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Decision-time planning: Problem

[1]

1. https://www.pexels.com/photo/a-woman-playing-billiards-10627127/.
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Decision-time planning: Problem
So far we have assumed that an agent’s learning algorithm produces π or Q
as output. While acting on-line, the agent just needs a “look up” or
associative “forward pass” from any state s to obtain its action.

Sometimes π or Q might be difficult to learn in compact form, but a model
M = (T ,R) (given or learned, exact or approximate) might be available.

In decision-time planning, at every time step, we “imagine” possible futures
emanating from the current state by using M, and use the computation to
decide which action to take.

How to rigorously do so?
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Tree Search on MDPs

.  .  .

Current state

Grow up to height h

Non−terminal state

Terminal state

Action

Transition probabilities

Reward

Expectimax calculation. Set Qh ← 0 //Leaves.
For d = h − 1,h − 2, . . . ,0://Bottom-up calculation.

V d(s)← maxa∈A Qd+1(s,a);
Qd(s,a)←

∑
s′∈S T (s,a, s′){R(s,a, s′) + γV d(s′)}.
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Tree Search on MDPs

.  .  .

Current state

Grow up to height h

Non−terminal state

Terminal state

Action

Transition probabilities

Reward

Need h = Θ( 1
1−γ

) (or h = episode length) for sufficient accuracy.
With branching factor b, tree size is Θ(bh). Expensive!
Often M is only a sampling model (not distribution model).
Can we avoid expanding (clearly) inferior branches?
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Rollout Policies
Suppose we have a (look-up) policy π.
Let policy π′ satisfy π′(s) = argmaxa∈A Qπ(s,a) for s ∈ S.
By the policy improvement theorem, we know π′ ⪰ π.

We implement π′ using Monte Carlo rollouts (through M).

s

a
1

a a
2 3

Until end of episode

π

From current state s, for each action a ∈ A,
generate N trajectories by taking a from s
and thereafter following π.

Set Q̂π(s,a) as average of episodic returns.

Take action π′(s) = argmaxa∈A Q̂π(s,a).

Repeat same process from next state s′.
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Monte Carlo Tree Search (UCT Algorithm)
Build out a tree up to height h (say 5–10) from current state scurrent.
“Data” for the tree are samples returned by M.
For (s,a) pairs reachable from scurrent in ≤ h steps, maintain

▶ Q(s,a): average of returns of rollouts passing through (s,a).
▶ ucb(s,a) = Q(s,a) + Cp

√
ln(t)

visits(s,a) .
s current

Grow up to height h

a1 a a2 3

Until end of episode

π

.  .  .

Repeat N times from scurrent:
1. Generate trajectory by calling M.
From stored state s, “take” action
argmaxa∈A ucb(s,a); from leaf follow
rollout policy π until end of episode.

2. Update Q, ucb for (s,a) pairs
visited in trajectory.

Take action argmaxa∈A ucb(scurrent,a).
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Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height h, number of
rollouts N.
π typically an associative/look-up policy, often even a random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.

Cp in the UCB formula needs to be large to deal with nonstationarity (from
changes downstream).
In general there could be multiple paths to any particular stored (s,a) pair
starting from scurrent.
UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 14



10/14

Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height h, number of
rollouts N.
π typically an associative/look-up policy, often even a random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.
Cp in the UCB formula needs to be large to deal with nonstationarity (from
changes downstream).

In general there could be multiple paths to any particular stored (s,a) pair
starting from scurrent.
UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 14



10/14

Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height h, number of
rollouts N.
π typically an associative/look-up policy, often even a random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.
Cp in the UCB formula needs to be large to deal with nonstationarity (from
changes downstream).
In general there could be multiple paths to any particular stored (s,a) pair
starting from scurrent.

UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 14



10/14

Monte Carlo Tree Search (UCT Algorithm)
Main parameters of UCT: rollout policy π, search tree height h, number of
rollouts N.
π typically an associative/look-up policy, often even a random policy.
Better guarantees as h is increased (if N =∞).
In practice N limited by available “think” time.
Cp in the UCB formula needs to be large to deal with nonstationarity (from
changes downstream).
In general there could be multiple paths to any particular stored (s,a) pair
starting from scurrent.
UCT focuses attention on rewarding regions of state space.
Rollouts can easily be parallelised.
Extremely successful algorithm in practice.

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 10 / 14



11/14

Decision-time Planning in MDPs

Problem

Rollout policies

Monte Carlo tree search

Evaluation functions

Summary

Shivaram Kalyanakrishnan (2023) CS 747, Autumn 2023 11 / 14



12/14

Evaluation Function
With rollouts, value estimate of L = average rollout return.

πRollouts according to

Terminal state

Leaf

L

With an evaluation function, value estimate of L = eval(state(L)).

Leaf

L

For example, in Chess, set eval(s) as
w1 ×Material-diff(s) + w2 × King-safety(s) + w3 × pawn-strength(s) + . . . .

Weights w1,w2,w3, . . . are tuned or learned.
Evaluation functions save compute time. Can be combined with rollouts.
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Search in On-line Decision Making

Key requirement: simulator (model).

More computationally expensive than lookup of π or Q.

MCTS with rollout policies an effective approach to handle stochasticity as
well as large state spaces.

Learning (say an evaluation function) can also help solution quality of search
in practice.

Proof of all these claims: AlphaGo!

Coming up later in this course.
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