
CS 747 (Autumn 2023)
End-semester Examination

Instructor: Shivaram Kalyanakrishnan

5.30 p.m. – 8.30 p.m., November 25, 2023, LA 201 and LA 202

Note. This exam has 8 questions, given on the pages following this one. Provide justifica-
tions/calculations/steps along with each answer to illustrate how you arrived at the answer.
You will not receive credit for giving an answer without sufficient explanation.

Steps for submission.

1. Bring your phone in a pouch or bag, and keep it on the table you are using.

2. Before the exam begins, turn on “flight mode” on the phone, so it cannot communicate.
Do not touch the phone while you are writing the exam.

3. When you are finished writing, put your pen away and stand up.

4. Remain standing while retrieving your phone, scanning your paper, turning off “flight
mode”, then uploading the scanned pdf to Moodle.

5. You will get 15 extra minutes after the test end time for scanning and uploading (you
can do it earlier if you have finished). If you are unable to scan and upload your paper,
you will be given a slot later to do so.

6. Before leaving, you must turn in your answer paper to the invigilators in the room.

7. We will only evaluate submissions for which the scanned copy matches the physical
answer paper that has been turned in.

1



Question 1. Consider a continuing MDP with states s1, s2, s3, on which the non-zero
transition probabilities on following a fixed policy π are listed in the table below and also
shown as annotations in a state transition diagram.

Transition Probability

s1 → s2 1
s2 → s1 1/3
s2 → s2 1/3
s2 → s3 1/3
s3 → s2 1

s1 s2 s3

1

1
3

1
3

1
3

1

Denote the probability of being in state si at time step t ≥ 0 by pti for i ∈ {1, 2, 3}.

1a. Obtain expressions for pt1, p
t
2, and pt3 for t ≥ 1 in terms of the initial probabilities p01,

p02, and p03. You could potentially simplify your calculations by using symmetry found
within the problem. [4 marks]

1b. What is lim
t→∞

pti for i ∈ {1, 2, 3}? [1 mark]

Question 2. Consider an episodic MDP M = (S,A, T,R, γ), with notations as usual, and
with γ = 1 (that is, no discounting). Suppose that a policy π : S → A is run on M for N ≥ 2
episodes. From the data (that is, episodic state-action-reward sequences) thereby obtained,
let V̂ N

First-visit denote the first-visit Monte Carlo estimate of V π. Similarly, let V̂ N
Every-visit denote

the every-visit Monte Carlo estimate of V π. Assume that in the data collected, each state
s ∈ S is visited at least once—so the estimators are well-defined.

2a. Write down expressions for V̂ N
First-visit(s) and V̂ N

Every-visit(s) for s ∈ S. You can use the
relevant notation from class, or use your own notation along with clear descriptions.
[2 marks]

2b. Suppose M is such that every reward is positive: that is, R(s, a, s′) > 0 for s, s′ ∈
S, a ∈ A. Also, there is no stochasticity in generating rewards. Is it implied that for
all s ∈ S, V̂ N

First-visit(s) ≥ V̂ N
Every-visit(s)? Give a proof to support your claim. [2 marks]

Question 3. Consider an episodic MDP with small, finite sets of states and actions, such
as one of the grid world tasks in the textbook by Sutton and Barto (2018). Each episode
begins with a non-terminal state selected uniformly at random; termination is guaranteed
with probability 1 on each episode regardless of the actions taken at each step. Values are
taken to be the expected cumulative reward per episode, with no discounting.

Write down pseudocode for Sarsa(0), implemented such that the agent will converge to
optimal behaviour. In other words, if Vi is the expected cumulative reward of the algorithm
on episode i ≥ 1, and V ⋆ is the optimal expected cumulative reward per episode, then

lim
N→∞

1

N

N∑
i=1

Vi = V ⋆. You need not provide the proof of optimality. [4 marks]

2



Question 4. Suppose that a sampling model is available for an episodic task, and the agent
performs decision-time planning using this sampling model in order to decide which action to
take at each state. Let πbehaviour be the policy that results from doing so. In other words, at
each state s, the agent computes its action πbehaviour(s) by performing decision-time planning.

Concretely, assume that the agent uses the UCT algorithm for decision-time planning.
Suppose the agent employs a roll-out policy πrollout internally within UCT. During UCT, the
height of the tree kept in memory is h ≥ 1, and a total of N ≥ 1 trajectories are generated,
starting from s.

What is the relation between πrollout and πbehaviour (does one dominate the other)? Con-
sider both theoretical and practical aspects, including the roles of N and h, if any. [4 marks]

Question 5. A neural network with a total of 6 weights is used to encode a policy for a
particular episodic task. There are two features of state, which come in as inputs x1, x2 ∈ R.
These inputs are linearly combined and then passed through a sigmoid function to produce
the outputs of the two nodes in the hidden layer. In particular, the sigmoid function g :
R→ [0, 1] is given by g(v) = 1

1+e−v for v ∈ R. The outputs from the hidden layer are

y1 = g(w1x1 + w3x2);

y2 = g(w2x1 + w4x2).

In turn, y1 and y2 are linearly combined and passed through g to obtain output z ∈ [0, 1], as

z = g(w5y1 + w6y2).

Thus, the parameters of the neural network (shown below) are the weights w1, w2, w3, w4, w5, w6.

x1

x2

g

g

g

w1

w2

w3

w4

w5

y1

w6
y2

z

The neural network implements a policy for a task with two actions: a1 and a2. For any
given state s, its two features x1(s) and x2(s) are provided as input to the neural network.
The output z that is computed is taken as the probability of executing action a1. Hence,
the probability of executing action a2 is 1− z.

Suppose that on episode i ≥ 0, the weights of the neural network are wi
1, w

i
2, w

i
3, w

i
4, w

i
5, w

i
6 ∈

R. By following the stochastic policy thus encoded, the agent generates a trajectory

s0, a0, r0, s1, a1, r1, . . . , sT ,

which is a state-action-reward sequence with time step as suffix. s0 is the starting state, whose
value is sought to be maximised, and sT is the terminal state. If the agent appliesReinforce
based on this trajectory, using learning rate α ∈ (0, 1), what are the corresponding weights
wi+1

1 , wi+1
2 , wi+1

3 , wi+1
4 , wi+1

5 , wi+1
6 after performing the update? You can use x1(·), x2(·), and

g(·) in your answer. You can also define and use your own functions. [5 marks]

3



Question 6. The following six episodes of data (each episode given as a state-action-reward
sequence) are gathered on an MDP with non-terminal states s1, s2, s3; a terminal state s⊤;
and actions a1, a2. Episodes can begin at any of the non-terminal states. Also, the reward
function is deterministic. No discounting is used (that is, γ = 1).

s1, a1, 3, s2, a1, 1, s3, a2, 2, s⊤
s1, a2, 0, s3, a1, 4, s⊤
s2, a1, 0, s⊤
s2, a2, 4, s2, a2, 2, s3, a1, 4, s⊤
s2, a2, 2, s3, a2, 2, s⊤
s2, a2, 2, s3, a1, 4, s⊤

Suppose Experience Replay is run on this
data to convergence, using a tabular represen-
tation of the state-action space, with appro-
priate annealing of the learning rate. What is
the policy produced by the procedure? Show
the steps to arrive at your answer. [4 marks]

Question 7. An episodic MDP with non-terminal states s1, s2, s3; terminal state s⊤; and
actions a1 and a2 is shown below. All transitions are deterministic. Action a1 is shown using
solid arrows; action a2 is shown using dashed arrows. Rewards for transitions are annotated
on the corresponding arrows.

s1 s2 s3 s⊤
0

1

0

1

1

0
a1

a2

The starting state for each episode is selected uniformly at random among s1 and s2.
Unfortunately, the agent interacting with this MDP is unable to sense state. However, the
agent can remember the number of time steps that have elapsed thus far in the episode; it
can also use randomness in action-selection.

What is the maximum (undiscounted) expected cumulative reward that the agent can
accrue in each episode? What “policy” must it follow in order to do so? [5 marks]

Question 8. In the class lectures, we covered two applications: “Autonomous helicopter
flight via reinforcement learning” (Ng et al., 2003) and “Mastering the game of Go with deep
neural networks and tree search” (Silver et al., 2016). The latter paper introduces AlphaGo
(not AlphaGo Zero or AlphaZero). For each of these applications, specify which among the
following methods/aspects are a part of the solution, with brief supporting explanation.

A. Supervised learning
B. Data generated by humans
C. Direct optimisation of policy (by policy gradient or policy search)
D. Decision-time planning
E. Value function learning
F. Neural networks

[4 marks]

4



Solutions

1a. For t ≥ 1, we observe from the MDP that

pt1 =
1

3
pt−1
2 ,

pt2 = pt−1
1 +

1

3
pt−1
2 + pt−1

3 ,

pt3 =
1

3
pt−1
2 .

Since p1t−1 + p2t−1 + p3t−1 = 1, we obtain

pt2 = 1− 2

3
pt−1
2 ,

which on expanding yields

pt2 = 1 +
−2
3

+

(
−2
3

)2

+ · · ·+
(
−2
3

)t−1

+

(
−2
3

)t

p02.

This expression (which contains an arithmetic proression) simplifies to

pt2 =
3

5

(
1−

(
−2
3

)t
)

+

(
−2
3

)t

p02.

Also observe that pt1 = pt3, in turn equal to 1
2
(1− pt2). Thus

pt1 = pt3 =
1

5
+

3

10

(
−2
3

)t

− 1

2

(
−2
3

)t

p02.

1b. Since
∣∣2
3

∣∣ < 1, lim
t→∞

(
−2
3

)t

= 0. Consequently, we get

lim
t→∞

pt1 =
1

5
,

lim
t→∞

pt2 =
3

5
,

lim
t→∞

pt3 =
1

5
.

5



2a. We have the following definitions from the class lectures. For s ∈ S, i ≥ 1, j ≥ 1, let
1(s, i, j) be 1 if s is visited at least j times on episode i (else 1(s, i, j) = 0), and G(s, i, j) be
the discounted long-term reward starting from the j-th visit of s on episode i.

V̂ N
First-visit(s) =

∑N
i=1G(s, i, 1)∑N
i=1 1(s, i, 1)

.

V̂ N
Every-visit(s) =

∑N
i=1

∑∞
j=1G(s, i, j)∑N

i=1

∑∞
j=1 1(s, i, j)

.

Notice that we are given that both denominators are positive.

2b. It is not true that the every-visit estimate is necessarily upper-bounded by the first-visit
estimate. We show a counterexample, in which N = 2 episodes of data are gathered. As
state-action-reward sequences, they are as follows.

Episode 1: s1, a1, 10, s1, a1, 10, s2, a1, 20, s⊤.

Episode 2: s1, a1, 1, s3, a1, 1, s⊤.

The calculations below show that V̂ N
First-visit(s1) < V̂ N

Every-visit(s1).

V̂ N
First-visit(s1) =

(10 + 10 + 20) + (1 + 1)

2
= 21;

V̂ N
Every-visit(s1) =

(10 + 10 + 20) + (10 + 20) + (1 + 1)

3
= 24.

6



3. Pseudocode for Sarsa(0) is provided below. Qualitatively, the main aspects to ensure
are that (1) the policy followed is GLIE; (2) the learning rate is annealed properly; (3) the
(s, a, r, s′, a′) update is done after a′ is selected to be taken; (4) the target is r when s′ is a
terminal state; and (5) no update happens across episodes—such as with s from one episode
and s′ from the next episode.

Q← 0.
t← 0. //Overall time steps.
e← 0. //Overall episodes.
For each episode:

The agent is born in state s.
a← NULL.
Do:

If a is NULL:
Sample a ∼ πQ,t,e(s).

Take action a, obtain reward r, next state s′.
If s′ is terminal:

Q(s, a)← Q(s, a) + αt,e{r −Q(s, a)}.
Else:

Sample a′ ∼ πQ,t,e(s
′).

Q(s, a)← Q(s, a) + αt,e{r + γQ(s′, a′)−Q(s, a)}.
a← a′.

s← s′.
t← t+ 1.

While s is not terminal.
e← e+ 1.

The policy πQ,t,e can be taken to be ϵ-greedy with respect to Q, where we have the flexibility
of annealing ϵ either after each episode or after each time step. So, for example, we could
take ϵ = 1

1+e
or 1

1+t
. Similarly, the learning rate αt,e can also be taken as either 1

1+e
or 1

1+t
.

Other choices are also fine as long as exploration is GLIE, and the learning rate satisfies
Robbins and Monro’s conditions.

7



4. The conceptual basis of UCT is that if N is infinite, then

πbehaviour(s) = argmax
a∈A

∑
s′∈S

T (s, a, s′){R(s, a, s′) + γ(B⋆)h−1(V πrollout)(s′)}.

If h = 1, notice that we obtain πbehaviour(s) = argmaxa∈A Qπrollout(s, a), which implies (by the
policy improvement theorem) that πbehaviour ≻ πrollout if πrollout is not optimal, and otherwise
both policies are optimal. The same result holds for larger values of h.

In practice, we are constrained to run UCT with finite values ofN and h. Hence, although
the claim above is not necessarily true, it will still hold with a probability determined by N ,
h and the parameters of the MDP. We also expect that typically in practice, larger values of
h will give rise to behaviour policies with higher returns. Notice that if h and N are both
infinite, then πbehaviour must be an optimal policy regardless of πrollout.

8



5. Let w̄, a vector, be a short form for (w1, w2, w3, w4, w5, w6). We define the following
functions to help with our update from w̄i to w̄i+1.

y1(w̄, s) = g(w1x1(s) + w3x2(s)).

y2(w̄, s) = g(w2x1(s) + w4x2(s)).

z(w̄, s) = g(w5y1(w̄, s) + w6y2(w̄, s)).

g′(v) =
e−v

(1 + e−v)2
.

∂z(w̄, s)

∂w5

= g′(w5y1(w̄, s) + w6y2(w̄, s))y1(w̄, s).

∂z(w̄, s)

∂w6

= g′(w5y1(w̄, s) + w6y2(w̄, s))y2(w̄, s).

∂z(w̄, s)

∂w1

= g′(w5y1(w̄, s) + w6y2(w̄, s))w5g
′(w1x1(s) + w3x2(s))x1(s).

∂z(w̄, s)

∂w2

= g′(w5y1(w̄, s) + w6y2(w̄, s))w6g
′(w2x1(s) + w4x2(s))x1(s).

∂z(w̄, s)

∂w3

= g′(w5y1(w̄, s) + w6y2(w̄, s))w5g
′(w1x1(s) + w3x2(s))x2(s).

∂z(w̄, s)

∂w4

= g′(w5y1(w̄, s) + w6y2(w̄, s))w6g
′(w2x1(s) + w4x2(s))x2(s).

With these definitions done, we obtain the following for k ∈ {1, 2, 3, 4, 5, 6}.

π(w̄, s, a) =

{
z(w̄, s) if a = a1,

1− z(w̄, s) if a = a2.

∂π(w̄, s, a)

∂wk

=

{
∂z(w̄,s)
∂wk

if a = a1,

−∂z(w̄,s)
∂wk

if a = a2.

Finally we have the Reinforce update rule. For k ∈ {1, 2, 3, 4, 5, 6},

w̄i+1
k = wi

k + α

T−1∑
t=0

(
∂π(w̄i, st, at)

∂wk

)(
1

π(w̄i, st, at)

)(T−1∑
j=t

rj

)
.

9



6. The maximum likelihood MDP M̂ to generate the observed data is obtained by calculating
the empirical frequency (and reward) of each transition. It works out to the MDP shown
below. Solid arrows correspond to action a1, and dashed arrows correspond to action a2.
Annotations are of the form “transition probability, reward”; zero-probability transitions are
not included. Notice, for example, that that (s2, a2) occurs four times in the data, of which
one transition is into s2, and the remaining three into s3. Hence, the empirical probabilities
are 1

4
for (s2, a2, s2), and

3
4
for (s2, a2, s3).

s1 s2 s3 s⊤

1
1 , 3

1
1 , 0

1
4 , 4

3
4 , 2

1
2 , 2

1
2 , 1

3
3 , 4

2
2 , 2

a1

a2

At convergence, Experience Replay (which updates Q values) will converge to Q̂⋆
M̂
, which

induces policy π⋆
M̂
. The steps below are based on the transition probabilities and rewards

in the empirical MDP M̂ . The step to calculate Q⋆
M̂
(s2, a2) depends on V ⋆

M̂
(s2), which has

to be the maximum of Q⋆
M̂
(s2, a1) and Q⋆

M̂
(s2, a2). Upon trying with both values, it is seen

that the latter is larger.

Q⋆
M̂
(s3, a1) = 4.

Q⋆
M̂
(s3, a2) = 2.

V ⋆
M̂
(s3) = 4.

π⋆
M̂
(s3) = a1.

Q⋆
M̂
(s2, a1) =

1

2
(2 + 0) +

1

2
(1 + V ⋆

M̂
(s3)) =

7

2
.

Q⋆
M̂
(s2, a2) =

1

4
(4 + V ⋆

M̂
(s2)) +

3

4
(2 + V ⋆

M̂
(s3)) =

22

3
.

V ⋆
M̂
(s2)) =

22

3
.

π⋆
M̂
(s2) = a2.

Q⋆
M̂
(s1, a1) = 3 + V ⋆

M̂
(s2) =

31

3
.

Q⋆
M̂
(s1, a2) = 0 + V ⋆

M̂
(s3) =

7

2
.

V ⋆
M̂
(s1) =

31

3
.

π⋆
M̂
(s1) = a1.

10



7. As specified in the question, if the agent can only remember time step, the most expressive
class of policies it can optimise over is mappings from the set of possible time steps elapsed
to the set of probability distributions over actions. In other words, the agent must optimise
probabilities x, y, z ∈ [0, 1] where x is the probability of taking a1 at t = 0, y is the probability
of taking a1 at t = 1, and z is the probability of taking a1 at t = 2. In short, the agent has
to optimise over this template.

Memory Probability of taking a1
t = 0 x
t = 1 y
t = 2 z

We evaluate this policy on the MDP, starting from each state (which the agent itself
might not unambiguously know while acting) and for each “memory state” (in this case a
time step), denoted as superscript.

V 2(s3) = z(1) + (1− z)(0) = z.

V 1(s3) = y(1) + (1− y)(0) = y.

V 0(s3) = x(1) + (1− x)(0) = x.

V 1(s2) = y(0 + V 2(s3)) + (1− y)(1 + 0) = yz + 1− y.

V 0(s2) = x(0 + V 1(s3)) + (1− x)(1 + 0) = xy + 1− x.

V 0(s1) = x(0 + V 1(s2)) + (1− x)(1 + V 1(s3)) = xyz − 2xy + 1 + y.

If the agent is initialised uniformly at random at s1 or s2, the scalar value of policy
(x, y, z) is

1

2
(V 0(s1) + V 0(s2)) = xyz − xy + 2− x+ y.

Since x, y, z are all non-negative, first we notice that z = 1 will always optimise the value.
After setting z = 1, we notice that the value decreases with x and increases with y. Hence
an optimal setting is x = 0, y = 1, z = 1, which yields a value of 3

2
. In fact, if x = 0 and

y = 1, the agent never lives for more than 2 time steps—that is, never has to take an action
at t = 2—which means z can be set arbitrarily to obtain the same value of 3

2
.

An alternative assumption that can be made (not explicitly specified in the question) is
that the agent can also remember the sequence of actions it has taken thus far in the episode.
In this case, the agent has to optimise probabilities p, p1, p2, p11, p12, p21, p22, as listed below.

Memory Probability of taking a1
∅ p
a1 p1
a2 p2

a1, a1 p11
a1, a2 p12
a2, a1 p21
a2, a2 p22

In general this more expressive class of policies can provide better returns. However, on this
particular example, the maximum value achievable remains 3

2
(we leave it as en exercise to

the student to work out this out).

11



8. The work on helicopter control uses [A] supervised learning of the model, based on [B]
data logged by a human controller. [C] The Pegasus method for policy search is performed
using hill climbing. [F] The policy is represented as a neural network. The two items which
are not relevant to the helicopter control work are [D] and [E].

AlphaGo uses [A] supervised learning on [B] games of Go played by human experts. The
key learning algorithm is [C] Reinforce, which is a policy gradient algorithm. [D] UCT,
which is a decision-time planning algorithm, is deployed while playing th game. [E] A value
function is learned to evaluate leaves during decision-time planning. [F] Both the policy and
the value function are represented using neural networks.

12


