiple tilings (say m) are created, each with an offset (1/m tile width) from the previous.
- Each tile has an associated weight.
- The function value of a point is the sum of the weights of the tiles intersecting it (one per tiling).

- Each tile is a binary feature.
- Tile width and the number of tilings determine generalisation, resolution.
- Observe that two points more than (tile width / number of tilings) apart can be given arbitrary function values.

Representing \hat{Q}

• Given a feature value x as input, the corresponding set of tilings $F : \mathbb{R} \to \mathbb{R}$ returns the sum of the weights of the tiles activated by x.

Representing \hat{Q}

- Given a feature value x as input, the corresponding set of tilings F : ℝ → ℝ returns the sum of the weights of the tiles activated by x.
- The usual practice is to have a separate set of tilings *F_{aj}* : ℝ → ℝ for each action *a* and state feature *j* ∈ {1, 2, ..., *d*}. Hence

$$\hat{Q}(\boldsymbol{s}, \boldsymbol{a}) = \sum_{j=1}^{d} F_{aj}(x_j(\boldsymbol{s})).$$

Representing \hat{Q}

- Given a feature value x as input, the corresponding set of tilings F : ℝ → ℝ returns the sum of the weights of the tiles activated by x.
- The usual practice is to have a separate set of tilings *F_{aj}* : ℝ → ℝ for each action *a* and state feature *j* ∈ {1, 2, ..., *d*}. Hence

$$\hat{Q}(\boldsymbol{s},\boldsymbol{a}) = \sum_{j=1}^{d} F_{aj}(x_j(\boldsymbol{s})).$$

 Usually, tile widths and the number of tilings are configured specifically for each feature. For example, in soccer, could use 2m as tile width for "distance" features, and 10° as tile width for "angle" features.

2-d Tile coding

• For representing more complex functions, can also have tilings on conjunctions of features (see below for 2 features).

Introduces more parameters—which could help or hurt.

Tile Coding: Summary

- Linear function approximation does not restrict us to a representation that is linear in the given/raw features.
- Tile coding a standard approach to discretise input features and tune both resolution and generalisation.
- Many empirical successes, especially in conjunction with Linear Sarsa(λ).
- Common to store weights in a hash table (collisions don't seem to hurt much), whose size is set based on practical constraints.
- 1-d tilings most common; rarely see conjunction of 3 or more features.

Reinforcement Learning

- 1. Tile coding
- 2. Issues in control with function approximation
- 3. The case for policy search

- Prediction problem (policy π).
- Episodic, start state is *s*₁.
- Observe that $V^{\pi}(s_1) = V^{\pi}(s_2) = 0$.
- Linear function approximation with single parameter *w*: $x(s_1) = 1, x(s_2) = 2$; hence $\hat{V}(s_1) = w, \hat{V}(s_2) = 2w$.

- Prediction problem (policy π).
- Episodic, start state is *s*₁.
- Observe that $V^{\pi}(s_1) = V^{\pi}(s_2) = 0$.
- Linear function approximation with single parameter *w*: $x(s_1) = 1, x(s_2) = 2$; hence $\hat{V}(s_1) = w, \hat{V}(s_2) = 2w$.
- What's the optimal setting of w?

- Prediction problem (policy π).
- Episodic, start state is *s*₁.
- Observe that $V^{\pi}(s_1) = V^{\pi}(s_2) = 0$.
- Linear function approximation with single parameter *w*: $x(s_1) = 1, x(s_2) = 2$; hence $\hat{V}(s_1) = w, \hat{V}(s_2) = 2w$.
- What's the optimal setting of w?
- w = 0 gives the exact answer!

- Prediction problem (policy π).
- Episodic, start state is *s*₁.
- Observe that $V^{\pi}(s_1) = V^{\pi}(s_2) = 0$.
- Linear function approximation with single parameter w: $x(s_1) = 1, x(s_2) = 2$; hence $\hat{V}(s_1) = w, \hat{V}(s_2) = 2w$.
- What's the optimal setting of w?
- w = 0 gives the exact answer!
- We design an iteration $w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow \ldots$, and see if it converges to 0.

• From state *s*, let *s*', *r* be the (random) next state, reward.

- From state *s*, let *s*', *r* be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V} , the bootstrapping idea suggests $\mathbb{E}_{\pi}[r + \gamma \hat{V}(s')]$ as a "better estimate" of $V^{\pi}(s)$.

- From state *s*, let *s*', *r* be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V} , the bootstrapping idea suggests $\mathbb{E}_{\pi}[r + \gamma \hat{V}(s')]$ as a "better estimate" of $V^{\pi}(s)$.
- Starting with $w = w_0$, we update w so it best-fits the bootstrapped estimate in terms of squared error on the states.

- From state *s*, let *s*', *r* be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V} , the bootstrapping idea suggests $\mathbb{E}_{\pi}[r + \gamma \hat{V}(s')]$ as a "better estimate" of $V^{\pi}(s)$.
- Starting with *w* = *w*₀, we update *w* so it best-fits the bootstrapped estimate in terms of squared error on the states. For *k* ≥ 0:

$$w_{k+1} \leftarrow \operatorname*{argmin}_{w \in \mathbb{R}} \sum_{s} \left(\mathbb{E}_{\pi}[r + \gamma \hat{V}(w_k, x(s'))] - \hat{V}(w, x(s)) \right)^2.$$

- From state *s*, let *s*', *r* be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V} , the bootstrapping idea suggests $\mathbb{E}_{\pi}[r + \gamma \hat{V}(s')]$ as a "better estimate" of $V^{\pi}(s)$.
- Starting with *w* = *w*₀, we update *w* so it best-fits the bootstrapped estimate in terms of squared error on the states. For *k* ≥ 0:

$$w_{k+1} \leftarrow \operatorname*{argmin}_{w \in \mathbb{R}} \sum_{s} \left(\mathbb{E}_{\pi}[r + \gamma \hat{V}(w_k, x(s'))] - \hat{V}(w, x(s)) \right)^2.$$

• Is
$$\lim_{k\to\infty} W_k = 0$$
?

- From state *s*, let *s*', *r* be the (random) next state, reward.
- If our current estimate of V^{π} is \hat{V} , the bootstrapping idea suggests $\mathbb{E}_{\pi}[r + \gamma \hat{V}(s')]$ as a "better estimate" of $V^{\pi}(s)$.
- Starting with *w* = *w*₀, we update *w* so it best-fits the bootstrapped estimate in terms of squared error on the states. For *k* ≥ 0:

$$w_{k+1} \leftarrow \operatorname*{argmin}_{w \in \mathbb{R}} \sum_{s} \left(\mathbb{E}_{\pi}[r + \gamma \hat{V}(w_k, x(s'))] - \hat{V}(w, x(s)) \right)^2.$$

• Is
$$\lim_{k\to\infty} w_k = 0$$
? Let's see.

$$egin{aligned} & \mathcal{W}_{k+1} = \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}} \sum_{oldsymbol{s}} \left(\mathbb{E}_{\pi} [oldsymbol{r} + \gamma \, \hat{V}(oldsymbol{w}_k, oldsymbol{x}(oldsymbol{s}))] - \, \hat{V}(oldsymbol{w}, oldsymbol{x}(oldsymbol{s}))
ight)^2 \ &= \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}} \left((2\gamma oldsymbol{w}_k - oldsymbol{w})^2 + (2\gamma (1-\epsilon)oldsymbol{w}_k - 2oldsymbol{w})^2
ight) = \gamma rac{6-4\epsilon}{5} oldsymbol{w}_k. \end{aligned}$$

Shivaram Kalyanakrishnan (2023)

CS 747, Autumn 2023

$$egin{aligned} & \mathcal{W}_{k+1} = \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}} \sum_{oldsymbol{s}} \left(\mathbb{E}_{\pi} [oldsymbol{r} + \gamma \, \hat{V}(oldsymbol{w}_k, x(oldsymbol{s}'))] - \, \hat{V}(oldsymbol{w}, x(oldsymbol{s}))
ight)^2 \ &= \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}} \left((2\gamma oldsymbol{w}_k - oldsymbol{w})^2 + (2\gamma (1-\epsilon) oldsymbol{w}_k - 2oldsymbol{w})^2
ight) = \gamma rac{6-4\epsilon}{5} oldsymbol{w}_k. \end{aligned}$$

• For $w_0 = 1$, $\epsilon = 0.1$, $\gamma = 0.99$, $\lim_{k \to \infty} w_k = \infty$; divergence!

Shivaram Kalyanakrishnan (2023)

CS 747, Autumn 2023

$$egin{aligned} & \mathcal{W}_{k+1} = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}} \sum_{oldsymbol{s}} \left(\mathbb{E}_{\pi} [oldsymbol{r} + \gamma \, \hat{oldsymbol{V}}(oldsymbol{w}_k, oldsymbol{x}(oldsymbol{s}))] - \, \hat{oldsymbol{V}}(oldsymbol{w}, oldsymbol{x}(oldsymbol{s})) igg)^2 \ & = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}} \left((2\gamma oldsymbol{w}_k - oldsymbol{w})^2 + (2\gamma (1-\epsilon) oldsymbol{w}_k - 2oldsymbol{w})^2
ight) = \gamma rac{6-4\epsilon}{5} oldsymbol{w}_k. \end{aligned}$$

• For $w_0 = 1$, $\epsilon = 0.1$, $\gamma = 0.99$, $\lim_{k \to \infty} w_k = \infty$; divergence!

• The failure owes to the combination of three factors: off-policy updating, generalisation, bootstrapping.

$$egin{aligned} & \mathcal{W}_{k+1} = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}} \sum_{oldsymbol{s}} \left(\mathbb{E}_{\pi} [oldsymbol{r} + \gamma \, \hat{oldsymbol{V}}(oldsymbol{w}_k, oldsymbol{x}(oldsymbol{s}))] - \, \hat{oldsymbol{V}}(oldsymbol{w}, oldsymbol{x}(oldsymbol{s})) igg)^2 \ & = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}} \left((2\gamma oldsymbol{w}_k - oldsymbol{w})^2 + (2\gamma (1-\epsilon) oldsymbol{w}_k - 2oldsymbol{w})^2
ight) = \gamma rac{6-4\epsilon}{5} oldsymbol{w}_k. \end{aligned}$$

• For $w_0 = 1$, $\epsilon = 0.1$, $\gamma = 0.99$, $\lim_{k \to \infty} w_k = \infty$; divergence!

- The failure owes to the combination of three factors: off-policy updating, generalisation, bootstrapping.
- But these are almost always used together in practice!

Shivaram Kalyanakrishnan (2023)

CS 747, Autumn 2023

Summary of Theoretical Results*

Method	Tabular	Linear FA	Non-linear FA
TD(0)	C, O	С	NK
$TD(\lambda), \lambda \in (0, 1)$	C, O	С	NK
TD(1)	С, О	C, "Best"	C, Local optimum
Sarsa(0)	C, 0	Chattering	NK
Sarsa(λ), $\lambda \in (0, 1)$	NK	Chattering	NK
Sarsa(1)	NK	NK	NK
Q-learning(0)	C, 0	NK	NK

(C: Convergent; O: Optimal; NK: Not known.)

*: to the best of your instructor's knowledge.

Reinforcement Learning

- 1. Tile coding
- 2. Issues in control with function approximation
- 3. The case for policy search

• $(m^{\text{RED}}, c^{\text{RED}}, m^{\text{BLUE}}, c^{\text{BLUE}})$ a "good" approximation of Q^* .

But induces non-optimal actions for $x \in (A, B)$.

Shivaram Kalyanakrishnan (2023)

- $(m^{\text{RED}}, c^{\text{RED}}, m^{\text{BLUE}}, c^{\text{BLUE}})$ a "good" approximation of Q^* . But induces non-optimal actions for $x \in (A, B)$.
- (m
 ^{RED}, c
 ^{RED}, m
 ^{BLUE}, c
 ^{BLUE}) a "bad" approximation of Q*. But induces optimal actions for all x!

- $(m^{\text{RED}}, c^{\text{RED}}, m^{\text{BLUE}}, c^{\text{BLUE}})$ a "good" approximation of Q^* . But induces non-optimal actions for $x \in (A, B)$.
- $(\bar{m}^{\text{RED}}, \bar{c}^{\text{RED}}, \bar{m}^{\text{BLUE}}, \bar{c}^{\text{BLUE}})$ a "bad" approximation of Q^* . But induces optimal actions for all x!
- Perhaps we found $(m^{\text{RED}}, c^{\text{RED}}, m^{\text{BLUE}}, c^{\text{BLUE}})$ by Q-learning.

- $(m^{\text{RED}}, c^{\text{RED}}, m^{\text{BLUE}}, c^{\text{BLUE}})$ a "good" approximation of Q^* . But induces non-optimal actions for $x \in (A, B)$.
- $(\bar{m}^{\text{RED}}, \bar{c}^{\text{RED}}, \bar{m}^{\text{BLUE}}, \bar{c}^{\text{BLUE}})$ a "bad" approximation of Q^* . But induces optimal actions for all x!
- Perhaps we found $(m^{\text{RED}}, c^{\text{RED}}, m^{\text{BLUE}}, c^{\text{BLUE}})$ by Q-learning.
- How to find $(\bar{m}^{\text{RED}}, \bar{c}^{\text{RED}}, \bar{m}^{\text{BLUE}}, \bar{c}^{\text{BLUE}})$?

- $(m^{\text{RED}}, c^{\text{RED}}, m^{\text{BLUE}}, c^{\text{BLUE}})$ a "good" approximation of Q^* . But induces non-optimal actions for $x \in (A, B)$.
- $(\bar{m}^{\text{RED}}, \bar{c}^{\text{RED}}, \bar{m}^{\text{BLUE}}, \bar{c}^{\text{BLUE}})$ a "bad" approximation of Q^* . But induces optimal actions for all x!
- Perhaps we found $(m^{\text{RED}}, c^{\text{RED}}, m^{\text{BLUE}}, c^{\text{BLUE}})$ by Q-learning.
- How to find $(\bar{m}^{\text{RED}}, \bar{c}^{\text{RED}}, \bar{m}^{\text{BLUE}}, \bar{c}^{\text{BLUE}})$? Next week: policy search.