CS 747, Autumn 2023: Lecture 19

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2023

Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary

Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary

[1]

1. https://www.pexels.com/photo/a-woman-playing-billiards-10627127/.

CS 747, Autumn 2023

So far we have assumed that an agent's learning algorithm produces π or Q as output. While acting on-line, the agent just needs a "look up" or associative "forward pass" from any state s to obtain its action.

- So far we have assumed that an agent's learning algorithm produces π or Q as output. While acting on-line, the agent just needs a "look up" or associative "forward pass" from any state s to obtain its action.
- Sometimes π or Q might be difficult to learn in compact form, but a model M = (T, R) (given or learned, exact or approximate) might be available.

- So far we have assumed that an agent's learning algorithm produces π or Q as output. While acting on-line, the agent just needs a "look up" or associative "forward pass" from any state s to obtain its action.
- Sometimes π or Q might be difficult to learn in compact form, but a model M = (T, R) (given or learned, exact or approximate) might be available.
- In decision-time planning, at every time step, we "imagine" possible futures emanating from the current state by using *M*, and use the computation to decide which action to take.

- So far we have assumed that an agent's learning algorithm produces π or Q as output. While acting on-line, the agent just needs a "look up" or associative "forward pass" from any state s to obtain its action.
- Sometimes π or Q might be difficult to learn in compact form, but a model M = (T, R) (given or learned, exact or approximate) might be available.
- In decision-time planning, at every time step, we "imagine" possible futures emanating from the current state by using *M*, and use the computation to decide which action to take.
- How to rigorously do so?

Tree Search on MDPs

• Expectimax calculation. Set $Q^h \leftarrow \mathbf{0}$ //Leaves. For $d = h - 1, h - 2, \dots, 0$://Bottom-up calculation. $V^d(s) \leftarrow \max_{a \in A} Q^{d+1}(s, a)$; $Q^d(s, a) \leftarrow \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^d(s') \}.$

Tree Search on MDPs

- Need $h = \Theta(\frac{1}{1-\gamma})$ (or h = episode length) for sufficient accuracy.
- With branching factor *b*, tree size is $\Theta(b^h)$. Expensive!
- Often *M* is only a sampling model (not distribution model).
- Can we avoid expanding (clearly) inferior branches?

Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \operatorname{argmax}_{a \in A} Q^{\pi}(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \operatorname{argmax}_{a \in A} Q^{\pi}(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through *M*).

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \operatorname{argmax}_{a \in A} Q^{\pi}(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through *M*).

 From current state s, for each action a ∈ A, generate N trajectories by taking a from s and thereafter following π.

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \operatorname{argmax}_{a \in A} Q^{\pi}(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through *M*).

- From current state s, for each action a ∈ A, generate N trajectories by taking a from s and thereafter following π.
- Set $\hat{Q}^{\pi}(s, a)$ as average of episodic returns.

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \operatorname{argmax}_{a \in A} Q^{\pi}(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through *M*).

- From current state s, for each action a ∈ A, generate N trajectories by taking a from s and thereafter following π.
- Set $\hat{Q}^{\pi}(s, a)$ as average of episodic returns.

• Take action
$$\pi'(s) = \operatorname{argmax}_{a \in A} \hat{Q}^{\pi}(s, a)$$
.

- Suppose we have a (look-up) policy π .
- Let policy π' satisfy $\pi'(s) = \operatorname{argmax}_{a \in A} Q^{\pi}(s, a)$ for $s \in S$.
- By the policy improvement theorem, we know $\pi' \succeq \pi$.
- We implement π' using Monte Carlo rollouts (through *M*).

- From current state s, for each action a ∈ A, generate N trajectories by taking a from s and thereafter following π.
- Set $\hat{Q}^{\pi}(s, a)$ as average of episodic returns.

• Take action
$$\pi'(s) = \operatorname{argmax}_{a \in A} \hat{Q}^{\pi}(s, a)$$
.

• Repeat same process from next state s'.

Shivaram Kalyanakrishnan (2023)

Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary

- Build out a tree up to height *h* (say 5–10) from current state *s*_{current}.
 "Data" for the tree are samples returned by *M*.
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - Q(s, a): average of returns of rollouts passing through (s, a).
 - $ucb(s, a) = Q(s, a) + C_{\rho} \sqrt{\frac{\ln(t)}{\operatorname{visits}(s, a)}}.$

- Build out a tree up to height *h* (say 5–10) from current state *s*_{current}.
 "Data" for the tree are samples returned by *M*.
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - Q(s, a): average of returns of rollouts passing through (s, a).
 - $ucb(s, a) = Q(s, a) + C_{p} \sqrt{\frac{\ln(t)}{\operatorname{visits}(s, a)}}.$

Repeat *N* times from *s*_{current}:

1. Generate trajectory by calling *M*. From stored state *s*, "take" action $\operatorname{argmax}_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode.

- Build out a tree up to height *h* (say 5–10) from current state *s*_{current}.
 "Data" for the tree are samples returned by *M*.
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - Q(s, a): average of returns of rollouts passing through (s, a).
 - $ucb(s, a) = Q(s, a) + C_{p} \sqrt{\frac{\ln(t)}{\operatorname{visits}(s, a)}}.$

Repeat *N* times from *s*_{current}:

1. Generate trajectory by calling *M*. From stored state *s*, "take" action $\arg\max_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode. **2.** Update *Q*, *ucb* for (s, a) pairs visited in trajectory.

- Build out a tree up to height *h* (say 5–10) from current state *s*_{current}.
 "Data" for the tree are samples returned by *M*.
- For (s, a) pairs reachable from s_{current} in $\leq h$ steps, maintain
 - Q(s, a): average of returns of rollouts passing through (s, a).
 - $ucb(s, a) = Q(s, a) + C_{p} \sqrt{\frac{\ln(t)}{\operatorname{visits}(s, a)}}.$

Repeat *N* times from *s*_{current}:

1. Generate trajectory by calling *M*. From stored state *s*, "take" action $\arg\max_{a \in A} ucb(s, a)$; from leaf follow rollout policy π until end of episode. **2.** Update *Q*, *ucb* for (s, a) pairs visited in trajectory.

Take action $\operatorname{argmax}_{a \in A} ucb(s_{\text{current}}, a)$.

- Main parameters of UCT: rollout policy π, search tree height h, number of rollouts N.
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as *h* is increased (if $N = \infty$).
- In practice *N* limited by available "think" time.

- Main parameters of UCT: rollout policy π, search tree height h, number of rollouts N.
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as *h* is increased (if $N = \infty$).
- In practice *N* limited by available "think" time.
- *C_p* in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).

- Main parameters of UCT: rollout policy π, search tree height h, number of rollouts N.
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as *h* is increased (if $N = \infty$).
- In practice *N* limited by available "think" time.
- *C_p* in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).
- In general there could be multiple paths to any particular stored (s, a) pair starting from s_{current}.

- Main parameters of UCT: rollout policy π, search tree height h, number of rollouts N.
- π typically an associative/look-up policy, often even a random policy.
- Better guarantees as *h* is increased (if $N = \infty$).
- In practice *N* limited by available "think" time.
- *C_p* in the UCB formula needs to be large to deal with nonstationarity (from changes downstream).
- In general there could be multiple paths to any particular stored (s, a) pair starting from s_{current}.
- UCT focuses attention on rewarding regions of state space.
- Rollouts can easily be parallelised.
- Extremely successful algorithm in practice.

Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary

• With **rollouts**, value estimate of L = average rollout return.

Terminal state

• With rollouts, value estimate of L = average rollout return.

Terminal state

With an evaluation function, value estimate of L = eval(state(L)).

Leaf

• With rollouts, value estimate of L = average rollout return.

Terminal state

- With an evaluation function, value estimate of L = eval(state(L)).
 Leaf
- For example, in Chess, set eval(s) as
 w₁ × Material-diff(s) + w₂ × King-safety(s) + w₃ × pawn-strength(s) +

• With rollouts, value estimate of L = average rollout return.

Terminal state

With an evaluation function, value estimate of L = eval(state(L)).
 L

Leaf

• For example, in Chess, set eval(s) as

 $w_1 \times Material-diff(s) + w_2 \times King-safety(s) + w_3 \times pawn-strength(s) + \dots$

• Weights w_1, w_2, w_3, \ldots are tuned or learned.

• With rollouts, value estimate of L = average rollout return.

Terminal state

With an evaluation function, value estimate of L = eval(state(L)).
 L

Leaf

• For example, in Chess, set eval(s) as

 $w_1 \times Material-diff(s) + w_2 \times King-safety(s) + w_3 \times pawn-strength(s) + \dots$

- Weights w_1, w_2, w_3, \ldots are tuned or learned.
- Evaluation functions save compute time. Can be combined with rollouts.

Decision-time Planning in MDPs

- Problem
- Rollout policies
- Monte Carlo tree search
- Evaluation functions
- Summary

Search in On-line Decision Making

- Key requirement: simulator (model).
- More computationally expensive than lookup of π or Q.
- MCTS with rollout policies an effective approach to handle stochasticity as well as large state spaces.
- Learning (say an evaluation function) can also help solution quality of search in practice.
- Proof of all these claims: AlphaGo!

Search in On-line Decision Making

- Key requirement: simulator (model).
- More computationally expensive than lookup of π or Q.
- MCTS with rollout policies an effective approach to handle stochasticity as well as large state spaces.
- Learning (say an evaluation function) can also help solution quality of search in practice.
- Proof of all these claims: AlphaGo! Coming up later in this course.